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Abstract

A reversible automaton is a finite (possibly incomplete) automa-
ton in which each letter induces a partial one-to-one map from the
set of states into itself. We give four non-trivial characterizations of
the languages accepted by a reversible automaton equipped with a set
of initial and final states and we show that one can effectively decide
whether a given rational (or regular) language can be accepted by a
reversible automaton. The first characterization gives a description of
the subsets of the free group accepted by a reversible automaton that
is somewhat reminiscent of Kleene’s theorem. The second characteri-
zation is more combinatorial in nature. The decidability follows from
the third — algebraic — characterization. The last and somewhat un-
expected characterization is a topological description of our languages
that solves an open problem about the finite-group topology of the free
monoid.

1 Introduction.

The well-Known Kleene’s theorem states that a language is rational if and
only if it is accepted by a finite deterministic automaton. Since rational
languages are closed under reversal, the rational languages are also exactly
the languages accepted by finite codeterministic automata (an automaton
A is codeterministic if the reverse automaton Ar is deterministic). The aim
of this paper is to characterize the languages accepted by reversible (that
is both deterministic and codeterministic) automata. Although this natural
question requires only the very basic definitions of automata theory and
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could have been asked already in the fifties, the answer we propose in this
paper is intimately related to the more advanced research on recognizable
languages and finite semigroups.

We first need to make precise the meaning of the expression “accepted
by an automaton”. In the case of a deterministic automaton, one usually
considers a set of final states and either a unique initial state, or a set of
initial states : in both cases, the languages accepted by these automata are
the rational languages. There are two solutions to keep the symmetry for
the definition of a reversible automaton. We may consider a unique initial
state and a unique final state: we call it the restricted mode of acceptance.
Such acceptors have been considered in artificial intelligence in connection
with the problem of inductively inferring general rules from examples [1].
They also have occurred in the study of the star-height problem [9] and are
related to certain classes of biprefix codes [6]. The corresponding class of
languages is not closed under union and the membership problem for this
class is easy to solve. The second solution consists in considering a set of
initial and final states. Now, the corresponding class of languages C is closed
under (finite) union, but it is no longer trivial to decide whether or not a
given rational language belongs to C (for instance, the minimal automaton
of a language of C is not reversible in general). We propose in this paper
four different characterizations of the class C.

Our first characterization relates the class C to a class of rational subsets
of the free group. Indeed, an automaton is reversible if and only if each
letter induces a partial one-to-one map from the set of states into itself.
Therefore, if a reversible automaton accepts a language L of A∗ it also
accepts in a natural way a subset K of the free group such that L = K∩A∗.
Now the subsets of the free group accepted by a reversible automaton form
the smallest class of subsets (of the free group) containing the singletons
and closed under the three operations “union”, “product by an element of
the free group”, and “subgroup generated by”. These subsets are also the
finite unions of cosets of finitely generated subgroups of the free group.

Next, we observe that if a language L belongs to C, then

(a) the idempotents of the syntactic monoid M(L) commute.

This necessary condition plays an important role in semigroup theory [2, 3,
10, 11]. However, (a) is not sufficient, conversely, to ensure that L belongs
to C.

There are three different ways to strengthen condition (a) to obtain a
characterization of C. The first solution is to require that in L, “plus is
equivalent to star”, or more precisely, that
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(b) if xu+y ∈ L for some words x, u, y of A∗, then xy ∈ L.

The second solution is an algebraic translation of (b) : if P denotes the
image of L in M(L), then

(c) for every s, t ∈ M(L), and for every idempotent e ∈ M(L), set ∈ P

implies st ∈ P .

This characterization is important because it shows that the membership
problem for is decidable. Given a rational language L, one can effectively
compute R(L) and P and verify (a) and (c). Therefore, one may decide
whether or not L belongs to C.

Our last characterization relates C to the group topology of the free
monoid [5, 12, 14]. This topology is defined by a distance in which, roughly
speaking, two words are close if they are not distinguishable by a group of
small cardinality. We show that a rational language L belongs to C if and
only if M(L) satisfies (a) and L is in this topology. In fact, we conjecture
that a rational language L is closed if and only if the condition (c) holds.
The results of this paper show that this conjecture is true if the idempotents
of M(L) commute. We refer the reader to [11] for the consequences of this
conjecture in semigroup theory.

Some of the proofs are omitted and will appear elsewhere.

2 Reversible automata

Recall that a finite deterministic (incomplete) automaton is a triple A =
(Q,A, .) where Q is a finite) set of states, A is the alphabet, and (q, a) → q · a
is a partial function from Q × A into Q. We denote by a Ar the reverse
automaton of A. In general Ar is a non-deterministic automaton. If it is
deterministic, we say that A is reversible (or injective [6, 14]). Equivalently,
A is reversible if every letter a ∈ A induces an injective partial function from
Q into itself. We say that a language L of A∗ is accepted in the restricted
mode by A if there exists an initial state i and a final state f such that
L = {u ∈ A∗ | i·u = f}. We say that L is accepted by A if there exists a
set I of initial states and a set F of final states such that

L = {u ∈ A∗ | there exists i ∈ I and f ∈ F such that i·u = f}

Example 2.1 The automaton represented in the following diagram is re-
versible and accepts the language {c, ac, bc}.
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Figure 2.1: A reversible automaton accepting {c, ac, bc}.

It is not difficult to see that a trim, reversible automaton with a unique initial
state and a unique final state is necessarily minimal. The next proposition,
discovered independently by various authors, characterizes the languages
accepted by reversible automaton in the restricted mode.

Proposition 2.1 A language L is accepted by a reversible automaton in the
restricted mode if and only if the minimal automaton of L is reversible and
has a unique final state.

It is much more difficult to characterize the class C of all the languages
accepted by a reversible automaton. The following construction shows that C
is closed under union. Given two reversible automataA1 = (Q1, A, ·1 , I1, F1)
and A2 = (Q2, A, ·2 , I2, F2), we form the disjoint union A of A1 and A2 as
follows: A = (Q,A, · , I, F ) where Q is the disjoint union of Q1 and Q2, I
is the disjoint union of I1 and I2, F is the disjoint union of F1 and F2, and,
for every letter a ∈ A,

q · a =

{

q ·1 a if q ∈ Q1

q ·2 a if q ∈ Q2

Then A is a reversible automaton that accepts L(A1) ∪ L(A2).
Since the minimal automaton of a singleton {u} is always reversible, it

follows that C contains all the finite languages. Notice that the minimal
automaton of a language of C is not necessarily reversible. For instance, the
minimal automaton of L = {a, ac, bc} is not reversible.

Let A be a reversible automaton. The action from A on Q can be
extended to an action from the free group F (A) on Q by setting, for every
q ∈ Q, q · 1 = q and, for every a ∈ A and for every u ∈ A∗,

q ·ua = (q ·u)· aif q ·ua and (q ·u)· a are both defined (undefined otherwise)

q ·uā = q′if q ·u is defined and if q′ · a = q ·u (undefined otherwise)

Now, the subset of the free group accepted by A is the set

S(A) = {u ∈ F (A) | there exists q ∈ Q and q′ ∈ F such that q ·u = q′}
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For instance, if A is the automaton of Example 2.1, then S(A) = {c} ∪
〈ab̄〉{ac, bc} where 〈X〉 denotes the subgroup of F (A) generated by a set X.

Since L(A) = S(A) ∩ A∗, it suffices to describe the subsets of the free
group accepted by a reversible automaton to obtain a first characterization
of the class C. This is the goal of the following theorem.

Theorem 2.2 A subset S of the free group F (A) is accepted by a reversible
automaton if and only if S is a finite union of left cosets of finitely generated
subgroups of the free group.

(Proof omitted)

Here is another version of the same result, that is somewhat reminiscent
of Kleene’s theorem.

Theorem 2.3 The subsets of the free group accepted by a reversible au-
tomaton form the smallest class of subsets F such that

(1) ∅ ∈ F and for every g ∈ F (A), {g} ∈ F ,

(2) if S1, S2 ∈ F , then S1 ∪ S2 ∈ F ,

(3) if S ∈ F and g ∈ F (A) then gS ∈ F ,

(4) if S ∈ F , then 〈S〉 ∈ F .

3 An algebraic characterization of C.

Let L be a rational language of A∗. We denote byM(L) the syntactic monoid
of L, by η : A∗ → M(L) the syntactic morphism and we put P = Lη. Recall
that an element e of a monoid M is idempotent if e = e2. The following
proposition gives two important properties of the languages of C.

Proposition 3.1 If L is accepted by a reversible automaton, then,

(a) the idempotents of M(L) commute,

(b) for every x, u, y ∈ A∗, xu+y ⊂ L implies xy ∈ L.

Proof. LetA = (Q,A, · , I, F ) be a reversible automaton accepting L. Then
L is recognized by the transition monoid M of A. Let e be an idempotent of
M . Then for every q ∈ Q, (q · e)· e = q · e whenever q · e is defined. Since A is
reversible, e is an injective partial function and thus q · e = q or is undefined.
In other words, every idempotent is a subidentity on Q. It follows imme-
diately that the idempotents commute in M . Now, the syntactic monoid
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M(L) divides M (see [4, 7, 13] for instance), and since the class of monoids
with commuting idempotents is closed under division, the idempotents also
commute in M(L).

Let x, u, y ∈ A∗ be words such that xu+y ⊂ L. Since M is finite, there
exists an integer n > 0 such that un is idempotent in M , that is, induces a
subidentity on Q. Now since xuny ∈ L, there exists an initial state q and a
final state q′ such that q ·xuny = q′. Thus (q ·x)·un is defined, and hence is
equal to (q ·x). Therefore q ·xy = q ·xuny = q′ whence xy is accepted by A
and thus xy ∈ L.

Condition (b) of the previous proposition is equivalent to a more alge-
braic statement.

Proposition 3.2 For every rational language L, the following conditions
are equivalent:

(b) for every x, u, y ∈ A∗, xu+y ⊂ L implies xy ∈ L,

(c) for every s, t ∈ M(L), and for every idempotent e ∈ M(L), set ∈ P

implies st ∈ P .

Proof. Assume that (b) is satisfied and let s, e, t ∈ M(L) with e idempotent.
Assume that set ∈ P . Then, since η is surjective, there exist some words
x, u, y ∈ A∗ such that xη = s, uη = e and yη = t. Now, for every n > 0,
(xuny)η = set ∈ P . Thus xu+y ⊂ Pη−1 = L and hence xy ∈ L by (b). It
follows that st = (xy)η ∈ Lη = P .

Conversely, assume that (c) holds, and let x, u, y be words such that
xu+y ⊂ L. Then there exists n > 0 such that un = e is an idempotent.
Setting xη = s and yη = t, we obtain set ∈ Lη = P , and hence st ∈ P by
(c). Therefore xy ∈ L, since (xy)η = st ∈ P .

We now turn to the converse of Proposition 3.1, for which we need a
more detailed study of monoids with commuting idempotents. Recall that
an element x of a monoid M is regular if there exists an element y such that
xyx = x and yxy = y. We start with an important combinatorial lemma,
due to Ash [2].

Proposition 3.3 Let M be a monoid with commuting idempotents, and let
η : A∗ → M be a monoid morphism. Then there exists an integer N > 0 such
that every word w ∈ A∗ admits a factorization of the form w = u0v1u1...vkuk
with u1, . . . , uk−1 ∈ A+, u0, uk ∈ A∗, v1, . . . , vk ∈ A+ and

(1) v1η, . . . , vkη are regular elements of M ,
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(2) if bi−1 denotes the last letter of ui−1 and ai the first letter of ui, (bivi)η
and (viai)η are not regular,

(3) |u0 · · ·uk| 6 N .

Recall the definition of the Green’s relation R. Let u and v be two elements
of a monoid M . Then u R v if and only if there exist two elements x, y ∈ M

such that ux = v and vy = x. An R-class is regular if it contains a regular
element. The following proposition summarizes the properties of R-classes
that are used in this paper.

Proposition 3.4 Let M be a monoid with commuting idempotents. Then

(1) every regular R-class R contains a unique idempotent e,

(2) for every x ∈ R, ex = x,

(3) for every u, v, s ∈ M , u R v R us and us = vs implies u = v.

(Proof omitted)

Theorem 3.5 A rational language L is accepted by a reversible automaton
if and only if it satisfies conditions (a) and (b) or, equivalently, conditions
(a) and (c).

Proof. By Propositions 3.1 and 3.2, it suffices to show that if L satisfies
(a) and (c), then L ∈ C. Let r be the maximum size of an R-class of M(L),
and let N be the integer given by Proposition 3.3. Let F be the set of all
the reversible automata of the form B = (Q,A, · , I, F ) where Q contains at
most r(N + 1) states and the language accepted by B is contained in L. F
is a finite set, since there are only a finite number of automata with at most
r(N +1) states. Let A be the disjoint union of all the automata of F . Then
A is a reversible automaton such that L(A) ⊂ L. To prove that L(A) is
actually equal to L, it suffices to exhibit, for every word w ∈ L, a reversible
automaton B of F such that w ∈ L(B).

Putm = wη and denote by P (m) the smallest subset ofM(L) containing
m and satisfying condition (c): for every s, e, t ∈ M(L), with e idempotent,
set ∈ P (m) implies st ∈ P (m). Now, since m ∈ P , P (m) is contained in P

and the language L(m) = P (m)η−1 is contained in L.
We first assume that m is a regular element of M(L). Then, by Propo-

sition 3.4, the R-class R of m contains a unique idempotent e and we can
state
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Lemma 3.6 The language L(m) is accepted by the reversible automaton
B = (R,A, · , {e}, {m}), where, for every a ∈ A, x· a = x(aη) if x(aη) ∈ R

(undefined otherwise).

Proof. Proposition 3.4 shows that B is reversible. Next, L(B) = Sη−1

where S = {s ∈ M(L) | es = m} and L(m) = P (m)η−1. Therefore, it
suffices to show that S = P (m). First m ∈ S by Proposition 3.4, and if
sft ∈ S for some s, t ∈ M(L) and some idempotent f , then es R esf R
(es)f = (esf)f . It follows that es = esf by Proposition 3.4, whence est =
esft = m and st ∈ S. Thus S satisfies condition (c) and P (m) is contained
in S. Conversely, let s ∈ S. Then es = m, and hence 1es = m ∈ P (m).
Therefore, by condition (c), s = 1.s ∈ P (m) and thus S = P (m) as required.

We now turn to the general case. Let w = u0v1u1 · · · vkuk be a fac-
torization of w given by Proposition 3.3. Put, for 1 6 i 6 k, viη = mi,
and let ei be the (unique) idempotent of the R-class of mi. The previous
proposition shows that the language L(mi) is accepted by the automaton
Bi = (Ri, A, · , ei,mi).

We consider also the minimal automaton B of the word u = u0u1 · · ·uk
defined as follows. The set of states is the set of left factors of u and, for
each letter a ∈ A and for each left factor x of u, x· a = xa if xa is a left
factor of u and is undefined otherwise. We now “sew” the automata B and
Bi’s together, according to the following diagram:

e1

B1

v1η e1

B2

v2η . . . ek

Bk

vkη
u0 u1 uk

Figure 3.2: Sewing B and the Bi’s together

Now, Proposition 3.3 implies that the resulting automaton is reversible
(the details are omitted), accepts the language

K = u0L(m1)u1 · · ·uk−1L(mk)uk

and contains at most r(N + 1) states. We claim that K is contained
in L(m) (and thus in L). Indeed put, for 0 6 i 6 k, si = uiη, so
that m = s0m1s1 · · ·mksk. Since K ⊂ Kηη−1, it suffices to show that
Kη = s0P (m1)s1 · · ·P (mk)sk is contained in P (m). Let T be the set of
all (t1, . . . , tk) of P (m1) × · · · × P (mk) such that s0t1s1 · · · sktk ∈ P (m).
Then T contains (m1, · · · ,mk). Furthermore, if (t1, · · · , tk) ∈ T and if
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ti = xifiyi for some idempotent fi, then (s0t1 · · · si−1xi)fi(yisi...sktk) ∈
P (m), and hence, by Condition (c), s0t1 · · · si−1xiyisi · · · sktk ∈ P (m), so
that (t1, . . . , ti−1, xiyi, ti+1, . . . , tk) ∈ T . Therefore T is equal to P (m1) ×
· · · × P (mk) and this concludes the proof.

4 A topological characterization.

In this section, we give a topological description of the class C. Let us first
recall the definition of the topology we are concerned with.

One can show that two distinct words u and v of A∗ can always be
separated by a finite group in the following sense: there exists a finite group
G and a monoid morphism ϕ : A∗ → G such that ϕ(u) 6= ϕ(v). Set, for
every u, v ∈ F (A),

r(u, v) = min {Card(G) | G is a finite group that separates u and v}

and
d(u, v) = e−r(u,v)

with the usual conventions min ∅ = ∞ and e−∞ = 0. Then d is a distance
(in fact an ultrametric distance) which defines a topology on A∗, called
the finite-group topology of the free monoid. This topology, introduced by
Reutenauer [14, 15], is an analogue for the free monoid to the profinite
topology of the free group introduced by M. Hall [5]. It is the coarsest
topology such that every monoid morphism from A∗ into a discrete finite
group is continuous. The free monoid A∗, equipped with this topology, is a
topological monoid. The interested reader is referred to [12, 14] for a more
detailed study of this topology. An example of a converging sequence is
given by the following proposition:

Proposition 4.1 ([14]) For every word w ∈ A∗, lim
n→∞

wn! = 1.

The next proposition relates reversible automata to this topology.

Proposition 4.2 ([14]) Every language accepted by a reversible automaton
is closed in the profinite group topology.

The converse is not true in general. For instance, the language a∗b∗ is
closed but is not accepted by any reversible automaton. However, we have
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Theorem 4.3 A rational language L is accepted by a reversible automaton
if and only if the idempotents commute in M(L) and L is closed in the finite
group topology.

Proof. If L is accepted by a reversible automaton, then L is closed by
Proposition 4.2 and the idempotents of M(L) commute by Proposition 3.1.
Conversely, if L is closed, then L satisfies (b). Indeed, let x, u, y be words
such that xu+y ⊂ L. Then, in particular, for every n > 0, xun!y ∈ L.
Since L is closed, and since the multiplication is continuous, it follows by
Proposition 4.1 that xy = lim

n→∞

xun!y ∈ L. Thus L satisfies (a) and (b) and

the result follows from Theorem 3.5.

We have conjectured [11] that a rational language is closed if and only
if it satisfies condition (c) or (b). Theorem 4.3 shows that this conjecture is
true if the idempotents of the syntactic monoid of L commute.

5 Summary.

Let us summarize the previous results into a single statement.

Theorem 5.1 Let L be a rational language. The following conditions are
equivalent:

(1) L is accepted by a reversible automaton,

(2) L = K ∩ A∗ where K is a subset of the free group F (A) consisting of
a finite union of left cosets of finitely generated subgroups of F (A),

(3) the idempotents of M(L) commute and, for every x, u, y ∈ A∗, xu+y ∈
L implies xy ∈ L,

(4) the idempotents of M(L) commute and, for every s, t, e ∈ M such that
e is idempotent, set ∈ P implies st ∈ P ,

(5) the idempotents of M commute and L is closed in the finite group
topology of A∗.
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