
March 12, 2009

The expressive power of existential first order
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Abstract

The aim of this paper is to study the first order theory of the
successor, interpreted on finite words. More specifically, we complete
the study of the hierarchy based on quantifier alternations (or Σn-
hierarchy). It was known (Thomas, 1982) that this hierarchy collapses
at level 2, but the expressive power of the lower levels was not char-
acterized effectively. We give a semigroup theoretic description of the
expressive power of Σ1, the existential formulas, and BΣ1, the boolean
combinations of existential formulas. Our characterization is algebraic
and makes use of the syntactic semigroup, but contrary to a number of
results in this field, is not in the scope of Eilenberg’s variety theorem,
since BΣ1-definable languages are not closed under residuals.

An important consequence is the following: given one of the levels of
the hierarchy, there is polynomial time algorithm to decide whether the
language accepted by a deterministic n-state automaton is expressible
by a sentence of this level.

1 The sequential calculus

The connections between formal languages and mathematical logic were first
studied by Büchi [5]. But although Büchi was primarly interested in infinite
words, we will consider only finite words in this paper.

Büchi’s sequential calculus is a logical formalism to specify some prop-
erties of a finite word, for instance “the factor bba occurs three times in
the word, but the factor bbb does not occur”. Thus, each logical sentence
of this calculus defines a language, namely the set of all words that satisfy
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the property expressed by the formula. For instance, in our example, this
language would be A∗bbaA∗bbaA∗bbaA∗\A∗bbbA∗, where A = {a, b} denotes
the alphabet.

More formally, to each word u ∈ A+ is associated a structure

Mu = ({1, 2, . . . , |u|}, S, (Ra)a∈A)

where S denotes the successor relation on {1, 2, . . . , |u|} and Ra is set of
all i such that the i-th letter of u is an a. For instance, if A = {a, b} and
u = abaab, then Ra = {1, 3, 4} and Rb = {2, 5}. The logical language
appropriate to such models has S and the Ra’s as non logical symbols, and
formulas are built in the standard way by using these non-logical symbols,
variables, boolean connectives, equality between elements (positions) and
quantifiers. Note that the symbol < is not used in this logic. We shall use
the notations F1 (resp. F2) for the set of first order (resp. second order)
formulas with signature {S, (Ra)a∈A}.

Given a sentence ϕ, we denote by L(ϕ) the set of all words which satisfy
ϕ, when words are considered as models. It is a well known result of Büchi
that monadic second order sentences exactly define the recognizable (or reg-
ular) languages. That is, for each monadic second order sentence ϕ, L(ϕ) is
a recognizable language and, for every recognizable language L, there exists
a monadic second order sentence ϕ such that L(ϕ) = L. Actually, monadic
second order logic constitutes a border line in the study of the sequential cal-
culus. Beyond that border, one enters the hard world of complexity classes
[7].

2 First order

The expressive power of F1, the set of first order formulas with signature
{S, (Ra)a∈A} was first studied by Thomas [24].

2.1 The combinatorial description

Some definitions from language theory are in order to state the result of
Thomas. First, we will make a distinction between positive boolean oper-
ations on languages, that comprise finite union and finite intersection and
boolean operations that comprise finite union, finite intersection and com-
plement. Given a word x and a positive integer k, it is not very difficult to
express in F1 a property like “a factor x occurs at least k times”. Let us
denote by F (x, k) the language defined by this property. A language L of
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A+ is strongly threshold locally testable (STLT for short) if it is a boolean
combination of sets of the form F (x, k) where x ∈ A+ and k > 0. It is
threshold locally testable (TLT) if it is a boolean combination of sets of the
form uA∗, A∗v or F (x, k) where u, v, x ∈ A+ and k > 0. Note that uA∗

(resp. A∗v) is the set of words having u as a prefix (resp. v as a suffix), a
property that can also be expressed in F1. The classes of positively strongly
locally threshold testable (PSTLT) and positively threshold locally testable
(PTLT) languages are defined similarly, by replacing “boolean combina-
tion” by “positive boolean combination” in the definition1. Thomas proved
the following theorem.

Theorem 2.1 A language is F1-definable if and only if it is TLT.

In fact, this result is a particular instance of the general fact that first
order formulas can express only local properties [9, 25, 26].

Theorem 2.1 gave a combinatorial description of the F1-definable lan-
guages but also led to the next question : given a finite deterministic automa-
ton A, is it decidable whether the language accepted by A is F1-definable?

2.2 The semigroup approach

This problem was solved positively by semigroup-theoretic methods. Let L
be a language of A+. The syntactic congruence of L is the congruence ∼L

on A+ defined by u ∼L v if and only if, for every x, y ∈ A∗,

xuy ∈ L ⇐⇒ xvy ∈ L

The quotient semigroup S(L) = A+/∼L is called the syntactic semigroup
of L. It is also equal to the transition semigroup of the minimal automaton
of A. It follows that a language is recognizable if and only if its syntactic
semigroup is finite. The quotient morphism η : A+ → S(L) is called the
syntactic morphism and the subset P = η(L) of S(L) is the syntactic image
of L. See [14] for more details.

Recall that a finite semigroup S is aperiodic if there exists an integer
n ≥ 0 such that, for each s ∈ S, sn = sn+1. Another important property
was introduced by Thérien and Weiss [23]. If e and f are idempotents2 of
S, and if r, s and t are elements of S, then erfsetf = etfserf .

1The reader is referred to [3] or to [21, p. 47] for an explanation of this terminology.
2An element e ∈ S is idempotent if e

2 = e. One can show that a non empty finite
semigroup contains at least one idempotent.
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It is easier to remember this condition in terms of categories (there are
also good mathematical reasons to do so). The Cauchy category of a finite
semigroup S is defined as follows: the objects are the idempotents of S and,
if e and f are idempotents, the arrows from e to f are the triples (e, s, f),
such that s = es = sf . Composition of arrows is defined in the obvious way:

(e, s, f)(f, t, g) = (e, st, g)

Thus the condition above can be simply written

pqr = rqp (C)

where p and r are coterminal arrows, say, from e to f , and q is an arrow
from f to e.

e f

p, r

q

Figure 2.1: The condition pqr = rqp.

Thérien and Weiss did not explicitely mention the TLT languages in
their paper but nevertheless gave the main argument of the proof of the
following theorem.

Theorem 2.2 A language is TLT if and only if its syntactic semigroup S
is aperiodic and satisfies the condition (C).

The link between the papers [24] and [23] was first observed in [2]. A
complete proof of both results can also be found in the elegant book of
Straubing on circuit complexity [21]. We complete these results by analyzing
the complexity of the algorithm. More precisely, we prove the following
result.

Theorem 2.3 There is a polynomial time algorithm to decide whether the
language recognized by a deterministic n-state automaton is F1-definable.

Proof. (Sketch) Testing for aperiodicity is PSPACE-complete [6], but it
suffices to test whether the language is of “dot-depth one”, which can be
done in polynomial time [20]. Condition (C) can also be tested in polynomial
time. It suffices to see if, for every configuration of the form represented in
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Figure 2.2, in which e, f , p, q, r and y are paths in the given automaton,
q1 ∈ F if and only if q2 ∈ F .

q

q1

q2

e f e f

f e f e

e

p q r y

f
r q p y

Figure 2.2: Testing Condition (C).

This can be easily tested in polynomial time.

Theorem 2.3 is in contrast with the corresponding result for the first
order logic of the binary relation <, interpreted as the natural order on the
integers. For this logic, McNaughton and Papert [11] gave a combinato-
rial description (the star-free languages) and Schützenberger [18] gave an
algebraic characterization (the syntactic semigroup is aperiodic), but it was
shown in [6] that the corresponding algorithm is PSPACE-complete.

3 Inside first order

The details of the landscape can be refined by considering the Σn-hierarchy
of first order logic. It was shown by Thomas [24] that any F1-definable
language can also be defined by a Σ2-sentence, that is, a sentence of the
form

∃x1 · · · ∃xn ∀y1 · · · ∀ym ϕ(x1, · · · , xn, y1, · · · , ym)

where ϕ is quantifier-free. Recall that a Σ1-formula is of the form

∃x1 · · · ∃xn ϕ(x1, · · · , xn)

where ϕ is quantifier-free. Denote by Σ1 the set of Σ1-formulas and by BΣ1

the set of boolean combinations3 of Σ1-formulas. The expressive power of

3boolean operations on formulas comprise conjunction, disjunction and negation.
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Σ1 and BΣ1 was still to be characterized. The following result was proved
in [2, 3] by using Ehrenfeucht-Fräıssé games [21].

Theorem 3.1 A language is BΣ1-definable if and only if it is STLT.

The proof can be easily adapted to obtain a characterization of the Σ1-
definable languages

Theorem 3.2 A language is Σ1-definable if and only if it is PSTLT.

These results complete the combinatorial description of the Σn-hierar-
chy, but do not solve the decidability questions: given a finite deterministic
automaton A, is it decidable whether the language accepted by A is BΣ1-
definable (resp. Σ1-definable)?

The main result of this paper provides a positive answer to these ques-
tions. Let S be a finite semigroup. We denote by S1 the monoid equal to
S if S has an identity, and to S ∪ {1}, where 1 is a new identity, otherwise.
Two elements s and r of S are said to be J -equivalent (notation s J r)
if they generate the same ideal, that is, if there exists x, y, u, v ∈ S1 such
that usv = r and xry = s. Let ≡ be the coarsest equivalence relation on S
satisfying the two following conditions

(1) for all s, r ∈ S, s J r implies s ≡ r,

(2) for all idempotents e, f of S, esfre ≡ fresf

We say that a subset P of S saturates the ≡-classes if, for all s, r ∈ S, s ∈ P
and s ≡ r imply r ∈ P .

Theorem 3.3 Let L be a recognizable language, S its syntactic semigroup
and P its syntactic image. The following conditions are equivalent:

(1) L is BΣ1-definable,

(2) L is STLT,

(3) S is aperiodic and satisfies (C), and P saturates the ≡-classes.

For the PSTLT languages, the syntactic semigroup does not suffice, and
we need the ordered syntactic semigroup, introduced in [17]. Let L be a
language of A+ and let A+ : η → S(L) be its syntactic morphism. Define a
relation �L on A+ by setting u �L v if and only if, for every x, y ∈ A∗,

xvy ∈ L ⇒ xuy ∈ L
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Then �L is a reflexive and transitive relation such that u ∼L v if and only
if u �L v and v �L u. It follows that there is a well defined partial order
on S(L) defined by η(u) ≤ η(v) if and only if u �L v. This order is stable
under product: if s ≤ r and s′ ≤ r′, then ss′ ≤ rr′. The ordered semigroup
(S(L),≤) is called the ordered syntactic semigroup of L.

To each idempotent e is associated the subsemigroup eSe of S, defined
by eSe = {ese | s ∈ S}. This is in fact a monoid, with e as an identity,
called the local submonoid of e. Now, e is called a local maximum if, for
every s ∈ S, ese ≤ e. We can now formulate our characterization of the
PSTLT languages.

Theorem 3.4 Let L be a recognizable language, let S be its ordered syntac-
tic semigroup and let P be its syntactic image. The following conditions are
equivalent:

(1) L is Σ1-definable

(2) L is PSTLT,

(3) S satisfies (C), each idempotent of S is a local maximum and P satu-
rates the equivalence ≡.

The proof of Theorem 2.3 can be adapted to the case of BΣ1-formulas.

Corollary 3.5 There is a polynomial time algorithm to decide whether the
language recognized by a deterministic n-state automaton is BΣ1− (resp.
Σ1−) definable.

4 Three examples

Example 4.1 Let A = {a, b} and let L = a∗ba∗. Then L is recognized by
the automaton shown in Figure 4.3.

1

a

2

a

b

Figure 4.3: The minimal automaton of a∗ba∗.
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The transitions and the relations defining the syntactic semigroup S of L
are given in the following tables

a b bb

1 1 2 −

2 2 − −

a = 1
b2 = 0

Thus S = {1, b, 0} and E(S) = {1, 0}. The syntactic order is defined by
b ≤ 0 and 1 ≤ 0. The local semigroups are 0S0 = {0} and 1S1 = S. The
latter is not idempotent, since b2 6= b. Therefore, L is not locally testable.
On the other hand, the Cauchy category of S(L), represented in Figure 4.4,
satisfies the condition pqr = rqp.

11, b, 0 0 0

0

0

Figure 4.4: The graph of S.

Therefore L is TLT. The syntactic image of L is P = {b}, which saturates
the ≡-classes. Thus L is STLT. This can be seen directly in this case, since
L is the set of all words containing exactly one occurrence of b. However,
L is not PSTLT since, in the local semigroup 1S1 = S, 1 is not the top
element.

Example 4.2 Let A = {a, b, c}, and let L = c(ab)∗ ∪ c(ab)∗a. Then L is
recognized by the following automaton.

1 2 3
c

a

b

Figure 4.5: An automaton recognizing L.

The transitions and the relations defining the syntactic semigroup S of L
are given in the following tables

a b c aa ab ba ca

1 − − 2 − − − 3

2 3 − − − 2 − −

3 − 2 − − − 3 −

a2 = b2 = c2 = ac = bc = cb = 0
aba = a
bab = b
cab = c
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The J -class structure is represented in the following diagram, where the
grey box is the image of L.

∗ab a

b ∗ba

c ca

∗0

Figure 4.6: The J -class structure.

Thus P saturates the J -classes, and L is SLT. In fact, L = A∗cA∗\(A∗aaA∗∪
A∗acA∗ ∪ A∗bbA∗ ∪ A∗bcA∗ ∪ A∗cbA∗ ∪ A∗ccA∗).

Example 4.3 Let A = {a, b}, and let L = (1 + b)a(ba)∗b2b∗a(ba)∗(1 +
b) ∪ b2b∗a(ba)∗b2b∗. The transitions and the relations defining the syntactic
semigroup S of L are given in the following tables

Elements 1 2 3 4 5 6 7 8 9 10 11

a 6 10 0 7 10 0 0 6 7 0 6
b 11 2 3 3 0 8 4 2 9 5 9

aa 0 0 0 0 0 0 0 0 0 0 0
ab 8 5 0 4 5 0 0 8 4 0 8
ba 6 10 0 0 0 6 7 10 7 10 7
bb 9 2 3 3 0 2 3 2 9 0 9

abb 2 0 0 3 0 0 0 2 3 0 2
bab 8 5 0 0 0 8 4 5 4 5 4
bba 7 10 0 0 0 10 0 10 7 0 7

abba 10 0 0 0 0 0 0 10 0 0 10
babb 2 0 0 0 0 2 3 0 3 0 3
bbab 4 5 0 0 0 5 0 5 4 0 4

abbab 5 0 0 0 0 0 0 5 0 0 5
babba 10 0 0 0 0 10 0 0 0 0 0
bbabb 3 0 0 0 0 0 0 0 3 0 3

babbab 5 0 0 0 0 5 0 0 0 0 0
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Relations :

aa = 0 aba = a b3 = b2 abbabb = 0 bbabba = 0

The idempotents are ab, ba, bb and 0. The J -class structure is represented
in the following diagram:

b

∗ab a

bab ∗ba

∗b2

abb

babb
bba bbab

abba abbab

babba babbab
bbabb

∗0

The image of the language is P = {bbabb, abba, abbab, babba, babbab}.
One can verify that P saturates ≡. Notice in particular that babbab =
(ba)(bb)(ba). Since the elements e = ba and f = bb are idempotent, efe ∈ P
should imply fef ∈ P , since P saturates ≡. Indeed, fef = babba ∈ P . In
fact, L = (F (ab2, 1) ∩ F (b2a, 1)) \ (F (aa, 1) ∪ F (ab2, 2) ∪ F (b2a, 2)).

5 Outline of the proof of Theorem 3.3

Our proof is partly inspirated by the proof of Wilke [27], which gives a
very nice characterization of the TLT languages of infinite words. However,
Wilke’s characterization makes use of the topology on infinite words, which
is useless on finite words. We first introduce some combinatorial definitions.

Let A be a finite alphabet. If u is a word of length ≥ k, we denote by
pk(u) and sk(u), respectively, the prefix and suffix of length k of u. If u and
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x are two words, we denote by
[

u
x

]

the number of occurrences of the factor

x in u. For instance
[

abababa
aba

]

= 3, since aba occurs in three different places
in abababa : abababa, abababa, abababa.

Let x and y be two integers. Then x ≡ y threshold t (also denoted
x ≡t y) if and only if (x < t and x = y) or (x ≥ t and y ≥ t). For instance
the equivalence classes of ≡4 are {0}, {1}, {2}, {3}, {4, 5, 6, 7, . . .}.

For every k, t > 0, let ≡k,t be the equivalence of finite index defined
on A+ by setting u ≡k,t v if and only if, for every word x of length ≤ k,
[

u
x

]

≡t

[

v
x

]

. For instance, abababab ≡2,3 abababa since abababab contains 4 (
≡ 3 threshold 3) occurrences of ab and 3 (≡ 3 threshold 3) occurrences of
ba, and no occurrences of aa (respectively bb).
We also define a congruence ∼k,t of finite index on A+ by setting u ∼k,t v if

(1) u and v have the same prefixes (resp. suffixes) of length < k,

(2) u ≡k,t v.

The next proposition gives an alternative definition of the TLT and STLT
languages.

Proposition 5.1 A subset of A+ is TLT (resp. STLT) if it is union of
∼k,t-classes (resp. ≡k,t) for some k and t.

The equivalence of (1) and (2) follows from Theorem 3.1. We now prove
that (2) implies (3). Let L be a STLT language. Then L is union of ≡k,t-
classes for some k and t. Let η : A+ → S be the syntactic morphism of
L and let P be the syntactic image of L. Since L is STLT, it is also TLT
and thus, by Theorem 2.2, S is aperiodic and satisfies (C). It remains to see
that P saturates the ≡-classes. Since η is onto, one can fix, for each element
s ∈ S1 a word s̄ ∈ A∗ such that η(s̄) = s. Let s and r be two J -equivalent
elements of S and suppose that s ∈ P . Then there exist x, y, u, v ∈ S1 such
that usx = r and vry = s.

Since S is finite, there is an integer n such that, for any s ∈ S, sn is idem-
potent. Assuming that n ≥ kt, one gets (v̄ū)ns̄(x̄ȳ)n ≡k,t ū(v̄ū)ns̄(x̄ȳ)nx̄.
But η((v̄ū)ns̄(x̄ȳ)n) = s ∈ P and thus (v̄ū)ns̄(x̄ȳ)n ∈ L. It follows that
ū(v̄ū)n(x̄ȳ)nx̄ ∈ L and thus η(ū(v̄ū)n(x̄ȳ)nx̄) = r ∈ P .

Let now e and f be two idempotents of S and suppose that esfre ∈ P .
Then, for n ≥ kt, ēns̄f̄nr̄ēn ≡k,t f̄nr̄ēns̄f̄n. But η(ēns̄f̄nr̄ēn) = esfre ∈ P
and thus ēns̄f̄nr̄ēn ∈ L. Therefore f̄nr̄ēns̄f̄n ∈ L and thus η(fnrensfn) =
fresf ∈ P . Thus P saturates ≡.

The direction (3) implies (2) is much more difficult. Since S is aperiodic
and satisfies (C), Theorem 2.2 and Proposition 5.1 show that L is union of
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∼k,t-classes for some k and t. Unfortunately, L is not in general union of
≡k,t-classes, but we will show that L is union of ≡k,T -classes for some large
T (to be precise, one takes T = (1 + t· (|A|k)!)(1 + |A|) ). Associate with
each word u a labelled graph N(u) defined as follows: the vertices are the
words of length k−1, and if x is a word of length k, there is an edge of label
[

u
x

]

threshold t from the prefix length k − 1 of x to its suffix of length k − 1.
The prefix (resp. suffix) of u of length k− 1 is called the initial (resp. final)
vertex.

Thus let u and u′ be two words such that u ≡k,T u′ and u ∈ L. Our aim
is to show that u′ ∈ L. If |u| < T (or |u′| < T ), then necessarily u = u′,

thus we may assume that |u|, |u′| ≥ T . Since
[

u
x

]

=
[

u′

x

]

threshold T (and
thus also threshold t), the labelled graphs N(u) and N(u′) are equal, except
for the initial and final vertices. We denote by i and f (resp. i′ and f ′) the
initial and final vertices of N(u) (resp. N(u′)).

In the figure below, two graphs are represented. The parameters are
k = 3 and t = 3. The graph on the left hand side corresponds to the words
u = (ab)4(cb)4a and u′ = b(cb)4(ab)4cb. The initial and final vertices of u
(resp. u′) are represented by full (resp. dotted) unlabelled arrows. The
graph on the right hand side corresponds to the words u = (ab)4(cb)4abcb
and u′ = b(ab)4(cb)4acb.

ba cb ba cb

ab bc ab bc

1 1

1 2

3 3 3 3 3 3 3 3

Two vertices v1 and v2 are in the same strongly t-component if there are
two paths from v1 to v2 and from v2 to v1 using only edges of label t. For
instance, in the two graphs above, ab and ba (resp. bc and cb) are in the same
t-component. A non trivial combinatorial argument shows that if u ≡k,T u′,
then two cases may arise:

(1) i and i′ are in the same t-component and f and f ′ are in the same
t-component,

(2) i and f are in the same t-component and i′ and f ′ are in the same
t-component.
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The first and second cases are illustrated by the graphs on the right and on
the left hand side, respectively. Now, one can show that in the first case, the
elements η(u) and η(u′) are J -equivalent. Since P saturates the J -classes,
we are done in this case. In the second case, one can show that η(u) J η(v)
and η(u′) J η(v′) for some words v and v′ such that

(1) v ≡k,T v′,

(2) The initial and final vertices of N(v) (resp. N(v′)) coincide

But this last condition implies that for some idempotents e and f and for
some elements p and q, η(v) = epfqe and η(v′) = fqepf . Now one can use
the fact that P saturates the ≡-classes.
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