
Chapter I

Automata and infinite words

1 Introduction

This first chapter constitutes an introduction to the theory of automata on infinite words.
It includes some basic definitions, such as ω-rational sets of infinite words. These sets are
defined starting from the elements of the alphabet by making use of the four operations of
union, concatenation, finite iteration and infinite iteration. These operations are denoted
∪, ., ∗, ω as indicated in Table 1.1.

Operation Symbol

union ∪
concatenation ·
finite iteration ∗
infinite iteration ω

Table 1.1: The operations used in ω-rational expressions.

The expressions obtained are often called ω-rational expressions. The name of rational
expressions is reserved for those expressions that do not use the symbol ω and thus define
sets of finite words. The classical theorem of Kleene establishes the equivalence between
rational expressions and finite automata. Its extension to infinite words is one of the
results contained in this chapter. We shall see that a set is ω-rational if and only if it
can be recognized by a finite automaton (Theorem 5.4). Recognizing infinite words with
finite automata requires a convention. The simplest one, introduced by Büchi, consists
in considering an infinite path in the automaton as successful if it starts in an initial
state and passes infinitely often through a terminal state.

Another basic result of the theory of finite automata is given by the determiniza-
tiondeterminization algorithm which allows one to replace any finite automaton by an
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6 CHAPTER I. AUTOMATA AND INFINITE WORDS

equivalent deterministic one. A consequence of this is the closure of the class of rational
sets under complementation. The extension of these results is fraught with difficulties.
The solution requires first the introduction of a more powerful acceptance mode than
Büchi’s one, since one has to specify the set of states met infinitely often on an infinite
path. The acceptance mode, called Muller’s mode, declares an infinite path p to be
successful if the set Inf(p) of states met infinitely often on p belongs to a prescribed set
T of sets of states. This constitutes a more constrained acceptance mode than Büchi’s
one, for which it suffices to check whether the set Inf(p) meets the set F of final states
(see Table 1.2).

Acceptance modes Definition

Büchi Inf(p) ∩ F 6= ∅

Muller Inf(p) ∈ T

Table 1.2: Büchi and Muller’s acceptance modes.

The basic result of this theory, due to R. McNaughton, states that any finite automaton
is equivalent on infinite words to a deterministic Muller automaton (Theorem 7.1). This
implies in particular that the class of ω-rational sets is closed under complementation, a
result proved for the first time by Büchi in a direct way (see the notes at the end of the
chapter).

This chapter is organized as follows. Section 2 introduces our notation. Section 3
introduces ω-rational sets of infinite words. It contains the result that characterizes them
as the finite unions of sets of the form XY ω where X and Y are rational sets of finite
words. Sections 4, 5, 6, 7.1 and 8 introduce the definitions of the various acceptance
modes: Büchi’s mode, Muller’s mode, Rabin’s mode and a transition mode. Section 9
contains a proof of McNaughton’s theorem. This proof, discovered in 1989 by S. Safra
has the advantage, compared to other possible ones, of being direct and of providing a
better algorithm: starting from a nondeterministic n-state Büchi automaton, one obtains
a deterministic Muller automaton with O(nn) states (the other constructions lead to
a double exponential). We shall however see other proofs in the following chapters,
especially one using ω-semigroups which makes various generalizations possible. The
last section (Section 10) deals with computational issues concerning the transformations
between various possible representations of ω-rational sets and the operations on them.

2 Words and trees

In this book, we are going to consider possibly infinite sequences of elements of a set
called an alphabet. The elements of this set are called letters or also symbols. Most often,
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2. WORDS AND TREES 7

in the examples, the alphabet will be finite or even reduced to two elements. We shall
however also consider countable alphabets. Recall that a set A is countable if there exists
an injective map from A to N.

A finite sequence of elements of A is called a finite word on A, or just a word. We
denote by mere juxtaposition

a0a1 · · · an

the sequence (a0, a1, . . . , an). The set of words is endowed with the operation of concate-
nation product also called product, which associates with two words x = a0a1 · · · ap and
y = b0b1 · · · bq the word xy = a0a1 · · · apb0b1 · · · bq. This operation is associative. It has a
neutral element, the empty word, denoted by 1 or ε and which is the empty sequence.

We denote by A∗ the set of words on A and by A+ the set of nonempty words. The set
A∗ (resp. A+), equipped with the concatenation product is thus a monoid with neutral
element 1 (resp. a semigroup). The set A∗ is called the free monoid on A and A+ the
free semigroup on A. This terminology will be justified later.

If u is a word and a a letter, we denote by |u|a the number of occurrences of a in u.
Thus, if A = {a, b} and u = abaab, we have |u|a = 3 and |u|b = 2. The sum

|u| =
∑

a∈A

|u|a

is the length of the word u. Thus |abaab| = 5.
An infinite word on the alphabet A is an infinite sequence of elements of A, which

we also denote by juxtaposition

u = a0a1 · · · an · · ·

This notation represents the mapping from N into A defined, for all n ∈ N by u(n) = an.
We also denote by u[r, s] the word u(r)u(r + 1) · · · u(s) = ar · · · as. This notation is

also used for finite words.
We denote indifferently by AN or by Aω the set of infinite words over the alphabet A

and we let
A∞ = A∗ ∪ Aω

which is thus the set of finite or infinite words on the alphabet A. The product of a finite
word u = a0a1 · · · an from A∗ with an infinite word v = b0b1 · · · of A

ω is the infinite word

uv = a0a1 · · · anb0b1 · · ·

Let u = a0a1 · · · an be a word in A∗. A word x ∈ A∗ is a factor of u if there exist integers
r and s such that 0 6 r 6 s 6 n and x = u[r, s]. This is equivalent to saying that there
exist words v and w in A∗ such that u = vxw. In the same way, we say that

x is a left factor or a prefix of u if there exists a word w in A∗ such that u = xw,
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8 CHAPTER I. AUTOMATA AND INFINITE WORDS

x is a right factor or a suffix of u if there exists a word v in A∗ such that u = vx,
x is a proper factor of u if there exist words v and w not both empty such that

u = vxw,
x is strict factor of u if there exist words v and w in A+ such that u = vxw.

For example, if u = abaabab, aba is a prefix, ab is a suffix, abaab is a proper factor and
baaba is a strict factor u.

The relation “to be a left factor of” is a partial order on words called “prefix order”
and sometimes denoted 6 . Thus,

1 6 a 6 ab 6 abb 6 abba

If one starts with an ordered alphabet, a total order relation can be defined on words,
called lexicographic order and denoted 6lex. It is the usual order in a dictionary. In
formal terms, one has u 6lex v if u 6 v or if u = xau′, v = xbv′ with x, u′, v′ ∈ A∗,
a, b ∈ A and a <lex b.

The notions of a factor and of a left factor extend without difficulty to infinite words:
a word x ∈ A∗ is a factor of an infinite word u if there exist integers r and s such that
0 6 r 6 s and x = u[r, s], or in other terms, if there exist a finite word v and an infinite
word w such that u = vxw. We say that x is a left factor or a prefix of u if there exists
an infinite word w such that u = xw.

If x is a prefix of u, we denote by x−1u the unique word v such that xv = u. The
prefix order can be extended to a partial order on A∞ by setting for u and v in A∞,
u 6 v if u = v or if u is a finite prefix of v.

An integer p > 0 is a period of a finite word u = a0a1 · · · an if, for all k such that
k + p 6 n, we have ak = ak+p. The smallest period of u is called the period of u. For
instance, the period of the word abcaabcaab is 4, since abcaabcaab = (abca)2ab.

The notion of a period extends without difficulty to infinite words. We say that an
infinite word is periodic if the set of its periods is not empty.

An integer p > 0 is an ultimate period of an infinite word u = a0a1 · · · if there is a
k0 > 0 such that for all k > k0 we have ak = ak+p. If p and q are two ultimate periods
of u, their gcd is still a ultimate period of u. The smallest ultimate period of an infinite
word u is called the ultimate period of u. An infinite word which admits a ultimate
period is called ultimately periodic. We know, for example, that rational integers are
those real numbers that admit, in a given base, an ultimately periodic expansion.

The set Aω is equipped with an internal operation called the shift, which is defined
as the mapping σ : Aω → Aω, associating to each infinite word u ∈ Aω the infinite word
σ(u) defined, for all n ∈ N, by

σ(u)(n) = u(n+ 1).

Thus, for u = a0a1 · · · , one has σ(u) = a1a2 · · · , which means that the action of σ
consists in shifting one place to the left all symbols of u. It is therefore a surjective
application, which is not injective as soon as Card(A) > 2.
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2. WORDS AND TREES 9

If X is a set of infinite words, we let

σ(X) = {σ(u) | u ∈ X}

We say that X is stable (resp. shift invariant) if σ(X) ⊂ X (resp. σ(X) = X).
It is easy to verify that an integer p is a period of an infinite word u if and only if

σp(u) = u and that u is ultimately of period p if and only if there is an integer q such
that σp+q(u) = σq(u).

A subset of A∗ is said to be prefix-free or simply prefix if its elements are incomparable
for the prefix order. For instance, if A = {a, b}, the set {anb | n > 0} is prefix-free. As a
dual definition, a subset of A∗ is called prefix-closed if it contains the prefixes of all of its
elements. In particular, if X is a subset of A+ or of Aω, the set Pref(X) of all prefixes
of the elements of X is prefix-closed. The complement of a prefix-closed set is a right
ideal : a subset R of A∗ is indeed a right ideal if for all u ∈ R and for all v ∈ A∗, one has
uv ∈ R.

There is consequently a bijection between finite prefix-free sets and finite prefix-
closed sets defined as follows: we associate with each prefix-free set P , the prefix-closed
set formed of the prefixes of P ; conversely, we associate with every prefix-closed set T ,
the prefix-free set formed by the elements of T which are maximal for the prefix ordering.

These notions are closely related with the notion of a tree that we introduce now. A
tree is a tuple (N, r, p), where N is a nonempty set whose elements are called the nodes
of the tree, r is a distinguished element of N , called the root of the tree and

p : N \ {r} → N

is a mapping associating with each node distinct from the root a unique node called its
parent and such that for each node n in N there is an integer k > 0 such that

pk(n) = r

The terms employed for indicating kinship are commonly used for trees. Thus, we say
that n is a child of p(n). The notions of an ancestor and of a descendant are clear also.
Formally, n is an ancestor of n′ if there is an integer k > 0 such that n = pk(n′). The
node n′ is then a descendant of n.

If n is a node in a tree (N, r, p), the mapping p induces a mapping

pn : Nn \ {n} → Nn,

where Nn is the set of descendants of n. The triple (Nn, n, pn) is by definition the subtree
of N rooted at n.

One associates in a natural way a tree with each nonempty prefix-closed set T using
the elements of T as nodes, the empty word as a root and by defining for each word u
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10 CHAPTER I. AUTOMATA AND INFINITE WORDS

and each letter a such that ua ∈ T , p(ua) = u. Conversely, one may associate with each
tree (N, r, p) a prefix-closed set T on the alphabet N by

T = {n1 · · ·nk | k > 0, p(n1) = r and for every i ∈ {2, . . . , k}, p(ni) = ni−1}

A node u is thus an ancestor of v if u is a prefix of v. And the subtree rooted at a node u
is the set u−1T = {v ∈ A∗ | uv ∈ T}. This allows a convenient graphical representation
of prefix-closed sets. For instance, if A = {a, b} and if T = {1, a, aa, ab, aba, abb, b, bb},
the set T is represented in Figure 2.1.

1

a

aa ab

aba abb

b

bb

Figure 2.1: A prefix-closed set.

The number of children of a node is the arity of this node. The arity of a tree is the
maximal arity of its nodes. In particular, the tree associated with a prefix-closed set on
an alphabet with k elements is a tree of arity at most k. The free monoid A∗ itself, which
is a prefix-closed set, is associated with a tree represented in Figure 2.2. We shall have

1

a

aa
· · ·

ab
· · ·

b

ba
· · ·

bb
· · ·

Figure 2.2: The tree of the free monoid {a, b}∗.

occasions to use three variants of trees. First of all, an oriented tree is a tree in which
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2. WORDS AND TREES 11

an order relation denoted 6 is defined on the set of children of each node. An oriented
tree can therefore be defined by a function

f : N → N∗

associating to each node the ordered list of its children.
We say that two oriented trees T = (N, r, f) and T ′ = (N ′, r′, f ′) are equivalent if

there is a bijection σ from N onto N ′ (extending to a bijection from N∗ onto N ′∗) such
that

σ(r) = r′, and for every n ∈ N, σ(f(n)) = f ′(σ(n))

which means that σ preserves the order on the nodes (i.e. if n1 < n2 in T , then σ(n1) <
σ(n2)). For example, the trees represented in Figure 2.3 are equivalent.

1

2

4 5

3

1

5

3 4

2

Figure 2.3: Two equivalent trees.

A planar tree is an equivalence class of this relation. Planar trees can be represented
by a figure without mention of the set N . For example, the planar tree which is the
equivalence class of the trees of Figure 2.3 is represented in Figure 2.4.

Figure 2.4: A planar tree.

It is relatively easy to compute the number of planar trees with n nodes.

Proposition 2.1. For each n > 0, the number of planar trees with n nodes is the Catalan

number Cn =
(2n− 2)!

n!(n− 1)!
.
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12 CHAPTER I. AUTOMATA AND INFINITE WORDS

Proof. Let Pn be the number of planar trees with n nodes and let, by convention P0 = 0.
Let (N, r, f) be an oriented tree with at least two nodes and let z be the leftmost child of
r. We obtain a partition of N by considering on one hand the set Nz of descendants of
z and, on the other hand, the set N ′ = N \Nz. These two sets define oriented trees (see
Figure 2.5). Conversely given an oriented tree (Nz, z, fz) with k nodes and an oriented
tree (N ′, r, f ′) with n−k nodes, we can, supposing Nz and N ′ disjoint, build an oriented
tree with n nodes (N, r, f), where N = Nz ∪N ′ and where

f(x) =











fz(x) if x ∈ Nf ,

f ′(x) if x ∈ Nr \ {r},

zf ′(r) if x = r.

1

2

4 5

3

1

2

4 5

3

Figure 2.5: Decomposition of a tree.

Since this operation preserves the equivalence of trees we have for all n > 2:

Pn =
∑

16k6n−1

PkPn−k

Thus, the generating series

P (X) =
∑

n>0

PnX
n

satisfies the equation
P 2 − P +X = 0

The desired formula is obtained by expanding
1

2

(

1− (1− 4X)
1

2

)

.

Finally a labeled tree is a pair (T, e) of a tree T and a function

e : N → V

from N into a set V of labels associating with each node n ∈ N its label e(n).
In particular, we may label the tree associated with a prefix-closed set T on an

alphabet A by setting, for all u ∈ T , e(u) = u. In this case, a node u is at the left of a
node v if u 6lex v and if u is not an ancestor of v.
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3. RATIONAL SETS OF INFINITE WORDS 13

In a tree, a path from a node n0 to a node nk is a sequence (n0, . . . , nk) of nodes such
that, for 0 6 i 6 k−1, ni is the parent of ni+1. In a similar way, an infinite path starting
at n0 is a sequence (n0, n1, . . .) of nodes such that for all i > 0, ni is the parent of ni+1.

The following result, known as König’s lemma, is actually a compactness property
(see Exercise III.6).

Proposition 2.2. An infinite tree in which every node has finite arity contains an infi-
nite path.

Proof. Let (N, r, f) be an infinite tree in which every node is of finite arity. We build an
infinite path starting at the root

(n0, n1, . . .)

and such that for each k, the subtree rooted at nk is infinite. Let first n0 = r. Suppose
then that nk has already been chosen for k > 0. Since nk is of finite arity, the set of its
children is finite. There has to be at least one child such that the corresponding subtree
is infinite. We choose this child for the node nk+1.

3 Rational sets of infinite words

In this section, we define the notion of an ω-rational set. It extends the corresponding
notion of rational sets of finite words. Let us first recall that one defines on the subsets
of A∗ the rational operations as

(1) the set union X ∪ Y ,

(2) the set product

XY = {xy | x ∈ X and y ∈ Y }

(3) the star operation defined by

X∗ = {x1 · · · xn | n > 0 and x1, . . . , xn ∈ X}

Thus X∗ is the submonoid of A∗ generated by X.

We also define the “plus” operation by

L+ = {u1 · · · un | n > 0 and u1, . . . , un ∈ L}

Thus L+ is the subsemigroup generated by L. Obviously, L∗ = L+∪{1} and L+ = LL∗.

The class of rational subsets of A∗ is the smallest class R of subsets of A∗ such that

(a) R contains the empty set and for each a ∈ A, the singleton set {a},

(b) R is closed under finite union, finite product and the operation L → L∗.
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14 CHAPTER I. AUTOMATA AND INFINITE WORDS

It is an immediate consequence of the definitions that all finite subsets of A∗ are rational.
Indeed, since rational sets are closed under finite union, it suffices to verify that every
singleton {u} is rational. If u = 1, we observe that {1} = ∅∗, and if u = a1 · · · an,
{u} = {a1} · · · {an}.

Rational sets are described by rational expressions, which are expressions using sym-
bols from the alphabet A and the symbols ∪, ·, +, ∗. To simplify the notation, we often
denote a singleton set u instead of {u} and the union X ∪ Y is also denoted X + Y . For
instance, the expression (ab+ 1)+ is a shorthand for ({a} · {b} ∪ {1})+.

Example 3.1. The set of words on the alphabet A = {a, b} in which every a is always
followed by a b can be described by the rational expression b∗(ab+)∗. It is thus a rational
subset of A∗. It is also described by the rational expression (b + ab)∗. This example
shows that a rational set can be described by several rational expressions.

The definition of the product of two sets X, Y ⊂ A∗ can be extended to a more
general case by setting, for X ⊂ A∗ and Y ⊂ A∞,

XY = {xy | x ∈ X and y ∈ Y }

Then a restricted form of associativity holds: for each X, Y ⊂ A∗ and Z ⊂ A∞,

(XY )Z = X(Y Z)

We now introduce an additional operation expressing infinite iteration. For eachX ⊂ A∗,
let

Xω = {x0x1 · · · | for all i > 0, xi ∈ X \ {1}}

and
X∞ = X∗ ∪Xω.

Thus, Xω is the set of infinite words obtained by concatenating an infinite sequence
of nonempty words of X. In particular, if u = a0a1 · · · an and if X = {u}, we have
Xω = {uω}, where uω is the infinite word

a0a1 · · · ana0a1 · · · ana0a1 · · · ana0a1 · · ·

obtained by repeating u an infinity of times.
The following proposition puts together some useful identities, whose formal proof is

left to the reader.

Proposition 3.1. For all X, Y ⊂ A∗, we have

(1) (X + Y )ω = (X∗Y )ω + (X + Y )∗Xω,

(2) (XY )ω = X(Y X)ω,

(3) for all n > 0, (Xn)ω = (X+)
ω
= Xω,
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3. RATIONAL SETS OF INFINITE WORDS 15

(4) XXω = X+Xω = Xω.

Identity (1) is to be compared with the identity between subsets of A∗:

(X + Y )∗ = (X∗Y )∗X∗

Identity (2) relates the operator ω to the product. It is the counterpart of the identity

(XY )∗ = 1 +X(Y X)∗Y

which may also be written
(XY )+ = X(Y X)∗Y

Identity (3) expresses the fact that infinite iteration rules out multiplicities, in contrast
with the analogous identity

X∗ = (1 +X +X2 + · · ·+Xn−1)(Xn)∗

We can now give the definition of ω-rational subsets of A∞. The class of ω-rational
subsets of A∞ is the smallest set R of subsets of A∞ such that

(a) ∅ ∈ R and for all a ∈ A, {a} ∈ R,

(b) R is closed under finite union,

(c) for each subset X of A∗ and for each subset Y of A∞, X ∈ R and Y ∈ R imply
XY ∈ R,

(d) for every subset X of A∗, X ∈ R implies X∗ ∈ R and Xω ∈ R.

As a summary, the class of ω-rational subsets of A∞ is the smallest class of subsets of
A∞ containing the finite subsets of A∗ and closed under finite union, finite product and
the operations X → X∗ and X → Xω.

In the sequel, we shall be especially interested in the ω-rational subsets of A∞ which
are contained in Aω and which will be called ω-rational subsets of Aω. There is a simple
characterization of these subsets, which can also be used as a definition.

Theorem 3.2. A subset of Aω is ω-rational if and only if it is a finite union of sets of
the form XY ω where X and Y are rational subsets of A∗.

Proof. We denote by Rat(Aω) the class of subsets defined in the statement. It is clear
that every element of Rat(Aω) is an ω-rational subset of Aω. To prove the converse, we
establish a slightly more precise statement: if X is a rational subset of A∞, then

(1) X ∩ A∗ is a rational subset of A∗.

(2) X ∩ Aω ∈ Rat(Aω).

This property reduces obviously to X ∈ Rat(Aω) when X ⊂ Aω. Let E be the class of
subsets of A∞ satisfying (1) and (2). We have successively
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16 CHAPTER I. AUTOMATA AND INFINITE WORDS

(a) ∅ ∈ E and {a} ∈ E for every a ∈ A,

(b) E is closed under finite union,

(c) E is closed under product. In fact, if X ⊂ A∗ and Y ⊂ A∞, then (XY ∩ A∗) =
X(Y ∩ A∗), which is rational since Y satisfies condition (1). Also, (XY ∩ Aω) =
X(Y ∩ Aω), which is in Rat(Aω) since, by condition (2), Y ∩ Aω ∈ Rat(Aω).

(d) E is closed under the operation X → X∗.

(e) E is closed under the operation X → Xω.

As a result, E contains the class of rational subsets of A∞, which proves the theorem.

Example 3.2. The set X of infinite words on the alphabet {a, b} with only a finite
number of occurrences of the symbol b is given by the ω-rational expression X = (a +
b)∗aω. The complement of X in Aω, which is the set of words with an infinite number of
occurrences of b is given by the expression (a∗b)ω, and is therefore also ω-rational.

Example 3.2 actually presents a particular case of a general result: the set Rat(Aω) is
closed under all boolean operations. This result will be proved later. The delicate point
is the complement since, as it can be seen on the previous example, given an ω-rational
expression for a set, it is not easy to find an ω-rational expression for its complement.
Computing the intersection of two ω-rational sets is easier and can be done directly (see
Exercise 7).

Let A and B be two alphabets. Any application ϕ : A → B+ defines a unique
semigroup morphism ϕ : A+ → B+, obtained by setting for a word u = a0a1 · · · ak,
ϕ(u) = ϕ(a0)ϕ(a1) · · ·ϕ(ak). It can also be turned into a monoid morphism from A∗

into B∗ by setting ϕ(1) = 1. It also extends to a mapping ϕ : A∞ → B∞, also called
morphism and defined for an infinite word u = a0a1 · · · , by ϕ(u) = ϕ(a0)ϕ(a1) · · · .

A semigroup morphism ϕ : A+ → B+ will be called alphabetic if, for every a ∈ A,
ϕ(a) ∈ B. If X is a subset of A∞, we set

ϕ(X) = {ϕ(u) | u ∈ X}

Then the following formulas hold, where X is a subset of A+ and where X1 and X2 are
subsets of A∞:

ϕ(X1 ∪X2) = ϕ(X1) ∪ ϕ(X2),

if X1 ⊂ A+, ϕ(X1X2) = ϕ(X1)ϕ(X2),

ϕ(X+) = ϕ(X)+,

ϕ(Xω) = ϕ(X)ω.

It follows immediately that ω-rational sets are stable under morphism.

Proposition 3.3. Let A and B be two alphabets and let ϕ : A+ → B+ be a morphism.
If X is an ω-rational subset of A∞ (resp. of A∗, Aω), then ϕ(X) is an ω-rational subset
of B∞ (resp. of B∗, Bω).
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4. AUTOMATA 17

4 Automata

An automaton on the alphabet A is given by a set Q, called the set of states, and a subset
E of Q×A×Q, called the set of edges or transitions. Some additional components may
be added, and in particular a subset I ⊂ Q of initial states and a subset F ⊂ Q of
final or terminal states. The automaton is often denoted as a tuple = (Q,A,E) or
A = (Q,A,E, I, F ) if I and F are specified. Part of the components may always be
omitted. In particular, we sometimes denote the automaton merely (E, I, F ) when Q
and A are unambiguously defined. Moreover, if I = {i}, or if F = {f}, the automaton
is denoted (E, i, F ) or (E, I, f).

An automaton is said to be finite (resp. countable) if both its alphabet and the sets
of its states are finite (resp. countable).

Two transitions (p, a, q) and (p′, a′, q′) are called consecutive if q = p′. A path in the
automaton A is a finite sequence of consecutive transitions

e0 = (q0, a0, q1), e1 = (q1, a1, q2), . . . , en−1 = (qn−1, an−1, qn)

also denoted

q0
a0−→ q1

a1−→ q2 · · · qn−1
an−1

−→ qn or q0
a0···an−1

−−−−→ qn.

The state q0 is the origin of the path and the state qn its end. One says that the path
passes through (or visits) the states q0, q1, . . . , qn. The word x = a0a1 · · · an is the label
of the path and the integer n+ 1 its length. The set {q0, q1, . . . , qn} is the content of the
path.

It is convenient to introduce, for each state q ∈ Q, an empty path with origin and
end equal to q. Its label is the empty word and its length is 0.

An infinite path in the automatonA is an infinite sequence p of consecutive transitions

e0 = (q0, a0, q1), e1 = (q1, a1, q2), . . .

also denoted
q0

a0−→ q1
a1−→ q2 · · ·

The state q0 is the origin of the infinite path and the infinite word a0a1 · · · is its label. We
say that the path p passes infinitely often through a state q (or that p visits q infinitely
often, or yet that q is infinitely repeated in p) if there are infinitely many integers n such
that qn = q. The set of infinitely repeated states in p is denoted by Inf(p).

We usually specify for each automaton a set of successful finite or infinite paths. This
will be done for infinite paths in various ways in the next sections. For finite paths, there
is just one notion.

A finite path in A is initial if its origin is in I and final if its end is in F . A path is
successful if it is both initial and final. The set of words recognized by the automaton
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A is the set, denoted by L∗(A), of all labels of successful paths in A. We also set
L+(A) = L∗(A) \ {1}.

A set of finite words X is recognizable if there exists a finite automaton A such that
X = L∗(A).

Example 4.1. Let A = (Q,A,E, I, F ) where Q = {1, 2}, A = {a, b} and

E = {(1, a, 1), (2, b, 1), (1, a, 2), (2, b, 2)}, I = {1}, F = {2}

This automaton is represented in Figure 4.1. According to a convention used in all the
sequel, the initial states are indicated by an incoming arrow and the final states by an
outgoing one.

1a 2 b

a

b

Figure 4.1: The automaton A.

We have L+(A) = a{a, b}∗, which is the set of finite words beginning with an a. In
this automaton, every finite word is the label of exactly two paths. Indeed, every letter
determines the state it comes from and conversely, the transitions going out of a given
state all have the same label. This automaton can thus be interpreted as a mechanism
predicting the next symbol. Every infinite word is the label of exactly one path.

An automaton A = (Q,A,E, I, F ) is said to have deterministic transitions, if, for
every state q ∈ Q and every letter a ∈ A, there is at most one state q′ such that (q, a, q′)
is a transition. It is deterministic if it has deterministic transitions and if I is a singleton.
It is complete if, for every state q ∈ Q and every letter a ∈ A, there is at least one state q′

such that (q, a, q′) is a transition. If q0 is the unique initial state, we adopt the notation
(Q,A,E, q0, F ) instead of (Q,A,E, {q0}, F ).

For instance, the automaton of Example 4.1 is neither complete nor deterministic.
In contrast, the automaton represented in Figure 4.2 is complete and deterministic.

Example 4.2. The automaton given by Figure 4.2 is deterministic.

1a 2 b

b

a

Figure 4.2: A complete deterministic automaton.
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Each word is the label of exactly two paths, one going out of state 1 and the other from
state 2. The automaton can be considered as “remembering the last symbol” since each
state is accessible only by one symbol.

If A = (Q,A,E) is deterministic, we define a partial function from Q×A into Q by
associating with each pair (q, a) in Q × A the unique state q · a (when it exists), such
that (q, a, q · a) ∈ E. If there is no q′ such that (q, a, q′) ∈ E, the image of (q, a) is not
defined. The partial function (q, a) → q · a thus defined is the transition function of
the automaton. It is clear that a deterministic automaton is defined by its transition
function.

The transition function can be extended to a partial function from Q×A∗ into Q by
setting q · 1 = q and, for every word u ∈ A+ and for every symbol a ∈ A, q · (ua) = (q · u)· a
if (q · u) and (q · u)· a are defined. For example, if A is the automaton of Example 4.2,
we have 1· bbaba = 2· bbaba = 1.

One may also define the transition function of a nondeterministic automaton A =
(Q,A,E). It is the function from P(Q)×A∗ into P(Q), traditionally denoted δ, defined
by the following formula, where S ⊂ Q and u ∈ A∗,

δ(S, u) = {q ∈ Q | q is the end of a path in A with label u

going out from some state of S}

It is clear that knowing E or δ is the same. We shall use one of either notation in
the sequel. This transition function allows one to define the deterministic version of an
automaton (Q,A,E, I, F ) as the complete deterministic automaton

(P(Q), A, δ, I,F) with F = {P ⊂ Q | P ∩ F 6= ∅}

This construction is motivated by the following result, which shows that, for finite words,
deterministic automata have the same expressive power as non deterministic ones. We
shall see in the next sections that this elementary result does not extend easily to infinite
words.

Proposition 4.1. An automaton and its deterministic version recognize the same set of
finite words.

Proof. Let A = (Q,A,E, I, F ) and let B be its deterministic version. If u = a0 · · · an−1

is recognized by A, there is a successful path

c : q0
a0−→ q1

a1−→ q2 · · · qn−1
an−1

−→ qn

Define a sequence of subsets of Q by setting P0 = I, P1 = P0 · a0, . . . , Pn = Pn−1 · an−1.
Since c is a successful path, q0 ∈ I = P0 and qn ∈ F . Suppose, by induction, that
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qi−1 ∈ Pi−1. Then since qi−1
ai−→ qi is a transition, qi ∈ Pi. In particular, qn ∈ Pn ∩ F .

Therefore Pn ∩ F 6= ∅ and Pn ∈ F . Consequently, u is accepted by B.
Conversely, let u = a0 · · · an−1 be a word accepted by B. Set, as above,

P0 = I, P1 = P0 · a0, . . . , Pn = Pn−1 · an−1.

Since Pn ∈ F , one may choose an element qn in Pn ∩ F , and, for 0 6 i 6 n, an element
qi ∈ Pi such that qi

ai−→ qi+1 is a transition in A. Since q0 ∈ I and qn ∈ F , the path

q0
a0−→ q1

a1−→ q2 · · · qn−1
an−1

−→ qn is successful, and u is accepted by A.

An important consequence of Proposition 4.1 is that recognizable sets are closed
under complementation. Actually, they are closed under any boolean operation, but we
need an auxiliary definition before proving this result. The product of two automata
A = (Q,A,E) and A′ = (Q′, A, E ′) is the automaton

A×A′ = (Q×Q′, A, P )

with

P =
{(

(p, p′), a, (q, q′)
)

| (p, a, q) ∈ E and (p′, a, q′) ∈ E ′
}

.

Proposition 4.2. Recognizable subsets of A∗ are closed under finite union, finite inter-
section and set difference.

Proof. Let X and X ′ be two recognizable subsets of A∗. By Proposition 4.1, we may
assume that X = L∗(A) and X ′ = L∗(A′) for some deterministic complete automata
A = (Q,A, · , i, F ) and A′ = (Q′, A, · , i′, F ′). Let B be the product of A and A′.
Equipped with the initial state (i, i′), B is a deterministic automaton. Let R be a set of
final states for B. If R = (F ×Q′)∪ (Q× F ′), we have L∗(B) = X ∪X ′. If R = F × F ′,
we have L∗(B) = X ∩X ′. Finally, if R = F × (Q \ F ′), we have L∗(B) = X \X ′.

The minimal deterministic automaton of a set of finite words is the deterministic
automaton A = (Q,A,E, i, T ) where Q is the set of nonempty classes of the Nerode
equivalence ∼, defined for u, v ∈ A∗ by u ∼ v if, for all w ∈ A∗, one has

uw ∈ X =⇒ vw ∈ X.

The initial state i is the class of the empty word and a state q is final if all its elements
are in X. Finally, for every u ∈ A∗ and a ∈ A, there is an edge labeled by a from the
class of u to the class of ua.

Let A = (Q,A,E) be an automaton. The reversed automaton of A is the automaton
Ar = (Q,A,Er), where

Er = {(q, a, p) | (p, a, q) ∈ E},
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obtained by reverting the arrows of A. An automaton A has co-deterministic transitions
if the automaton Ar has deterministic transitions. Thus, the automaton of Figure 4.1
has co-deterministic transitions.

An automaton A = (Q,A,E) is unambiguous if, for each pair of states (p, q) ∈ Q×Q
and for each word x, there is at most one path from p to q with label x. It is easy to verify
that any automaton with deterministic or co-deterministic transitions is unambiguous,
but the converse is not true as shown by the following example. Let A = (Q,A,E) be
an automaton. We define its transition matrix as follows. It is the Q×Q-matrix T with
coefficients in P(A∗) defined by

Tp,q = {a ∈ A | (p, a, q) ∈ E}.

The set P(A∗) of subsets of A∗ comes with two operations: the union, which we shall
denote additively and the product

XY = {xy | x ∈ X and y ∈ Y }

The set P(A∗)Q×Q of Q×Q-matrices with coefficients in P(A∗) comes in turn with an
addition and a product by setting, for any M,N ∈ P(A)Q×Q and p, q ∈ Q

(M +N)p,q = Mp,q +Np,q

and
(MN)p,q =

∑

r∈Q

Mp,rNr,q

The fact that the above union may have an infinite number of terms is not an obstacle,
since infinite unions are well-defined. We note that the identity matrix defined as

1p,q =

{

{1} if p = q,

∅ otherwise

is the neutral element of the product.
Given a transition matrix T , we define a new matrix T ∗ by

T ∗ =
∑

n>0

T n = 1 + T + T 2 + · · ·

The reader can verify that

T ∗

p,q = {u ∈ A∗ | there exists a path from p to q with label u}.

It can be shown that if a matrix T has all its coefficients in P(A+), as it is the case here,
then X = T ∗ is the unique solution of the equation

X = 1 +XT. (4.1)

We recall the following statement, which is classical in automata theory.
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Proposition 4.3. If A is a finite automaton, the coefficients of T ∗ are rational subsets
of A∗.

Proof. We use an induction on the number n of states of A. The case n = 0 is trivial.
If n = 1, we have T ∗

1,1 = B∗, with

B = {a | (1, a, 1) ∈ E}.

Since E is finite, B is finite and T1,1 is a rational subset of A∗. If n > 1, let us consider
a partition of the matrix T into blocks

(

U V
W Z

)

where U and Z are square matrices. Let, for the same partition,

T ∗ =

(

U ′ V ′

W ′ Z ′

)

.

Then

U ′ = (U + V Z∗W )∗ V ′ = U ′V Z∗

W ′ = Z ′WU∗ Z ′ = (Z +WU∗V )∗

since these formulas allow to verify that T ∗ is a solution of Equation 4.1. As a result, the
coefficients of the matrices U ′, V ′, W ′, Z ′ are rational, and thus so are those of T ∗.

Example 4.3. The matrices T and T ∗ corresponding to Example 4.2 are

T =

(

a b
a b

)

and

T ∗ =

(

(a+ bb∗a)∗ (a+ bb∗a)∗bb∗

(b+ aa∗b)∗aa∗ (b+ aa∗b)∗

)

=

(

(b∗a)∗ (b∗a)∗bb∗

(a∗b)∗aa∗ (a∗b)∗

)

We now recall the statement of Kleene and give a sketch of the proof.

Theorem 4.4. (Kleene) A set of finite words is recognizable if and only if it is rational.

Proof. By Proposition 4.3 we already know that every recognizable set is rational. To
prove the converse, we prove a lemma which will also be used for the case of infinite
words.

An automaton is said to be normalized if it has only one initial state i and only one
final state f and if no transition ends in i or starts from f . The following lemma shows
that, for subsets of A+, one may always replace an automaton by a normalized one.
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Lemma 4.5. For any finite automaton A, there is a finite normalized automaton A′

such that L+(A) = L+(A′).

Proof. Let A = (Q,A,E, I, F ) and A′ = (Q ∪ {i′, f ′}, A, E ′, {i′}, {f ′}), where i′ and f ′

are two new states and where E ′ = E ∪ E0 ∪ E1 ∪ E2 with

E0 = {(i′, a, f ′) | there exists i ∈ I and f ∈ F such that (i, a, f) ∈ E}

E1 = {(i′, a, q) | there exists i ∈ I such that (i, a, q) ∈ E}

E2 = {(q, a, f ′) | there exists f ∈ F such that (q, a, f) ∈ E}

Then A′ is normalized by construction. Moreover, if a nonempty word u = a1 · · · an is
recognized by A, there exists a nonempty path

q0
a1−→ q1

a2−→ q2 · · · qn−1
an−→ qn

starting in I and ending in F . Thus,

i′
a1−→ q1

a2−→ q2 · · · qn−1
an−→ f ′

is a path in A′, which shows that u is recognized by A′. Conversely, if u is recognized
by A′, there exists a path in A′ of the form

i′
a1−→ q1

a2−→ q2 · · · qn−1
an−→ f ′

Thus there exist i ∈ I and f ∈ F such that

i
a1−→ q1

a2−→ q2 · · · qn−1
an−→ f

is a path in A and u is recognized by A.

Consider now two subsets X and X ′ of A∗, recognized respectively by the normalized
finite automata A = (E, i, f) and A′ = (E ′, i′, f ′). We may suppose that E and E ′ are
disjoint. Let then B be the automaton B = (E ∪E ′, {i, i′}, {f, f ′}) represented in Figure
4.3. This automaton recognizes X ∪X ′.

i A f

i′ A′ f ′

Figure 4.3: An automaton recognizing the union.

To build an automaton C recognizing the product XX ′ we merge f and i′, as shown in
Figure 4.4.
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i A i′ = f A′ f

Figure 4.4: An automaton recognizing the product.

We finally build an automaton recognizing X∗ by merging i and f in the automaton A,
as represented in Figure 4.5.

A

i = f

Figure 4.5: An automaton recognizing X∗.

Lemma 4.5 shows that every recognizable set of A+ is recognized by a normalized au-
tomaton. Furthermore, we have seen that the union, the product and the star of such
sets is still recognizable.

Working with normalized automata simplified the previous constructions. However,
the price to pay is a special treatment for the empty word. We first observe that the set
{1} is recognized by the automaton with a single state, both initial and final, and no
transition, represented in figure 4.6.

1

Figure 4.6: An automaton recognizing {1}.

It follows, by Proposition 4.2, that a set X of finite words is recognizable if and only
if X \ {1} is recognizable. We can now conclude that the class of recognizable sets of A∗

is closed under finite union, product and star. For instance, for the product it follows
from the following elementary formula, in which ε(X) = X ∩ {1}:

XX ′ = (X ∩ A+)(X ′ ∩ A+) ∪ ε(X)(X ′ ∩ A+) ∪ (X ∩ A+)ε(X ′) ∪ ε(X)ε(X ′)

Finally, the empty set is recognized by the empty automaton and if a is a letter, the set
{a} is recognized by the automaton (E, I, F ) with E = {(1, a, 2)}, I = {1} and F = {2},
represented in Figure 4.7.
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1 2
a

Figure 4.7: An automaton recognizing {a}.

Thus any rational subset of A∗ is recognizable and this concludes the proof of Kleene’s
theorem.

5 Büchi automata

We now introduce Büchi automata, which correspond to the simplest recognizing mode
for infinite words. A Büchi automaton is a 5-tuple A = (Q,A,E, I, F ) where

(1) (Q,A,E) is an automaton,

(2) I and F are subsets of Q, called resp. set of initial states and set of final states.

Let A = (Q,A,E, I, F ) be a Büchi automaton. We say that an infinite path in A is
initial if its origin is in I and final if it visits F infinitely often. It is successful if it is
initial and final. The set of infinite words recognized by A is the set, denoted by Lω(A),
of labels of infinite successful paths in A. In the case where F is finite and in particular
if A is a finite automaton, Lω(A) is also the set of labels of infinite initial paths p in A
and such that Inf(p) ∩ F 6= ∅.

A set X of infinite words is recognizable if there exists a finite Büchi automaton A
such that X = Lω(A).

A Büchi automaton A = (Q,A,E, I, F ) is said to be deterministic if it has deter-
ministic transitions and if I is a singleton, i.e. if A contains exactly one initial state i.
In this case, every word in A+ (resp. Aω) is the label of at most one initial path. In
particular, every word in Lω(A) is the label of exactly one initial path.

A Büchi automatonA = (Q,A,E, I, F ) is called co-deterministic if it has co-deterministic
transitions and if any word in Aω is the label of at most one final path. It is co-complete
if any word in Aω is the label of at least one final path.

More generally, a Büchi automaton A = (Q,A,E, I, F ) is said to be ω-unambiguous
if every word in Aω is the label of at most one infinite successful path. In particular,
every word in Lω(A) defines a unique successful infinite path of which it is the label. It
is clear that any deterministic or co-deterministic Büchi automaton is ω-unambiguous,
but the converse is not true. The various terms are summarized in Table 5.3.

Version of November 5, 2021



26 CHAPTER I. AUTOMATA AND INFINITE WORDS

Det. transitions Co-det. transitions Unambiguous

Forbidden
configuration:

q

q1

q2

a

a

where a is a
letter.

Forbidden
configuration:

q

q1

q2

a

a

where a is a
letter.

Forbidden
configuration:

p q

u

u

where u is a
word.

Deterministic Co-deterministic ω-unambiguous

Deterministic
transitions and
exactly one
initial state.

Co-det.
transitions and
two final paths
with the same
label are equal.

Every infinite
word is the label
of at most one
successful path.

Complete Co-complete

Every word is
the label of
some initial

path.

Every word is
the label of

some
final path.

Table 5.3: Summary of the definitions.

Example 5.1. Let A be the Büchi automaton obtained from the automaton of Example
4.1.

1a 2 b

a

b

Figure 5.1: A co-deterministic Büchi automaton.

We have Lω(A) = a(a∗b)ω, which is the set of infinite words starting with a and contain-
ing an infinite number of occurrences of b.

Example 5.2. Let A be the Büchi automaton represented in Figure 5.2.
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1

a, b

2

a

b

Figure 5.2: Another co-deterministic Büchi automaton.

We have now L+(A) = {a, b}+ and Lω(A) = {a, b}∗aω. This automaton is also co-
deterministic.

Example 5.3. The Büchi automaton represented in Figure 5.3 is ω-unambiguous but
it is neither deterministic nor co-deterministic.

1 2 3

b

a

b

a

Figure 5.3: An ω-unambiguous automaton.

It is not deterministic since it has two initial states and it is not co-deterministic since
the infinite word (ab)ω is the label of two final paths, one starting at state 2, the other
one at state 3.

We shall see later on that a recognizable set of infinite words is completely determined
by its ultimately periodic words. The following lemma proves the easy part of this result.

Lemma 5.1. Any nonempty recognizable subset of Aω contains an ultimately periodic
word.

Proof. Let X be a nonempty recognizable subset of Aω recognized by a Büchi automaton
A = (E, I, F ). SinceX is nonempty, there exists a path of the form p = p0p1p2 · · · , where
p0 starts in I, ends in a state q ∈ F , and where p1, p2, · · · are paths from q to q. The
path p0p1p1p1 · · · is thus also a successful path and its label is an ultimately periodic
word.

Let A = (E, I, F ) be a Büchi automaton. A state q is called accessible if there is a
(possibly empty) finite initial path in A ending in q. A state q is called coaccessible if
there exists an infinite final path starting at q. Finally, A is trim if all its states are both
accessible and coaccessible.

Suppressing all “useless” states of a Büchi automaton always gives a trim automaton.
More formally, one has the following result.
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Proposition 5.2. With any Büchi automaton A, one may associate a trim Büchi au-
tomaton A′ such that

(1) The automata A and A′ recognize the same subset of Aω,

(2) if A is deterministic, so is A′,

(3) if A is finite, so is A′.

Proof. (1) Let A = (Q,A,E, I, F ) be a Büchi automaton and let P be the set of states
of A that are both accessible and coaccessible. Let A′ = (P,A,E ′, I ∩ P, F ∩ P ) where
E ′ = E ∩ (P × A× P ). It is clear that Lω(A′) ⊂ Lω(A). Conversely, let u = a0a1 · · · ∈
Lω(A). There is a final path

p = q0
a0−→ q1

a1−→ q2 · · ·

with label u such that q0 ∈ I. The states q0, q1, . . . are then both accessible and coacces-
sible. Thus, p is a path in A′ and u ∈ Lω(A′). We conclude that Lω(A) = Lω(A′).

(2) If A is deterministic, the automaton (P,A,E ′) is deterministic. Moreover, if the
set recognized by A is nonempty, there exists a final path starting at the unique initial
state. Thus, the initial state is coaccessible and I ∩ P is a singleton. Therefore A′ is
deterministic.

(3) Finally it is clear that these constructions preserve the finiteness of the automaton.

A Büchi automaton can, in the same way, be made complete.

Proposition 5.3. A subset of Aω recognized by a Büchi automaton A can be recognized
by a complete Büchi automaton A′ such that if A is finite (resp. deterministic), then A′

is also finite (resp. deterministic).

Proof. Let A = (Q,A,E, I, F ) be a Büchi automaton recognizing a subset X of Aω. If
A is not complete, we add a new state p and we create a transition (q, a, p) if there is
no transition of the form (q, a, q′) in A. More formally, let A′ = (Q ∪ {p}, A, E ′, I, F ),
where p is a new state and E ′ = E ∪ E1 ∪ E2 with

E1 = {(p, a, p) | a ∈ A}

E2 = {(q, a, p) | q ∈ Q, a ∈ A and ({q} × {a} ×Q) ∩ E = ∅}

The automaton A′ still recognizes X, is complete and it is deterministic (resp. finite) if
A is deterministic (resp. finite).

Example 5.4. The Büchi automaton of Example 5.2 can be completed as follows
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1

a, b

2

a

b
0

a, b

b

Figure 5.4: Completion of the automaton of Figure 5.2.

We now prove the analogue of Kleene’s theorem for infinite words.

Theorem 5.4. A subset of Aω is recognizable if and only if it is ω-rational.

Proof. First consider a recognizable subset X of Aω and let A = (E, I, F ) be a finite
Büchi automaton recognizing X. Then

X = Lω(E, I, F ) =
⋃

i∈I

⋃

f∈F

L∗(E, i, f)
(

L+(E, f, f)
)ω

which shows that X is ω-rational, since, by Kleene’s theorem, the sets L∗(E, i, f) and
L+(E, f, f) are rational subsets of A∗.

Conversely, let us first consider an ω-rational set Y of the form X(X ′)ω with X,
X ′ rational subsets of A∗. Let A = (Q,A,E, i, f) and A′ = (Q′, A, E ′, i′, f ′) be two
normalized automata such that X = L+(A) and X ′ = L+(A′). We build an automaton
B by merging the states f , i′ and f ′ as indicated in Figure 5.5.

i A f = i′ = f ′ A′

Figure 5.5: An automaton recognizing X(X ′)ω.

Formally, we have B = ((Q ∪Q′) \ {i′, f ′}, T, i, f), where T = E ∪ E0 ∪ E1 ∪ E2 with

E0 = {(f, a, f) | (i′, a, f ′) ∈ E ′}

E1 = {(f, a, q) | q ∈ Q′ \ {i′, f ′} and (i′, a, q) ∈ E ′}

E2 = {(q, a, f) | q ∈ Q′ \ {i′, f ′} and (q, a, f ′) ∈ E ′}

This shows that X(X ′)ω is recognizable.
To complete the proof of the theorem, we only have to prove that the class of recog-

nizable subsets of Aω is stable under finite union.
Let then Y and Y ′ be two recognizable subsets of Aω, recognized resp. by the finite

Büchi automata A = (Q,A,E, I, F ) and A′ = (Q′, A, E ′, I ′, F ′). We may suppose that
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Q and Q′ are disjoint and thus we may identify E and E ′ with subsets of (Q∪Q′)×A×
(Q ∪Q′). With this convention, we have the formula

Y ∪ Y ′ = Lω(E, I, F ) ∪ Lω(E ′, I ′, F ′) = Lω(E ∪ E ′, I ∪ I ′, F ∪ F ′)

and thus Y ∪Y ′ is recognized by the finite automaton (Q∪Q′, A, E∪E ′, I∪I ′, F∪F ′).

We conclude this section with an additional closure property of the class of recogniz-
able sets of Aω. We have already seen (Proposition 3.3) that the class of ω-rational sets
is closed under morphism. We consider now inverse morphisms. Let ϕ : A → B+ be a
function and let ϕ : Aω → Bω be the morphism induced by ϕ.

Proposition 5.5. If X is a recognizable subset of Bω, then ϕ−1(X) is a recognizable
subset of Aω.

Proof. Let B = (Q,B,E, I, F ) be a Büchi automaton recognizing X. Let

A = (Q× {0, 1}, A, E ′, I × {0}, Q× {1}),

where E ′ = E1 ∪ E2, with

E1 =
{

(

(q, i), a, (q′, 0)
)

| i ∈ {0, 1} and there exists a path of B from q to q′,

labeled ϕ(a), visiting no state of F
}

and

E2 =
{

(

(q, i), a, (q′, 1)
)

| i ∈ {0, 1} and there exists a path of B from q to q′,

labeled ϕ(a), visiting a state of F
}

.

Let u = a0a1 · · · be a word in Aω and let for all n > 0, vn = ϕ(an). Then u is accepted
by A if and only if there exists a successful path in Q× {0, 1} and thus a path

(q0, 0)
a0−→ (q1, ε1)

a1−→ (q2, ε2) · · ·

labeled u passing infinitely often in Q × {1}. By the definition of E ′, this means that
there exists a sequence of consecutive paths in B:

q0
v0−→ q1

v1−→ q2 · · ·

such that an infinite number of the paths qn
vn−→ qn+1 visits a state of F . This is

equivalent to the fact that the infinite path q0
v0−→ q1

v1−→ q2 · · · is successful in B,
i.e. that ϕ(u) is in X.
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Example 5.5. Let ϕ : {a, b, c}+ → {a, b}+ be the semigroup morphism defined by
ϕ(a) = a, ϕ(b) = ab, ϕ(c) = babaab and let X = (ababa)ω. The set X is recognized by
the Büchi automaton represented in Figure 5.6:

1

2

34

5

a

b

a

b

a

Figure 5.6: An automaton recognizing (ababa)ω.

Applying the construction described above, we obtain after deletion of some useless
states, the following automaton recognizing ϕ−1(X) = {acba, bba}ω.

1, 1

2, 1

3, 1

1, 0

5, 0

a

b

b

c

ba

a

Figure 5.7: An automaton recognizing ϕ−1((ababa)ω).

6 Deterministic Büchi automata

It is well known that a set of finite words recognized by a finite automaton can also be
recognized by a deterministic one. The situation is quite different for infinite words and
we will see that (as soon as A has at least two symbols) there are recognizable subsets of
Aω which cannot be recognized by a finite deterministic Büchi automaton. Actually, this
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difference between deterministic and nondeterministic automata even holds for countable
automata.

The description of the subsets of Aω recognized by deterministic Büchi automata
comes with the introduction of a new operator. For a subset L of A∗, let

−→
L = {u ∈ Aω | u has infinitely many prefixes in L}.

The operator L →
−→
L plays a role similar to that of the operator L → Lω, since it allows

one to define infinite words from finite ones. Comparing the properties of these two
operators takes an important part in what follows.

The following example gives the value of
−→
L for simple sets L and it can help the

reader to get more familiar with this operator.

Example 6.1.

(a) If L = a∗b, then
−→
L = ∅.

(b) If L = (ab)+, then
−→
L = (ab)ω.

(c) If L = (a∗b)+ = (a + b)∗b, that is if L is the set of words ending with b, then
−→
L = (a∗b)ω, which is the set of infinite words containing an infinity of occurrences
of b.

We now give a simple example showing that not every set of words can be written in

the form
−→
L .

Example 6.2. The set X = (a + b)∗aω of words with a finite number of occurrences

of b is not of the form
−→
L . Otherwise, the word baω would have a prefix u1 = ban1 in

L, the word ban1baω would have a prefix u2 = ban1ban2 in L, etc. and the infinite word
u = ban1ban2ban3 · · · would have an infinity of prefixes in L. This word would therefore

be in
−→
L , which is impossible, since u contains infinitely many b’s.

The following statement shows that the operator L →
−→
L , just as the operator L →

Lω, preserves the class of recognizable sets.

Proposition 6.1. Let A be a deterministic Büchi automaton. Then Lω(A) =
−−−−→
L+(A).

Proof. Let A = (Q,A,E, i, F ). If u ∈ Lω(A), then u is the label of a path

p = (q0, a0, q1)(q1, a1, q2) · · ·

such that q0 = i and such that there exists a subsequence n0 < n1 < · · · satisfying
qn0

, qn1
, . . . ∈ F . By construction, the words uk = a0a1 · · · ank−1

are in L+(A) and are

prefixes of u. Thus Lω(A) ⊂
−−−−→
L+(A).

Conversely, if u ∈
−−−−→
L+(A), u has infinitely many prefixes in L+(A). And since A is

deterministic, we deduce that u is the label of an initial path passing infinitely often in
F . Thus u ∈ Lω(A).
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We now study the subsets of Aω which can be recognized by a deterministic Büchi
automaton, which will be called deterministic. Informally, a subset X of Aω is deter-
ministic if testing whether a word belongs to X can be made in one left-to-right pass. A
first characterization of deterministic sets is given below. We shall give others later, in
particular in connection with topology.

Theorem 6.2. Let X be a subset of Aω. The following conditions are equivalent:

(1) X can be recognized by a deterministic Büchi automaton,

(2) there exists a set L of A+ such that X =
−→
L .

If, moreover, the alphabet A is countable, these conditions are equivalent to

(3) X can be recognized by a countable deterministic Büchi automaton.

Proof. IfA is a deterministic Büchi automaton recognizingX, thenX = Lω(A) =
−−−−→
L+(A)

by Proposition 6.1. Thus (1) implies (2).

Let now L be a subset of A+ such that X =
−→
L . Then L is recognized by the

deterministic automaton A = (A∗, A, ·, 1, L), where the transition function is defined,
for all u ∈ A∗ and for every a ∈ A, by u.a = ua. By Proposition 6.1, we have Lω(A) =
−−−−→
L+(A) =

−→
L = X. Thus (2) implies (1). If, moreover, the alphabet A is countable,

A is a countable automaton. Thus, in this case, (2) implies (3), which establishes the
equivalence of the three conditions since (3) obviously implies (1).

The analogous statement for recognizable sets is given below.

Corollary 6.3. Let X be a subset of Aω. The following conditions are equivalent:

(1) X is recognized by a finite deterministic Büchi automaton.

(2) There exists a recognizable subset L of A+ such that X =
−→
L .

Proof. The proof of Theorem 6.2 can be adapted for finite automata. In the proof
that (1) implies (2), it suffices to observe that if A is a finite automaton, then L+(A)
is recognizable. For (2) implies (1), we choose for A a finite deterministic automaton
recognizing L.

The class of deterministic sets is closed under finite union and under finite intersec-
tion. We shall see that it is not closed under complementation.

Proposition 6.4. Any finite union (resp. intersection) of deterministic sets is deter-
ministic.

Proof. For finite union, the result follows from the formula

−−−−→
⋃

16i6n

Li =
⋃

16i6n

−→
Li
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and one may apply Theorem 6.2.
For intersection, we need a special construction. Consider two deterministic Büchi

automata A1 = (Q1, A, E1, i1, F1) and A2 = (Q2, A, E2, i2, F2). Let

Q = Q1 ×Q2 × {0, 1}

and let A = (Q,A,E, (i1, i2, 1), F ) be the deterministic automaton defined by

E =
{

(

(p1, p2, s), a, (q1, q2, t)
)

| (p1, a, q1) ∈ E1, (p2, a, q2) ∈ E2 and

t = 0 if and only if (s = 1, p2 ∈ F2 and q1 /∈ F1) or (s = 0 and q1 /∈ F1)
}

and

F = Q1 × F2 × {1}.

Intuitively, the component s of a state (q1, q2, s) memorizes the fact that the current
path has visited a state of F1 since its last visit to F2. In fact, if (p1, p2, s)

a
−→ (q1, q2, t)

is a transition, and if p2 ∈ F2, we have

t =

{

1 if q1 ∈ F1

0 if q1 /∈ F1

But, if p2 /∈ F2, we have

t =











1 if s = 1 (“a state in F1 has already been visited”) or

if q1 ∈ F1 (“first visit of a state in F1.”)

0 if s = 0 and if q1 /∈ F1 (“no state in F1 has been visited”)

We shall show that Lω(A) = Lω(A1) ∩ Lω(A2). Let

c = (q0,1, q0,2, s0)
a0−→ (q1,1, q1,2, s1)

a1−→ (q2,1, q2,2, s2) · · ·

be a path in A labeled u = a0a1a2 · · · . By projection, c defines a path c1 of A1 and a
path c2 of A2:

c1 = q0,1
a0−→ q1,1

a1−→ q2,1 · · ·

c2 = q0,2
a0−→ q1,2

a1−→ q2,2 · · ·

Suppose that c is a successful path of A. Then q0,1 = i1, q0,2 = i2 and s0 = 1. Moreover
c passes infinitely often by a state of F . Thus, there exists an infinite sequence (nk)k>0

such that qnk,2 ∈ F2 and snk
= 1. As an immediate consequence, c2 is a successful path
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of A2. The path c1 is also successful since condition snk
= 1 indicates that, since the last

visit to a state of F2, at least one state of F1 has been visited. Thus u ∈ Lω(A1)∩L
ω(A2).

Conversely, if u ∈ Lω(A1) ∩ Lω(A2), u is the label of a successful path c1 of A1 and
c2 of A2, say

c1 = q0,1
a0−→ q1,1

a1−→ q2,1 · · ·

c2 = q0,2
a0−→ q1,2

a1−→ q2,2 · · ·

The word u defines thus an initial path c in A. Now, if qn,2 ∈ F2, we have qn′,1 ∈ F1 for
some n′ > n. If n′′ is the smallest integer strictly larger than n′ such that qn′′,2 ∈ F2, we
have (i1, i2, 1) · a0a1 · · · an′′ = (qn′′,1, qn′′,2, 1) ∈ F , showing that c is a successful path and
that u ∈ Lω(A).

Example 6.2 shows that the set X = (a + b)∗aω is not of the form
−→
L . But X

is recognized by the Büchi automaton of Example 5.2. Thus, there exist recognizable
subsets of Aω which cannot be recognized by a deterministic Büchi automaton. This
contrasts with the case of finite words.

Corollary 6.3 leaves open the problem of whether there exists a recognizable set
which could be recognized by a deterministic Büchi automaton but not by a finite one

(or, equivalently, if there exist recognizable sets of the form
−→
L for which L cannot be

chosen recognizable). We shall see later that this cannot happen (Theorem 9.9).

7 Muller and Rabin automata

7.1 Muller automata.

Contrary to what happens for finite words, deterministic Büchi automata are not able to
recognize all recognizable subsets of Aω. This is the motivation for introducing Muller
automata which are, by definition, deterministic, but with a more powerful acceptance
mode. The result that all recognizable sets can be recognized by Muller automata
(McNaughton’s theorem) will be established in the next section.

A Muller automaton is a 5-tuple A = (Q,A,E, i, T ) where (Q,A,E) is a finite deter-
ministic automaton, i is the initial state and T is a set of subsets of Q, called the table
of the automaton. We often denote a Muller automaton by A = (E, i, T ).

A path p in A is initial if it starts in the initial state and final if Inf(p) ∈ T , that
is, if the set of infinitely visited states is an element of the table. In this way, one may
both specify the infinitely visited states and those that are not. A path is successful if
it is both initial and final. The set of infinite words recognized by A is the set, denoted
by Lω(A), of labels of infinite successful paths in A.
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Example 7.1. The automaton represented in Figure 7.1,

1a 2 b

b

a

Figure 7.1: A Muller automaton.

with the initial state i = 1 and the table T = {{2}}, recognizes the set (a + b)∗bω of
infinite words with a finite number of a’s.

We first show that Muller automata are not more powerful than finite Büchi automata.
The proof does not make use of the fact that Muller automata are, by definition, supposed
to be deterministic (see Exercise 15).

Theorem 7.1. The set of infinite words recognized by a Muller automaton is ω-rational.

Proof. Let A = (Q,A,E, i, T ) be a Muller automaton. Since

Lω(A) =
⋃

T∈T

Lω(E, i, {T})

and since the class of recognizable sets is closed under finite union, we may assume
that T is a singleton. Let thus T = {T} where T = {t0, t1, · · · , tk}. Let D = E ∩
(T × A × T ), X = L+(E, i, t0), Y0 = L+(D, {t0}, {t1}), Y1 = L+(D, {t1}, {t2}), . . . ,
Yk = L+(D, {tk}, {t0}). Thus, X is the set of labels of the paths going from the initial
state to t0. Next, Yi, for 0 6 i < k (resp. i = k) is the set of labels of paths going
from ti to ti+1 (resp. from tk to t0) and visiting only states in T . We claim that
Lω(A) = X(Y0Y1 · · ·Yk)

ω, which proves that Lω(A) is ω-rational.
First, if u ∈ X(Y0Y1 · · ·Yk)

ω, then u is the label of an initial path p such that
Inf(p) = T . Consequently u ∈ Lω(A).

Conversely, let u ∈ Lω(A). Then u is the label of an initial path

p = (q0, a0, q1)(q1, a1, q2), · · ·

such that Inf(p) = T . In particular, there is an integer n0 such that qn0
= t0 and such

that, for all n > n0, one has qn ∈ T . One may therefore find an infinite sequence of
integers n0 < n1 < n2 · · · such that the sequence qn0

, qn1
, . . . is equal to the periodic

sequence t0, t1, . . . , tk, t0, t1, . . . , tk, t0, . . . . We have then a0a1 · · · an0−1 ∈ X and for
all r > 0,

anr
anr+1 · · · anr+1−1 ∈ Yr̄,

where r̄ is the rest of the division of r by k + 1. This shows that u ∈ X(Y0 . . . Yk)
ω,

proving the claim.

Version of November 5, 2021



7. MULLER AND RABIN AUTOMATA 37

Example 7.2. Consider again the automaton of Figure 7.1, but this time with T =
{{1, 2}}. The set X recognized by this automaton is formed of all infinite words having
an infinite number of occurrences of a and of b. The method used in the proof of Theorem
7.1 leads to the rational expression

X = (a+ b)∗a
(

(a+ b)∗b(a+ b)∗a
)ω
.

We now consider the various reductions and modifications that one may operate on
a Muller automaton. Let A = (Q,A,E, i, T ) be a Muller automaton. A state q is called
accessible if there exists a finite initial path (possibly empty) ending in q. A state q is
called coaccessible if there exists an infinite final path starting in q. A subset T of Q is
called admissible if there exists an infinite initial path p such that Inf(p) = T . Finally,
A is trim if all its states are accessible and coaccessible and if all the elements of T are
admissible. In practice, it is easy to verify if a subset of Q is admissible. One computes
first the graph G with vertex set Q and with edges

R = {(q, q′) | there exists a ∈ A such that (q, a, q′) ∈ E}.

Then a subset T of Q is admissible if the restriction of G to T is strongly connected and
accessible from i, or equivalently if there exists a path between two arbitrary elements
of T , and a path from i to some vertex in T .

We now establish two equivalence results for Muller automata. The first statement
shows that one may always suppose a Muller automaton to be trim.

Proposition 7.2. Any nonempty subset of Aω recognized by a Muller automaton can be
recognized by a trim Muller automaton.

Proof. Let A = (Q,A,E, i, T ) be a Muller automaton recognizing a nonempty subset X
of Aω. Let P be the set of states of A that are both accessible and coaccessible. Since
X is nonempty, the initial state i is in P . Let B = (P,A,E ′, i, T ′) where T ′ is the set
of admissible T in T and let E ′ = E ∩ (P × A × P ). It is clear that Lω(B) ⊂ Lω(A).
Conversely, let u = a0a1 · · · ∈ Lω(A). There exists then an initial path

p = q0
a0−→ q1

a1−→ q2 · · ·

labeled u such that Inf(p) ∈ T . The states q0, q1, . . . are both accessible and coaccessible
and Inf(p) is admissible. Thus p is a path in B and u ∈ Lω(B). Finally Lω(A) =
Lω(B).

The second statement shows that one may always suppose a Muller automaton to be
complete.

Proposition 7.3. Any subset of Aω recognized by a Muller automaton can be recognized
by a complete Muller automaton.
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Proof. Let A = (Q,A,E, i, T ) be a Muller automaton recognizing a subset X of Aω. If
A is not complete, we add a new state p and we “complete” the automaton by creating
a transition (q, a, p) if there is no transition of the form(q, a, q′) in A. More formally, let
A′ = (Q ∪ {p}, A, E ′, i, T ), where p is a new state and E ′ = E ∪ E1 ∪ E2 with

E1 = {(p, a, p) | a ∈ A} (7.1)

E2 = {(q, a, p) | q ∈ Q, a ∈ A and ({q} × {a} ×Q) ∩ E = ∅}. (7.2)

The Muller automaton A′ is complete and recognizes X.

The following two results, combined with McNaughton’s theorem to be proved in
Section 9, constitute basic properties of recognizable subsets of Aω.

Proposition 7.4. Let A = (E, i, T ) be a complete Muller automaton. Then the au-
tomaton B = (E, i,P(Q) \ T ), obtained by changing T into its complement, recognizes
Aω \ Lω(A).

Proof. Since A is complete, every infinite word u is the label of one and only one initial
path in A. If Inf(p) ∈ T , then u ∈ Lω(A), and otherwise u ∈ Aω \ Lω(A).

Proposition 7.5. Let A1 = (Q1, A, E1, i1, T1) and A2 = (Q2, A, E2, i2, T2) be two Muller
automata. Let π1 and π2 be the projections from Q1 × Q2 onto Q1 (resp. Q2). The
automaton A = (Q1 ×Q2, A, E, (i1, i2), T ), with

T = {R ⊂ Q1 ×Q2 | π1(R) ∈ T1 and π2(R) ∈ T2}

E =
{

(

(q1, q2), a, (q
′

1, q
′

2)
)

| (q1, a, q
′

1) ∈ E1 and (q2, a, q
′

2) ∈ E2

}

recognizes Lω(A1) ∩ Lω(A2).

Proof. The projections π1 : Q1 × Q2 → Q1 and π2 : Q1 × Q2 → Q2 induce a function,
also denoted π1 (resp. π2) from the set of paths in A to the set of paths in A1 (resp. A2).
Let u be the label of an infinite path p in A. Let us show that π1(Inf(p)) = Inf(π1(p))
(resp. π2(Inf(p)) = Inf(π2(p))). In fact, if q1 ∈ π1(Inf(p)), there exists a state q2 ∈ Q2

such that (q1, q2) ∈ Inf(p) and thus q1 ∈ Inf(π1(p)). Conversely, if q1 ∈ Inf(π1(p)), there
exists an infinite sequence of states (q2,n)n>0 of Q2 such that for every n > 0,the path p
passes by (q1, q2,n). Since Q2 is finite, there exists q

′
2 ∈ Q2 such that (q1, q

′
2) ∈ Inf(p) and

thus q1 ∈ π1(Inf(p)). This proves the equality π1(Inf(p)) = Inf(π1(p)) and the equality
corresponding to π2 can be proved in the same way.

Now, if p is a successful path, it starts in (i1, i2) and there exists R ∈ T such that
Inf(p) = R. We have then, by definition of T , π1(R) ∈ T1 and π2(R) ∈ T2. Thus
Inf(π1(p)) = π1(Inf(p)) = π1(R) ∈ T1 and Inf(π2(p)) ∈ π2(R) whence π1(p) (resp. π2(p))
is a successful path in A1 (resp. A2). Finally u ∈ Lω(A1) ∩ Lω(A2).
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Conversely, let u ∈ Lω(A1)∩L
ω(A2). The word u is then the label of a successful path

p1 (resp. p2) of A1 (resp. A2). Let p be the unique path in A such that π1(p) = p1 and
π2(p) = p2. This path starts in (i1, i2) and is labeled u, whence, by the above discussion
π1(Inf(p)) = Inf(π1(p)) ∈ T1 and π2(Inf(p)) = Inf(π2(p)) ∈ T2. This implies Inf(p) ∈ T ,
showing that p is a successful path and that u ∈ Lω(A).

Proposition 7.6. For any subset X of Aω, the following conditions are equivalent.

(1) X is recognizable by a Muller automaton.

(2) X is of the form

X =
⋃

16i6n

(Ui \ Vi) (7.3)

where the Ui and the Vi are subsets of A
ω recognizable by finite deterministic Büchi

automata.

(3) X is a finite boolean combination of subsets of Aω recognizable by finite Büchi
deterministic automata.

Proof. (1) =⇒ (2). Let A = (Q,A,E, i, T ) be a Muller automaton. Since

Lω(A) =
⋃

T∈T

Lω(E, i, {T})

we may suppose that T contains just one element T . Now, the connection between
Muller’s and Büchi’s acceptance conditions is summarized in the formula

Lω(E, i, {T}) =
⋂

t∈T

Lω(E, i, t) \
⋃

t/∈T

Lω(E, i, t)

Since, by Proposition 6.4, the class of deterministic sets is closed under finite union and
under finite intersection, Lω(A) is of the form 7.3.

(2) =⇒ (3) is obvious.
(3) =⇒ (1). If X is recognized by a finite deterministic Büchi automaton A =

(Q,A,E, i, F ), it is also recognized by the Muller automaton (Q,A,E, i, T ) with

T = {T ⊂ Q | T ∩ F 6= ∅}.

Furthermore, Propositions 7.4 and 7.5 show that the class of sets recognized by a Muller
automaton is a boolean algebra. Thus any finite boolean combination of sets recognized
by a Muller automaton is recognized by a Muller automaton.

7.2 Rabin automata.

The expression of a recognizable set as a union of differences as in Condition (2) of
Proposition 7.6 motivates the introduction of an additional class of automata. A Rabin
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automaton is a tuple A = (Q,A,E, i,R) where (Q,A,E) is deterministic automaton, i
is the initial state and R =

{

(Lj, Uj) | j ∈ J
}

is a family of pairs of sets of states. An
infinite path p is successful if there exists an index j ∈ J such that p visits Uj infinitely
often and visits Lj only finitely often. When the automaton is finite, this is equivalent
to

Inf(p) ∩ Lj = ∅ and Inf(p) ∩ Uj 6= ∅.

An infinite word is recognized by A if it is the label of a successful path in A.
Any deterministic Büchi automaton (Q, i, F ) can be considered as a particular Rabin

automaton withR = {(∅, F )}. Muller automata are equivalent to finite Rabin automata,
as shown in the following proposition, in which the term “recognizable deterministic set”
means a subset of Aω recognized by a finite deterministic Büchi automaton.

Proposition 7.7. Any finite Rabin automaton is equivalent to a Muller automaton.
Conversely, any Muller automaton is equivalent to a finite Rabin automaton. Moreover,
a subset of Aω is recognized by a Rabin automaton with n pairs if and only if it is a
union of n differences of recognizable deterministic subsets of Aω.

Proof. Let A = (Q,A,E, i,R) be a finite Rabin automaton and let

T = {T ⊂ Q | T ∩ L = ∅ and T ∩ U 6= ∅ for some (L,U) ∈ R}. (7.4)

Then the Muller automaton (Q,A,E, i, T ) recognizes the same set of infinite words as
A. Thus every finite Rabin automaton is equivalent to a Muller automaton.

Let En be the class of subsets of Aω of the form
⋃

16i6n(Ui \ Vi) where the Ui and the
Vi are recognizable deterministic subsets of Aω. We have to show that En is also the class
of sets recognized by a Rabin automaton with n pairs. We shall obtain as a consequence
that any Muller automaton is equivalent to a finite Rabin automaton, since Proposition
7.6 shows that any subset recognized by a Muller automaton belongs to some En.

Let A = (Q,A,E, i,R) be a Rabin automaton with n pairs, say R = {(Lj, Uj) | 1 6

j 6 n}. On the one hand

Lω(A) =
⋃

16j6n

Lω(Aj) (7.5)

where Aj = (Q,A,E, i,Rj) is the Rabin automaton defined by Rj = {(Lj, Uj)} and on
the other hand

Lω(Aj) = Lω(Q,A,E, i, Uj) \ L
ω(Q,A,E, i, Lj)

showing that Lω(A) ∈ En.
Let now X1 and X2 be two recognizable deterministic subsets recognized respec-

tively by the finite deterministic Büchi automata A1 = (Q1, A, E1, i1, F1) and A2 =
(Q2, A, E2, i2, F2). By Proposition 5.3, we may suppose that A1 and A2 are com-
plete. Then X1 \ X2 is recognized by the one pair Rabin automaton A = (Q1 ×
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Q2, A, E, (i1, i2),R), with

E =
{

(

(q1, q2), a, (q
′

1, q
′

2)
)

| (q1, a, q
′

1) ∈ E1 and (q2, a, q
′

2) ∈ E2

}

.

R =
{

(

(Q1 × F2), (F1 ×Q2)
)

}

.

This shows that E1 is equal to the class of sets recognized by a one pair Rabin automaton.
Let us now consider a set X in En. By definition, X is the union of n sets Xj from

E1 and by the above, every Xj is recognized by a one pair Rabin automaton Aj =
(Qj, A, Ej , ij,Rj), with Rj = {(Lj, Uj)}. Then the n pair Rabin automaton

A = (Q1 ×Q2 × · · · ×Qn, A, E, (i1, i2, · · · , in),R)

defined by

E =
{(

(q1, q2, . . . , qn), a, (q
′

1, q
′

2, . . . , q
′

n)
)

| (q1, a, q
′

1) ∈ E1, (q2, a, q
′

2) ∈ E2, . . . , (qn, a, q
′

n) ∈ En

}

R =
{

(Q1 × · · · ×Qj−1 × Lj ×Qj+1 × · · · ×Qn,

Q1 × · · · ×Qj−1 × Uj ×Qj+1 × · · · ×Qn) | 1 6 j 6 n, (Lj , Uj) ∈ Rj

}

recognizes X. Let in fact

p = (q0,1, . . . , q0,n)
a0−→ (q1,1, . . . q1,n)

a1−→ (q2,1, . . . q2,n) · · ·

be a path in A labeled u = a0a1a2 · · · . By projection, p defines, for 1 6 j 6 n, a path
pj in Aj

pj = q0,j
a0−→ q1,j

a1−→ q2,j · · ·

Let (L,U) = (Q1×· · ·×Qj−1×Lj×Qj+1×· · ·×Qn, Q1×· · ·×Qj−1×Uj×Qj+1×· · ·×Qn) be
a pair ofR. We have then (qi,1, . . . , qi,n) /∈ L if and only if qi,j /∈ Lj and (qi,1, . . . , qi,n) ∈ U
if and only if qi,j ∈ Uj . Thus p is a successful path in A if and only if one among the pj
is a successful path in Aj.

A direct construction of a Rabin automaton equivalent to a given Muller automaton
is also possible (see Exercise 17).

The notion of Streett automaton is the dual to that of Rabin automaton. A Streett
automaton is a tuple

A = (Q,A,E, i,S)

where (Q,A,E) is a deterministic automaton, i ∈ Q is the initial state and S =
{(Lj, Uj) | j ∈ J} is a family of pairs of sets of states. An infinite path p is suc-
cessful if it starts in the initial state and if, for each j ∈ J , either it visits Lj a finite
number of times or it visits Uj an infinite number of times.

Negating the acceptance condition shows that the complement of a set recognized by
a Streett automaton can be recognized by a Rabin automaton with the same number of
pairs.
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7.3 Muller automata with a full table

We end this section by an important result characterizing those Muller automata which
are equivalent to a finite deterministic Büchi automaton. Let A = (Q,A,E, i, T ) be a
Muller automaton. We say that the table T is full if for every admissible set T ∈ T and
for every admissible set T ′ containing T , we have T ′ ∈ T .

Theorem 7.8. A Muller automaton is equivalent to a finite deterministic Büchi au-
tomaton if and only if its table is full.

The ‘if’ part is a consequence of the following statement.

Proposition 7.9. Any Muller automaton with a full table is equivalent to a finite de-
terministic Büchi automaton.

Proof. Let A′ = (Q,A,E, i, T ) be a Muller automaton with a full table. We define a
finite deterministic Büchi automaton

A = (P(Q)×Q, (∅, i), F )

where F = {(∅, q) | q ∈ Q} and where, for every (S, q) ∈ P(Q)×Q and for every a ∈ A,
the transition function is given by the following formula.

(S, q)· a =

{

(∅, q · a) if S ∪ {q · a} contains an element of T

(S ∪ {q · a}, q · a) otherwise.

Additionally, (S, q)· a is undefined if q · a is undefined.
Let u be a word accepted by A. Then u defines in A an initial path p. Let T ∈ T

be such that all its states are repeated infinitely often in p. Thus T ⊂ Inf(p) and since
the table of A′ is full, we have also Inf(p) ∈ T . Thus u is accepted by A′.

Conversely, if u is accepted by A′, u defines in A′ a (unique) initial path p′ such that
Inf(p′) ∈ T . Let p be the initial path defined by u in A. This path is final. Indeed,
on the contrary, there would exist a prefix v of u, such that, if vw is a prefix of u, the
state (∅, i)· vw is not a final state of A. Let (∅, i)· v = (S, q) and let us choose w in such
a way that the path of A′ starting at q and defined by w visits all the states of Inf(p).
We have then (∅, i)· vw = (T, q ·w) where T is a set containing Inf(p). But Inf(p) ∈ T ,
whence T ∈ T , which is impossible.

The construction described in the proof above can be paraphrased intuitively as
follows. To simulate a Muller automaton with a full table by a finite deterministic Büchi
automaton, one builds a new automaton which sends signals. It accumulates in a box
the states met since the last signal. As soon as the box contains an element of the
table, it sends a signal and empties the box. We shall use a similar idea for the proof of
McNaughton’s theorem in Section 9.
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Example 7.3. The automaton of Example 7.2 has a full table. Applying the above
construction, one obtains the automaton of Figure 7.2.

∅, 1 ∅, 2

{1}, 1

{2}, 2

a

b

a

b

b

b

a

a

Figure 7.2: A Büchi automaton.

The necessity of the condition in Theorem 7.8 follows from the next result. Note that
the finiteness of the automaton is not used in the proof. We shall return to this point in
a while (Theorem 9.9).

Proposition 7.10. A Muller automaton equivalent to a deterministic Büchi automaton
has a full table.

Proof. Let A = (Q,A,E, i, T ) be a Muller automaton. Suppose that the set X = Lω(A)
can be recognized by a deterministic Büchi automaton B. Then there exist a subset L

of A+ such that X =
−→
L . Let T and T ′ be two admissible subsets of Q such that T ∈ T

and T ⊂ T ′. We have to show that T ′ ∈ T . Since T is admissible, there exists an infinite
path p starting in i such that Inf(p) = T . We fix a state t ∈ T . There exists a finite
word u such that i· u = t and an infinite word v such that the infinite path starting at t
defined by v does not leave T but visits each state of T infinitely often. We build then
by induction two sequences of words u0, u1, · · · and v0, v1, · · · satisfying for every k > 0,
the following properties:

(a) u0v0u1v1 · · · ukvk ∈ L,

(b) if qk = i.u0v0u1v1 · · · uk−1vk−1, then qkuk = t and the path starting at qk defined
by uk passes at least once by each state of T ′ and stays in T ′.

For this, let u0 = u and knowing the sequences up to rank k − 1, we choose uk in
such a way that (b) is satisfied - which is possible, since T ′ is admissible. The word
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u0v0u1v1 · · · uk−1vk−1ukv is accepted by A and there exists a prefix vk of v such that
condition (a) is satisfied.

Finally, let w = u0v0u1v1 · · · . We have w ∈
−→
L by construction, but simultaneously,

the initial path s defined by w satisfies Inf(s) = T ′. We thus obtain that T ′ ∈ T .

The notion of a Muller automaton with a full table appears as the first level of a
hierarchy of Muller automata using the notion of a chain. This leads to the notion of a
Rabin chain automaton (see Chapter V).

8 Transition automata

It is sometimes convenient to use a variant of automata in which a set of final transitions
is specified, instead of the usual set of final states.

Formally, a transition Büchi automaton is a 5-tupleA = (Q,A,E, I, F ) where (Q,A,E)
is a finite automaton, I ⊆ Q is the set of initial states and F ⊆ E is the set of final
transitions. A path is initial if it starts in some initial state, final if it goes through F
infinitely often and successful if it is initial and final. The notions of complete (resp.
co-complete) automata are defined in the usual way.

Example 8.1. The transition automaton represented in Figure 8.1 recognizes the set of
infinite words containing infinitely many a’s. The final transitions are circled.

1

a○,b

Figure 8.1: A transition automaton recognizing ({a, b}∗a)ω.

Similarly, a transition Muller automaton is a 5-tuple A = (Q,A,E, I, T ) where
(Q,A,E) is a finite deterministic automaton, i is the initial state and T is a set of
subsets of E, called the table of the automaton. If p is an infinite path, the set of transi-
tions which occur infinitely often in p is denoted by InfT (p). A path p is successful if it
is an initial path and if InfT (p) ∈ T , that is, if the set of transitions occurring infinitely
often in p is an element of the table.

We now establish the equivalence of these notions with the standard ones. Recall
that a Büchi automaton is co-deterministic (resp. co-complete) if any infinite word labels
at most (resp. at least) one final path.

Proposition 8.1. Every Büchi automaton is equivalent to a transition Büchi automa-
ton. Conversely, every transition Büchi automaton is equivalent to a Büchi automaton.
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Furthermore, if one of these automata is co-deterministic (resp. co-complete) one can
choose the other one to have the same property.

Proof. Let A = (Q,A,E, I, F ) be a Büchi automaton. Then A is equivalent to the
transition Büchi automaton A′ = (Q,A,E, I, F ′) where F ′ = {(p, a, q) ∈ E | p ∈ F}.
Clearly, if A is deterministic (resp. co-deterministic, complete, co-complete), then so is
A′.

Conversely, let A = (Q,A,E, I, F ) be a transition Büchi automaton. Then A is
equivalent to the Büchi automaton A′ = (Q′, A, E ′, I ′, F ′) defined by Q′ = Q × {0, 1},
I ′ = I × {0, 1} and

F ′ = {(p, 1) ∈ Q′ | (p, a, q) ∈ F for some q ∈ Q and a ∈ A}

E ′ =
{

(

(p, 1), a, (q, ε)
)

| (p, a, q) ∈ F, ε ∈ {0, 1}
}

∪
{

(

(p, 0), a, (q, ε)
)

| (p, a, q) ∈ E \ F, ε ∈ {0, 1}
}

If A is co-deterministic, (resp. co-complete), then so is A′.

Proposition 8.2. Every Muller automaton is equivalent to a transition Muller automa-
ton. Conversely, every transition Muller automaton is equivalent to a Muller automaton.

Proof. Let A = (Q,A,E, i, T ) be a Muller automaton. We claim that A is equivalent
to the transition Muller automaton A′ = (Q,A,E, j, T ′), where j is a new state Q′ =
E × {j}, T ′ = T and

E ′ =
{

(

j, a, (i, a, q)
)

| (i, a, q) ∈ E
}

∪
{

(

q, a, q′), b, (q′, b, q′′)
)

| (q, a, q′) ∈ E and (q′, a, q′′) ∈ E
}

Indeed, to any infinite path of A starting at i

p = (i, a0, q1)(q1, a1, q2) · · ·

corresponds an infinite path of A′ with the same label starting at j

p′ =
(

j, a0, (i, a0, q1)
)(

(i, a0, q1), a1, (q1, a1, q2)
)

· · ·

and conversely, every infinite path of A′ starting at j arises this way. Furthermore,
the transition (q, a, q′) occurs in p if and only if p′ visits the state (q, a, q′). Therefore
InfT (p) = Inf(p′) and A and A′ are equivalent.

Version of November 5, 2021



46 CHAPTER I. AUTOMATA AND INFINITE WORDS

9 McNaughton’s theorem

The aim of this section is to prove the following result, due to R. McNaughton.

Theorem 9.1. Any recognizable subset of Aω can be recognized by a Rabin automaton.

The proof that we are going to present relies on a determinization algorithm due to
S. Safra. It computes a Rabin automaton equivalent to a given Büchi automaton. Using
Proposition 7.7 allows one to obtain the conclusion. The states of the Rabin automaton
are labeled trees.

We first give an informal description of the construction. Consider a finite Büchi
automaton

A = (Q,A,E, I, F )

and a successful path p labeled u ∈ Aω. There exist states i ∈ I and f ∈ F and a
factorization p = p0p1p2 · · · where p0 is a path from i to f labeled u0 and for every
n > 0, pn is a path from f to f labeled un.

i
u0−→ f

u1−→ f
u2−→ f · · ·

The usual determinization algorithm does not work with infinite words. One obtains
indeed a deterministic automaton B = (P(Q), A, · , {I},F), where F = {P | P ∩F 6= ∅}
with transitions given by

S.a = δ(S, a)

for S ⊂ Q and a ∈ A. Processing u in B gives a path p′

I
u0−→ S0

u1−→ S1
u2−→ S2 · · ·

Each Si contains f , but this is not enough to make sure that such a path is successful,
since nothing says that the state f appearing in Si comes from the state f appearing in
Si−1. Thus, one cannot define as a table T = {P ⊂ Q | P ∩ F 6= ∅}. For example, if A
is the automaton of Example 5.2, recognizing the set of infinite words containing a finite
number of b’s,

1

a, b

2 a
b

the path {1}
b

−→ {1, 2}
b

−→ {1, 2}
b

−→ {1, 2} · · · would be successful in B, although
bω is not recognized by A. Actually, the automaton obtained by this algorithm, once
made trim, contains only one state
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1, 2

a, b

Figure 9.1: The automaton obtained by determinization.

and thus recognizes Aω whatever be the acceptance mode.
The idea is to look for a path I

u0−→ S0
u1−→ S1

u2−→ S2 · · · such that the following
two conditions are satisfied:

(1) S0 ⊂ δ(I, u0), and, for every n > 0, Sn+1 ⊂ δ(Sn, un+1)

(2) for every n > 0 and every q ∈ Sn+1, there is a state p ∈ Sn and a path p
un+1

−→ q
in A passing through a final state.

To find such a path, we are going to build an automaton memorizing the occurrences of
final states. The states of this automaton are oriented trees whose nodes are labeled by
the sets Si mentioned above. We then apply the usual determinization algorithm, taking
care of adding the new final states that appear as the label of a new child of the vertex.

S

T U

a

· · · · · ·

S · a

T · a U · a S · a ∩ F

Figure 9.2: The action of letter a.

When all the states in the label S of a vertex have already visited a final state, that
is when they all appear in the children of the node, this node is marked and all its
descendants disappear.

We now proceed to the formal description of the construction. LetA = (Q,A,E, I, F )
be a finite Büchi automaton with

Q = {1, 2, · · · , n} and V = {1, 2, · · · , 2n}.

We build a deterministic Rabin automaton D as follows. Its states are labeled oriented
trees with marks on some nodes. Formally the states are tuples (T, f, e,M) where

(1) the set of nodes T is a subset of V ,

(2) f : T → T ∗ is a function mapping each node on the ordered sequence of its
children.

(3) e is a function from T into the set of nonempty subsets of Q, mapping each node
to its label.
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(4) M ⊂ T is the set of marked nodes.

These trees should also satisfy the following conditions:

(5) The root of the tree is 1.

(6) The marked nodes have to be leaves in the tree.

(7) For every node v, the union of the labels of its children is a strict subset of e(v).

(8) If v is not an ancestor of w and if w is not an ancestor of v, then e(v)∩ e(w) = ∅.

The set Tn of all trees defined in this way is finite. More precisely, the following result
holds:

Proposition 9.2. A tree in Tn has at most n nodes.

Proof. We associate with each node v ∈ T , the set

r(v) = e(v) \
⋃

w child of v

e(w)

By condition (7), r(v) is not empty and, if v1 and v2 are distinct, we have r(v1)∩r(v2) = ∅.
This follows from condition (7) if v1 is an ancestor of v2 and from condition (8) in the
other cases, since r(v) ⊂ e(v). The sets r(v) are thus pairwise distinct and we obtain

Card(T ) =
∑

v∈T

1 6
∑

v∈T

Card(r(v)) 6 Card(Q) = n

establishing the proposition.

In an oriented tree, the children of a given node are ordered. These local orders can
be extended to a partial order on the set of nodes as follows. Given two nodes m and n
which are not ancestor of one another, let p be their least common ancestor and let m′

(resp. n′) be the child of p which is an ancestor of m (resp. n). We say that m is on the
left of n if m′ < n′, as illustrated in Figure 9.3.

p

m′

m

n′

n

Figure 9.3: The node m is on the left of n.
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We return to the construction of the automaton D. The set of its states is thus Tn and
its transition function ∆ is defined as follows. Let R = (T, f, e,M) be a tree in Tn and
let a be a letter from A. The state ∆(R, a) is obtained by the following steps.

(1) We perform the transition by a on the labels of each node and we erase the marks.
For this, we build the tree (T, f, e1,M1), with M1 = ∅, and, for each v ∈ T ,

e1(v) = δ(e(v), a)

(2) We add to each node v a new child placed at the right of all children of v and
labeled e(v) ∩ F . This new node is marked and taken arbitrarily among the
available nodes (in practice, we take the smallest available node). Formally, we
choose an injection from T into V \ T associating with each node v ∈ T a node
denoted v. This is possible since T has at most n elements. Let T = {v | v ∈ T}
and consider the tree (T2, f2, e2,M2) where

T2 = T ∪ T , M2 = T

and, for every v ∈ T ,

f2(v) = f(v)v, f2(v) = ε

e2(v) = e1(v), e2(v) = e1(v) ∩ F.

(3) In the label of each node v, we suppress the states appearing in the label of a
node at the left of v. For this, we build e3 defined for each node v ∈ T2 by,

e3(v) = e2(v) \
⋃

w to the left of v

e2(w)

(4) We suppress the nodes with an empty label and we update the function f and
the marks accordingly. This operation is represented in Figure 9.4.

i

Figure 9.4: Suppressing a node with an empty label.

Formally, we change to the tree (T4, f4, e4,M4) where

T4 = {v ∈ T2 | e3(v) 6= ∅},

M4 = M2 ∩ T4, e4(v) is the restriction of e3(v) to T4 and, for each node v ∈ T4,
the word f4(v) is obtained by erasing the symbols of T2 \ T4.
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(5) We mark all nodes with a label equal to the union of the labels of their children,
i.e. such that

e(v) =
⋃

wchild of v

e(w).

and we suppress all their descendants.

We finally obtain a state (T5, f5, e5,M5) = ∆(R, a) which is an element of Tn.
The initial state of D is the tree reduced to an unmarked node labeled I if I ∩F = ∅,

to a marked node labeled I if I ⊂ F and to a node labeled I with a marked child labeled
I ∩ F in all other cases.

There remains to specify the set R defining the acceptance condition. Let

R = {(Lv, Uv) | v ∈ V }

where

Lv = {R ∈ Tn | v is not a node of R}

Uv = {R ∈ Tn | v is a marked node of R}.

Thus, a path in D is successful if there exists an element v ∈ V such that, ultimately,
the path uses states in which v is a node and infinitely often states in which v is marked.

Before proving that this Rabin automaton recognizes the same set of infinite words
as the automaton we started from, we are going to illustrate the construction by some
examples. In these examples, the states are represented by labeled oriented trees and

marked nodes are indicated by a double circle. An arrow of the form
(i)
−→ indicates that

step i of the algorithm has been performed.

Example 9.1. Consider the automaton represented in Figure 9.5, which recognizes the
set of words having a finite nonzero number of b’s.

1

a, b

2

a

b

Figure 9.5: A Büchi automaton.

We detail the steps of Safra’s algorithm. The initial state is the tree with a single node
of Figure 9.6.

1 1

Figure 9.6: The initial state.
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The action of the letters a and b on the initial state are represented in Figure 9.7 and
Figure 9.8, respectively.

1 1
(1)
−→ 1

Figure 9.7: The action of a on the initial state.

1 1
(1)
−→ 1, 2

(2)
−→

1, 21

22

Figure 9.8: The action of b on the initial state.

A new state has now been created. The actions of the letters a and b on this new state
are represented in Figure 9.9 and Figure 9.10, respectively. Thus another new state has
been created. The action of the letters a and b on this new state are easily derived from
the ones represented in Figures 9.9 and 9.10 by exchanging the names 2 and 3 in every
place. After renaming the states, we obtain the automaton of Figure 9.11.
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1, 21

22

(1)
−→

1, 21

22

(2)
−→

1, 21

22 23

24

(3)
−→

1, 21

22 3

24

(4)
−→

1, 21

22

24

(5)
−→

1, 21

22

Figure 9.9: The action of a on the new state.

1, 21

22

(1)
−→

1, 21

2

(2)
−→

1, 21

2 23

(4)
−→

1, 21

23

Figure 9.10: The action of b on the new state.

1

a

2

a

3

a

b

b

b

Figure 9.11: The Rabin automaton obtained by Safra’s algorithm.
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We have L1 = ∅, L2 = {1, 3}, L3 = {1, 2}, U1 = ∅, U2 = {2}, U3 = {3}. Thus the
accepting pairs are ({1, 3}, {2}) and ({1, 2}, {3}). Note that, by Formula (7.4), these
Rabin pairs are equivalent to the table T =

{

{2}, {3}
}

.

Example 9.2. The Büchi automaton represented in Figure 9.12 recognizes the set of
words with a finite number of b.

1

a, b

2 a
b

Figure 9.12: A Büchi automaton for the set A∗aω.

The deterministic automaton obtained by Safra’s algorithm is represented in Figure 9.13.

121

22

121

23

b

b

a a

Figure 9.13: The deterministic automaton obtained by Safra’s algorithm.

1 2a a

b

b

Figure 9.14: The same automaton after renaming the states.

We recognize the automaton computing the parity of the number of b. The acceptance

conditions are, in Rabin’s form, the pairs
{

(

{1}, {2}
)

,
(

{2}, {1}
)

}

, which gives the table
{

{1}, {2}
}

.

Example 9.3. Consider the set X = ({b, c}∗a∪ b)ω. A Büchi automaton recognizing X
is given in Figure 9.15:
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1a, b 2 b, c

b, c

a

Figure 9.15: A Büchi automaton for ({b, c}∗a ∪ b)ω.

The application of Safra’s algorithm gives the deterministic automaton of Figure 9.16,
in which the set of states is {I, II, III, IV, V }:

1

I 12

III

1

12

1, 2
V

2

II

2

IV

b

a

b

b

ca

c

a

c

a

b, c

a

b, c

Figure 9.16: A deterministic Muller automaton for ({b, c}∗a ∪ b)ω.

The Rabin pairs are (∅, {I, IV, V }) and ({I, II, IV, V }, {III}). Therefore the table
of the corresponding Muller automaton is

T = {T ⊂ Q | T contains either I, IV or V } ∪ {{III}}

This table is full. Indeed, if a set T contains I, IV or V , any superset of T has the same
property. If T = {III}, any superset of T contains I, IV or V , or is equal to the set
{II, III}. But this latter set is not admissible.

One can in fact obtain a smaller automaton by merging the states grouped inside
each dashed rectangle. After renaming the states, the resulting automaton is represented
in Figure 9.17:
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1

a

2

b

3

b, c

b

a

ca

c

Figure 9.17: Applying Safra’s construction.

The table is T = {{1}, {2}, {1, 2}, {1, 3}, {1, 2, 3}}, which is the complement of the table

{{3}}. Since the table is full, X is deterministic. We have actuallyX =
−−−−−−−−−−−→
{a, b, c}∗ab∗ ∪ b+.

We are now going to prove that the deterministic automaton D is equivalent to
the automaton A we started from. We shall need a lemma which makes more precise
the behavior of D. Let u = a1 · · · an be a finite word and let R0 be a state of D
containing a marked node v labeled S0. We suppose that, for 1 6 i 6 n, the states
Ri = ∆(R0, a1 · · · ai) also contain the node v, with a label Si, but that this node is
marked only for i = n. The hypotheses are represented in Figure 9.18.

R0

S0

v a1

R1

S1

v a2
· · ·

Rn−1

Sn−1

v

· · ·

an

Rn

Sn

v

Figure 9.18: The states Ri.

Lemma 9.3. For 0 6 i 6 n − 1, Si+1 is contained in δ(Si, ai+1). Moreover, for every
q ∈ Sn, there is a path in A starting in S0, ending at q, labeled u and visiting at least
one final state after its origin.
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Proof. We follow the construction step by step. We first compute at step 1 the set
Si+1 = δ(Si, ai+1), then we suppress some states of Si+1 during step 3. The first part of
the lemma follows.

Let us show by induction on i that, for 0 6 i 6 n−1 and for every state qi appearing
in the label of a descendant of v in Ri, there exists a path in A starting in S0, ending
with qi, labeled a1 · · · ai and passing at least once more by a final state. The result
holds for i = 0, since v, which is marked has to be a leaf of R0 and has no descendants.
On the other hand, if qi+1 appears in the label of a descendant of v in Ri+1, either
qi+1 ∈ δ(qi, ai+1) for some qi appearing in the label of a strict descendant of v in Ri, and
we conclude by induction, or qi+1 appears in a label created at step 2 and thus qi+1 ∈ F ,
which also allows one to conclude.

Finally, since v is marked in Rn, it received its mark at step 5. Thus if q ∈ Sn, either
q ∈ δ(Sn−1, an) ∩ F , or q belongs to the union of the δ(qn−1, an) where qn−1 appears in
the label of a descendant of v in Rn−1. In the first case, there exists a path labeled u,
starting in S0 and ending with q, which is a final state. In the second case, we use the
conclusion of the above induction: there exists a path in A starting in S0, ending with
qn−1, labeled a1 · · · an−1 and passing at least once more by a final state. The lemma
follows immediately.

Consider now a successful path c in D and let u ∈ Aω be the label of c. There exists a
v ∈ V such that, ultimately, the path visits only states in which v is a node and infinitely
often states in which v is a marked node. Setting S0 = I, there exists by Lemma 9.3 a
factorization u = u0u1u2 · · · and subsets Sn of Q, such that

(a) For every n > 0, Sn+1 ⊂ δ(Sn, un)

(b) For every n > 0 and for every q ∈ Sn+1, there exists a path in A starting in Sn,
ending with q, labeled un and visiting at least one final state after its origin.

In order to apply König’s lemma, we build a tree (N, r, p) as follows. The set of nodes
is

N = {r} ∪ {(q, n) | q ∈ Sn, n ∈ N}

The parent of each node of the form (q, 0) is r and, for n > 0, the parent of each node
of the form (q, n + 1) is chosen among the states (q′, n) such that there is a path in A
starting in q′, ending in q, labeled un and visiting at least one final state after its origin.
Conditions (a) and (b) guarantee the possibility of such a construction. Since the tree
thus obtained is infinite and since each child has only a finite number of children, it
contains an infinite path by König’s lemma. This implies the existence of an infinite
path in A, labeled u, starting in I and passing infinitely often through a final state.
Thus u is accepted by A.

Conversely, let us consider a successful path c of the automaton A

c : q0
a0−→ q1

a1−→ q2 · · ·
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There is a unique initial path in D with the same label u

d : I = R0
a0−→ R1

a1−→ R2 · · ·

Each of the states qi belongs to the label of the root of the trees Ri. This root is never
suppressed and it is thus a fixed element v0 of V . If v0 is marked infinitely often in the
Ri’s, the path is successful in D and the word u is accepted. Otherwise, there is a largest
integer n such that v0 is marked in Rn. Let n0 be this integer and let us consider the
smallest integer m > n0 such that qm is an infinitely repeated final state. Since qm is
final, it appears in a child of the root, and from some time n1 > m on, each qn with
n > n1 appears in a fixed child v1 of the root of Rn. Indeed, if qn occurs in the label of
given node v, then qn+1 occurs again in the label of v at the next step, unless it occurs
on the left of v (step 3). But such a left shift can occur only a finite number of times. If
v1 is marked infinitely often, the path is successful in D. Otherwise, we repeat the same
process, replacing v0 by v1. Since the tree has a finite height, we always find some node
which is marked infinitely often.

We shall see later other proofs of McNaughton’s theorem which cast a different light
upon it (see Section II.9). Among its numerous consequences, we begin with the most
important one, known as Büchi’s theorem.

Theorem 9.4. The class of recognizable subsets of Aω is closed under complement.

Proof. By McNaughton’s theorem, any recognizable set can be recognized by a Muller
automaton. This automaton can be supposed to be complete by Proposition 7.3. Con-
versely, by Theorem 7.1 and Theorem 5.4 any set recognized by a Muller automaton is
recognizable. The result follows from the fact that, by Proposition 7.6, the class of sets
recognized by Muller automata is closed under all boolean operations.

Büchi’s theorem can also be proved directly using congruences (see Chapter II). But
the size of the automaton for the complement given by Safra’s algorithm is asymptotically
optimal, as will be shown in Section 10.5 using the following result.

Theorem 9.5. For each n > 0, there exists a set Ln of infinite words recognized by
a Büchi automaton with n + 2 states, such that any Büchi automaton recognizing the
complement of Ln has at least n! states.

Proof. Let An = {0, 1, . . . , n} and let An be the automaton on the alphabet An repre-
sented in Figure 9.19 and let Ln = Lω(An).
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0 1 2 n

n+ 1

0, 1, . . . , n 0, 1, . . . , n

· · ·

0, 1, . . . , n

0, 1, . . . , n

0

1

2

n

Figure 9.19: A Büchi automaton recognizing Ln.

One could of course describe precisely Ln, but two weaker lemmas will be sufficient for
our purpose. We start with a sufficient condition for a word to be in Ln.

Lemma 9.6. Let {i1, i2, . . . , ik} be a subset of {1, 2, . . . , n}. If an infinite word u contains
infinitely many occurrences of each of the factors i1i2, i2i3, . . . , iki1, and if in An, there
is a finite path from 1 to i1 labeled by a prefix of u, then u ∈ Ln.

Proof. It suffices to describe a successful path of label u in An. By hypothesis, there
is a path from 1 to i1 labeled by a prefix of u. We then stay in state i1 until the next

occurrence of i1i2, that is used to produce the transitions i1
i1−→ 0

i2−→ i2. Then we
stay in state i2 until the next occurrence of i2i3, that is used to produce the transitions

i2
i2−→ 0

i3−→ i3, etc. This process, repeated infinitely often on the cycle (i1i2, i2i3,
. . . , iki1), produces the desired successful path.

With each permutation σ of {1, 2, . . . , n}, associate the infinite word uσ = (σ(1) · · · σ(n)0)ω.

Lemma 9.7. For any permutation σ of {1, . . . , n}, the infinite word uσ is not in Ln.

Proof. Clearly, Ln ⊂ Kω, where K =
⋃

16i6n iA
∗
ni. Therefore, if uσ ∈ Ln, u = u1u2 . . .,

where each ui is in K. It follows that σ(1) is the first and last letter of u1, σ(2) is the
first and last letter of u2, and σ(n) is the first and last letter of un. Consequently, the
first letter of un+1 is 0, a contradiction, since un+1 ∈ K.

Let now B be a Büchi automaton accepting the complement of Ln. By Lemma 9.7,
each word uσ is accepted by B. Therefore, there is in B a successful path pσ of label uσ.
We claim that if σ 6= σ′, then Inf(pσ)∩ Inf(pσ′) = ∅. Assume by contradiction that some
state q belongs to both Inf(pσ) and Inf(pσ′). Using the two paths, we build a new path
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p in B which, at the beginning, follows a prefix of pσ of length at least n(n+ 1) until it
reaches q. Then p enters a loop which is repeated infinitely often. This loop consists of
two parts that we also take of length at least n+ 1: in the first part, p follows a portion
of pσ to go from q to q after visiting at least once all states of Inf(pσ) and in the second
part, p follows a portion of pσ′ to go from q to q after visiting at least once all states of
Inf(pσ′) (see Figure 9.20). Then Inf(p) contains Inf(pσ) (and Inf(pσ′)) and in particular
contains a final state, since pσ is successful. It follows that p is successful and thus its
label u is not in Ln.

b q q

Inf(pσ)

Inf(pσ′)

Figure 9.20: The path p.

We shall arrive to a contradiction by showing that u satisfies the conditions of Lemma
9.6, and therefore belongs to Ln.

We first verify the existence of a cycle of infinitely repeated factors of length two.
Let k be the smallest integer such that σ(k) 6= σ′(k). Then σ′(k) = σ(l) for some l > k
and σ(k) = σ′(m) for some m > k. Since u is a concatenation of factors of length
at least n + 1 of uσ and uσ′ , each of the factors σ(k)σ(k + 1), σ(k + 1)σ(k + 2), . . . ,
σ(ℓ−1)σ(ℓ)(= σ(ℓ−1)σ′(k)), σ′(k)σ′(k+1), . . . , σ′(m−1)σ′(m)(= σ′(m−1)σ(k)) occur
infinitely often in u.

It suffices now to verify that the state σ(k) is reachable in An by a path labelled by
a prefix of u. By construction, the word (σ(1) · · · σ(n)0)n is a prefix of u. Therefore, the
path

0
σ(1)
−→ σ(1)

σ(2)···σ(n)0
−→ σ(1)

σ(1)
−→ 0

σ(2)
−→ σ(2) · · ·

σ(k − 1)
σ(k−1)
−→ 0

σ(k)
−→ σ(k)

is suitable for our purpose.
This proves the claim, and since there are n! permutations on {1, . . . , n}, there are

at least n! disjoint sets of the form Inf(pσ), which clearly implies that B has at least n!
states.
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As announced above, recognizable sets are determined by the ultimately periodic
words they contain.

Corollary 9.8. Let X and Y be two recognizable subsets of Aω. Let U ⊂ Aω be the set
of ultimately periodic words. If X ∩ U ⊂ Y , then X ⊂ Y . In particular X = Y if and
only if X and Y contain the same ultimately periodic words, i.e. if X ∩ U = Y ∩ U .

Proof. In fact, if X is not contained in Y , the set X \ Y is, by Büchi’s theorem, a
nonempty recognizable subset of Aω. By Lemma 5.1, there exists an ultimately periodic
word which is in X but not in Y .

We now turn to another consequence of McNaughton’s theorem, which solves a subtle
point raised in Section 6.

Theorem 9.9. A subset of Aω is recognizable by a finite deterministic Büchi automaton
if and only if it is both deterministic and recognizable.

Proof. Any set recognized by a finite deterministic Büchi automaton satisfies certainly
these two conditions. Conversely, let X be a subset of Aω satisfying the two condi-
tions. By McNaughton’s theorem, the set X is recognized by a Muller automaton
A = (Q,A,E, i, T ). But since X is deterministic, the table T is full by Proposition
7.10. Finally, Proposition 7.9 shows that X can be recognized by a finite deterministic
Büchi automaton.

Corollary 9.10. It is decidable whether a given recognizable subset of Aω is deterministic
or not.

Proof. Let X be a recognizable subset of Aω. We may build, using the previously
described algorithms, a Muller automaton recognizing X. Proposition 7.10 allows one
to conclude.

Example 9.4. The set X = ({b, c}∗a ∪ b)ω of Example 9.3 is deterministic. On the
contrary, the set Y = (a{b, c}∗ ∪ b)ω is not deterministic. In fact Y is recognized by the
Büchi automaton represented in Figure 9.21.

1a, b 2 b, c

a

b, c

Figure 9.21: A co-deterministic but non deterministic automaton.

The deterministic automaton obtained by Safra’s algorithm is represented in Figure 9.22
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11
121

12

121

13

1, 21

a

c

c

a

a

a, b, c

b

b

b

Figure 9.22: The resulting automaton.

One can check directly that Y is not deterministic, by imitating the construction used

in Example 6.2. Let us indeed suppose that Y =
−→
L . Since acbω ∈ Y , there is an integer

n1 such that acbn1 ∈ L. Again, since acbn1cbω ∈ Y , there is an integer n2 such that
acbn1cbn2 ∈ L, etc. and the infinite word u = acbn1cbn2cbn3 · · · has an infinite number
of prefixes in L. This implies that u ∈ Y , which is impossible since u contains infinitely
many c’s but a finite number of a’s.

10 Computational complexity aspects

In this section, we address the problem of the computational complexity of the various
transformations introduced in this chapter. The results are summarized in Figure 10.1.
The nodes of this graph illustrate various representations of sets of infinite words, such
as ω-rational expression, Büchi automaton, etc. An arrow between two nodes indicates
an algorithm to convert one representation into another one. The label of the arrow
indicates the complexity of the corresponding algorithm. The label P stands for a
polynomial time algorithm and Exp for an exponential one.

The size of the various objects is defined according to the following conventions. As
a general rule, we consider the cardinality of the alphabet as being a constant.

The size of an ω-rational expression is the number of symbols that it involves, with-
out the parenthesis but taking the dot into account for the product. Thus size(ε) =
size({a}) = 1 and size(X+Y ) = size(XY ) = size(X)+size(Y )+1, size(X∗) = size(X)+1.

The size of a Büchi automaton A = (Q,E, I, T ) is max(Card(Q),Card(E)). It is
thus at most equal to Card(Q)2 × Card(A).
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The size of a Muller automaton A = (Q,E, i, T ) is

max(Card(Q),Card(E),Card(T ))

It is thus bounded by max(Card(Q)×Card(A), 2Card(Q)). Note that it may be exponential
in Card(Q).

ω-rational

expression

Muller

automaton

Büchi

automaton

Rabin

automaton

Exp

Exp

P

Exp

P

Exp
Exp

Figure 10.1: Summary of transformations.

We describe separately the transformation associated with each arrow in Figure 10.1.
The algorithms associated with these transformations have the same complexity as the
size of the resulting objects.

10.1 From ω-rational expressions to Büchi automata and back.

The following result shows that ω-rational expressions and Büchi automata are objects
of essentially equivalent computational complexity.

Proposition 10.1. For any ω-rational expression of size n describing a set X ⊂ Aω,
there is a Büchi automaton of size O(n) recognizing X.

Proof. Given an ω-rational expression of size s, the size of a Büchi automaton built by
the method described in Section 5 is bounded by 2s.

Conversely, given a Büchi automaton of size s, one can compute a corresponding
ω-rational expression of size bounded by some linear function of s.
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10.2 From Büchi automata to Rabin automata.

The following result implies that, given a Büchi automaton of size n, there is an equivalent
Rabin automaton of size 2O(n logn).

Proposition 10.2. For any Büchi automaton of size n, there exists an equivalent Rabin
automaton with 2O(n logn) states and n pairs.

Given a Büchi automaton with n states, the algorithm of Section 9 builds a Rabin
automaton on a set of states Tn with O(n) pairs. Thus the result follows from the
following proposition.

Proposition 10.3. The set Tn satisfies ln(Card(Tn)) = O(n lnn).

Proof. Let, as in the proof of Proposition 9.2, r(v) be the set of states which appear in
the label of v but in none of its children. The relation s = r−1, is a function from Q onto
T which completely determines e, since we have

e(v) =
⋃

w ancestor of v

s−1(w).

An element of Tn is described by the tuple (T, f, s,M) where (T, 1, f) is an oriented tree
with at most n nodes, s is a partial function from Q onto T and M is a subset of T . By
Proposition 2.1, the number of planar trees with k nodes is

Ck =
(2k − 2)!

k!(k − 1)!
.

To obtain the number of oriented trees with k nodes chosen in V , we multiply by the
number of injective functions from a k element set to V , which is

Ik =
(2n)!

(2n− k)!
.

We can then bound the number Sk of partial surjective functions from Q to a k-element
set by the total number of partial functions from Q to a k-element set which is (k+1)n.
Finally, the number of subsets of a k-element set is 2k. We obtain

Card(Tn) 6
∑

16k6n

CkIkSk2
k
6 nCnInSn2

n

6 n
(2n− 2)!

n!(n− 1)!

(2n)!

n!
(n+ 1)n2n

6
(2n− 2)!

(n− 1)!2
(2n)!

n!2
(n− 1)!(n+ 1)n+12n
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and, observing that
(2n)!

(n)!2
6 4n, we conclude that

ln(Card(Tn)) 6 (2n− 1) ln 4 + ln((n− 1)!) + (n+ 1) ln(n+ 1) + n ln 2

whence the result since ln(n!) = O(n lnn).

10.3 From Rabin automata to Muller automata.

The following result shows that the transformation from a Rabin automaton into a Muller
automaton involves an exponential blow-up in the size of the automaton.

Proposition 10.4. For any Rabin automaton with n states, there is an equivalent Muller
automaton with n states and O(2n) accepting sets.

Proof. A Rabin automaton with n states and m pairs can be transformed into a Muller
automaton with n states and 2n accepting sets of states, as shown in the proof of Propo-
sition 7.7.

The method indicated in Exercise 17 shows that, conversely, any Muller automaton
with n states and m accepting sets can be converted into an equivalent Rabin automaton
with 2O(n) states and m pairs. Thus, the size of the Rabin automaton is exponential in
the size of the original Muller automaton.

10.4 From Rabin automata to Büchi automata.

The following result shows that there is a polynomial algorithm transforming a Rabin
automaton into an equivalent Büchi automaton.

Proposition 10.5. For any Rabin automaton A with n states and m accepting pairs,
there is a Büchi automaton B of size O(nm) such that Lω(A) = Lω(B).

Proof. Let A = (Q, i,R) be a Rabin automaton with R = {(Li, Ui) | 1 6 i 6 m}. The
set of states of the automaton B is the union of Q and of the set

{(q, i) ∈ Q× {1, 2, . . . ,m} | q 6∈ Li}

The initial state is the initial state of A. Each transition p
a

−→ q of A gives rise to the
additional transitions p

a
−→ (q, i) for each i such that q 6∈ Li and (p, i)

a
−→ (q, i) for

each i such that p 6∈ Li and q 6∈ Li. The terminal states are the (p, i)’s such that p ∈ Ui.
Thus a successful path in B begins with a path of A and chooses nondeterministically
to avoid some Li, while checking that it meets Ui infinitely often. It is clear that A and
B are equivalent and that B has at most n+ nm = O(nm) states.
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10.5 From Streett automata to Büchi automata.

We describe a construction which will be used below to compute a Büchi automaton
recognizing the complement.

Proposition 10.6. Any Streett automaton with n states and m accepting pairs is equiv-
alent to a Büchi automaton of size n2O(m).

Proof. Let A = (Q, i,P) be a Streett automaton with a set P = {(Li, Ui) | 1 6 i 6 m}
of accepting pairs. We construct an equivalent Büchi automaton B = (U, j, T ) with U as
set of states, j as initial state and T as set of terminal states as follows. The states have
the form (q, S1, S2) where q ∈ Q is a state of A, and S1, S2 are finite sets of integers either
reduced to {0} or equal to a subset of {1, 2, . . . ,m}. The initial state is j = (i, 0, 0).
The transitions are of two kinds. There is a first set of initial transitions formed of all
transitions (p, 0, 0)

a
→ (q, 0, 0) or (q, ∅, ∅) where p

a
→ q is a transition of A. The second

set consists of transitions of the form (p, S1, S2)
a
→ (q, S ′

1, S
′
2) where p

a
→ q is a transition

of A and

S ′

1 =

{

S1 ∪ {i} if q ∈ Ui

S1 otherwise
and S ′

2 =











∅ if S1 ⊂ S2

S1 ∪ {i} if q ∈ Li and S1 6⊂ S2

S1 otherwise

Thus the automaton B first behaves as A during some initial period. In the rest of the
time, it uses the sets S1, S2 to remember which of the sets Li, Ui were visited. The set
T of terminal states is formed of the states (q, S1, S2) such that S2 = ∅. A path β of the
Büchi automaton B is of the form

β : (i, 0, 0)
a0→ . . . (pn, Sn, Tn)

an→ (pn+1, Sn+1, Tn+1)
an+1

→ . . .

where Sn is ultimately equal to some subset S of {1, 2, . . . ,m} (unless, of course, Sn = {0}
for all n). It corresponds to a path

γ : i
a0→ . . . pn

an→ pn+1
an+1

→ . . .

of A. The path β is successful if and only if Tn = ∅ for infinitely many n. This happens
if and only if S ⊂ Tn for infinitely many n. This last condition is equivalent to pn ∈ Li

for infinitely many n and for each i ∈ S. This is again equivalent to the fact that for each
i ∈ {1, 2, . . . ,m}, either i 6∈ S, i.e. Inf(γ) ∩ Ui = ∅, or i ∈ S and Inf(γ) ∩ Li 6= ∅. This
shows that β is successful if and only if γ is successful. Thus A and B are equivalent.

In the case where m = O(log n), we obtain as a corollary.

Corollary 10.7. Any Streett automaton with n states and O(log n) accepting pairs is
equivalent to a Büchi automaton of size O(n).
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Finally, we obtain the following result.

Theorem 10.8. For any set X ⊂ Aω recognized by an n-state Büchi automaton, there
is an automaton of size 2O(n logn) recognizing Aω \X.

Proof. Indeed, let A be a Büchi automaton of size n recognizing X. By Proposition
10.2, we can first build a Rabin automaton B with 2O(n logn) states and n accepting pairs
equivalent to A. Then, considered as a Streett automaton, A recognizes Aω \ X. By
Corollary 10.7, there is an equivalent Büchi automaton of size 2O(n logn).

Let us formulate two comments about Theorem 10.8. First of all, the complexity
of computing the complement of an ω-rational set is not considerably higher than for a
rational set of finite words. Indeed, we obtain 2O(n logn) instead of 2n. Second, this bound
is essentially optimal. Indeed, Theorem 9.5 shows that the size of a Büchi automaton
for the complement can be n! = 2Θ(n logn).

10.6 Complexity of algorithms on automata.

We consider now the algorithmic complexity of some algorithms on ω-rational sets. For a
recognizable set X ⊂ Aω, let ζ(X) be the minimal size of a Büchi automaton recognizing
X. The following result gives an evaluation of the complexity of some of the basic
operations on ω-rational sets.

Proposition 10.9. Let X1 and X2 be recognizable subsets of Aω and let m1 = ζ(X1),
m2 = ζ(X2). Then

(1) ζ(X1 ∪X2) = O(m1 +m2).

(2) ζ(X1 ∩X2) = O(m1m2).

(3) ζ(Aω \X1) = m
O(m1)
1 .

Proof. The construction of an automaton recognizing the union of two recognizable sets
has been described in the proof of Kleene’s theorem (Theorem 5.4). The number m of
edges of the new automaton satisfies m 6 (m1 + 2) + (m2 + 2).

The construction of a Büchi automaton recognizing X1 ∩ X2 is given in Exercise 7.
The number m of edges satisfies m 6 4m1m2.

The last statement is Theorem 10.8.

In the following statement, we put together the consequences of several algorithms
seen before in terms of decidability. The complexity of these algorithms will be considered
afterwards.

Proposition 10.10. One may effectively decide

(1) the emptiness of a recognizable subset of Aω,
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(2) the inclusion of two recognizable subsets of Aω,

(3) the equality of two recognizable subsets of Aω.

Proof. (1) Let A = (Q,A,E, I, F ) be a finite Büchi automaton. By Proposition 5.2, we
may suppose that A is trim. In this case, Lω(A) is empty if and only if Q is empty.

(2) The inclusion X ⊂ Y is equivalent to X \ Y = ∅. We may thus apply (1) and
Proposition 10.9.

(3) The equality of two subsets X and Y of Aω is equivalent to the double inclusion
X ⊂ Y and Y ⊂ X and is thus decidable.

We now consider the algorithmic complexity of the basic problems on Büchi au-
tomata. We will use here some notation and results from the theory of algorithms (see
the Notes Section for references). The nonemptiness problem for a Büchi automaton is
to decide if Lω(A) 6= ∅. A problem is in the class NL if it can be solved by a nondeter-
ministic algorithm operating with a logarithmic amount of space.

Proposition 10.11. The nonemptiness problem for Büchi automata is decidable in lin-
ear time. It is NL-complete.

Proof. The set Lω(A) is nonempty if and only if there is a cycle in the underlying graph
of the automaton which is accessible from the initial state. A depth-first search in this
graph can verify this in linear time.

To show that the nonemptiness problem is NL-complete, we first have to show that
it is in the class NL and then that it is NL-hard, i.e. that any problem in NL can be
reduced to it. We shall prove the first part only. See the Notes Section for a reference
to a proof of the second part.

The nondeterministic algorithm to verify nonemptiness consists in choosing nonde-
terministically at each step a state of the automaton A = (Q, i, T ) of size n. If, from
state p, one chooses q, we check that there is an edge connecting p to q. If this is the
case, we can forget p and continue. Otherwise, we choose another state q′. When we
reach a terminal state t ∈ T , we remember it. We then continue until we find t again.
We thus verify nondeterministically the existence of a successful path in A. The space
needed consists in memorizing two states (the current state on the path and the terminal
state when reached). Since log n bits are enough to represent an element of Q, the proof
is complete.

The nonuniversality problem for a Büchi automaton A is to decide whether Lω(A) 6=
Aω. A problem is in the class PSPACE if it can be solved by an algorithm using a
polynomial amount of space.

Proposition 10.12. The nonuniversality problem for automata is decidable in exponen-
tial time. It is PSPACE-complete.
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Proof. The nonuniversality problem for A is the same as the nonemptiness problem for
the complement of Lω(A). Since the size of an automaton Ā for the complement is expo-
nential, the first assertion follows easily. The second assertion requires more attention.
First, by Proposition 10.11, we can verify the nonemptiness of Ā with a nondeterminis-
tic polynomial space algorithm. Second, by a result known as Savitch theorem (see the
Notes Section for references), any problem solvable by a nondeterministic polynomial
space algorithm is in PSPACE. We again leave the proof of the PSPACE-hardness to
be found in the references of the Notes Section.

11 Exercises

11.1 Words and trees.

Exercise 1. Let A be a finite alphabet. Show that every word x ∈ Aω can be factorized
as x = yz, where y ∈ A∗, z ∈ Aω, and each letter of z occurs infinitely often in x.

11.2 Rational sets.

Exercise 2. Let X, X1 and X2 be subsets of A∞. Verify the following equalities.

(1) Pref(Pref(X)) = Pref(X),

(2) Pref(X1 ∪X2) = Pref(X1) ∪ Pref(X2),

(3) Pref(X1X2) = Pref(X1) ∪ (X1 ∩ A∗)Pref(X2),

(4) Pref(Xω) = Pref(X+) = (X ∩ A+)∗Pref(X).

Conclude that if X is an ω-rational subset of A∞, Pref(X) is a rational subset of A∗.

Exercise 3. Verify the following identities, where K and L are subsets of A∗:

(K + L)∗ = (K∗L)∗K∗

(KL)∗ = 1 +K(LK)∗L

Exercise 4. Prove that any subset of A+ can be recognized by a (possibly infinite)
deterministic automaton.

11.3 Büchi automata.

Exercise 5. Show that any subset of Aω can be recognized by a (possibly infinite) Büchi
automaton in which all the states are final.

Exercise 6. Prove that the following conditions are equivalent for a subset X of Aω.

(1) X is stable by shift, i.e. σ(X) ⊂ X.
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(2) If X is recognized by a Büchi automaton A = (Q,A,E, I, F ), X is also recognized
by the automaton (Q,A,E, P, F ) where P is the set of accessible states of A.

(3) X is recognized by a Büchi automaton in which all the states are initial.

Exercise 7. Let A1 = (Q1, A, E1, i1, F1) and A2 = (Q2, A, E2, i2, F2) be two Büchi au-
tomata with a single initial state. The aim of this problem is to build a Büchi automaton
recognizing Lω(A1) ∩ Lω(A2). Let

Q = Q1 ×Q2 × {0, 1}

and consider the automaton A = (Q,A,E, (i1, i2, 1), F ) where

E =
{

(

(p1, p2, s), a, (q1, q2, t)
)

| (p1, a, q1) ∈ E1, (p2, a, q2) ∈ E2 and

t = 0 if and only if (s = 1, p2 ∈ F2 and q1 /∈ F1) or (s = 0 and q1 /∈ F1

}

and

F = Q1 × F2 × {1}.

Show that Lω(A) = Lω(A1) ∩ Lω(A2).

11.4 Deterministic Büchi automata.

Exercise 8. Let A be a deterministic Büchi automaton. The set of infinite words
recognized in the weak sense by A is the set, denoted Lω

w(A) of all words which are the
label of an infinite path starting in the initial state and passing at least once by a final
state.

Show that a set of infinite words can be recognized in the weak sense by a complete
deterministic Büchi automaton if and only if it is of the form XAω for some X ⊂ A∗.

Exercise 9. Show that if a subset X of A+ is a finite union of prefix-free sets (and thus

in particular either if X is finite or if X is prefix), then
−→
X = ∅.

Exercise 10. Let X be a rational subset of A+. Show that
−→
X = ∅ if and only if X is a

finite union of prefix-free sets.
Show that the above result is not always true if X is not rational (consider the set

X = {anbm | 0 < m 6 n}).

Exercise 11. LetX be a subset of Aω. Show that the following conditions are equivalent:

(1) the set X can be recognized by a deterministic Büchi automaton in which all
states are final,
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(2) there exists a subset P of A∗ such that X is the set of infinite words having all
its prefixes in P ,

(3) there exists a prefix-closed subset P of A∗ such that X is the set of infinite words
having all its prefixes in P ,

(4) there exists a subset R of A∗ such that X is the set of infinite words having no
prefix in R,

(5) there exists a prefix-closed subset P of A∗ such that X =
−→
P ,

(6) the equality X =
−−−−−→
Pref(X) holds.

These are the closed sets of the natural topology on Aω (see chapter III).

Exercise 12. A subset of Aω is called open if its complement satisfies the equivalent
conditions of Exercise 11. The link with topology will, here again, be covered in Chapter
III.

Show that any recognizable open subset of Aω is deterministic.
It is also possible to give a characterization of open subsets in terms of automata (see

Exercise 8).

Exercise 13. Let X be a subset of Aω. Prove that the following conditions are equiva-
lent.

(1) X is closed and shift invariant,

(2) X is recognized by a Büchi automaton with deterministic transitions with all its
states initial and final.

(3) There exists a subset P of A∗ such that X is the set of infinite words having all
its factors in P .

11.5 Muller automata.

Exercise 14. Let A1 = (Q1, A, E1, i1, T1) and A2 = (Q2, A, E2, i2, T2) be two Muller
automata. Build a Muller automaton recognizing Lω(A1) ∪ Lω(A2).

Exercise 15. A non deterministic Muller automaton is a tuple

A = (Q,A,E, I, T )

where (Q,A,E) is a finite automaton, I is a subset of Q whose elements are the initial
states and T is a family of subsets of Q, called the table of the automaton.

An infinite path p in A is initial if it starts in the initial state and final if Inf(p) ∈ T .
It is successful if it is both initial and final. The set of infinite words recognized by A is
the set of labels of infinite successful paths in A.

Show that any subset of Aω recognized by a non deterministic Muller automaton can
be also recognized by a deterministic one. (Hint: the proof of Theorem 7.1 does not use
the hypothesis that the automata are deterministic).
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Exercise 16. Let A = (Q,A,E, i, F ) and A′ = (Q′, A, E ′, i′, F ′) be two determinis-
tic Büchi automata. Our aim is to build directly a Rabin B automaton recognizing
L∗(A)Lω(A′). The idea is to use the automaton A starting a new computation of A′

each time A visits a final state. To make the total size finite, we keep only the earliest
copy of A′ when two of them are in the same state. As an acceptance condition, we
require a final state of a fixed copy of A′ be visited infinitely often.

For this, we first define the set of simple words on Q′ as the elements of Q′∗ in which
every state q ∈ Q′ appears at most once. For each v ∈ Q′∗, we denote by [v] the simple
word obtained by keeping only the leftmost occurrence of each state.

For a simple word v = q1q2 · · · qn ∈ Q′∗ and a letter a ∈ A, we define the action of a
on v by

v · a = (q1 · a)(q2 · a) · · · (qn · a)

The word v · a may perhaps not be simple. Let k be the largest integer at most equal to
n such that the states q1 · a, . . . , qk · a are distinct. The integer k will be denoted ℓv,a.
If v is the empty word, we let ℓv,a = 0.

We define now a Rabin automaton B by choosing the state set as being the set T of
triples

(q, v, ℓ)

with q ∈ Q, v a simple word on Q′ and ℓ an integer such that 0 6 ℓ 6 |v|. The states are
thus formed of a state of A and a sequence of distinct states of A′ marked at a position
ℓ which is used to indicate the position of the last deleted state. The initial state is
(i, 1, 0). The transitions are defined by

(q, v, ℓ) =

{

(q · a, [v · a], ℓv,a) if q · a /∈ F ,

(q · a, [(v · a)i′], ℓv,a) if q · a ∈ F .

The acceptance is defined by the family R =
{

(Lk, Uk) | 1 6 k 6 Card(Q)
}

, with

Lk = {(q, v, ℓ) ∈ T | ℓ > 0 and the k-th symbol of v is in F ′},

Uk = {(q, v, ℓ) ∈ T | k 6 ℓ}.

Show that the Rabin automaton B built in this way recognizes L∗(A)Lω(A′).

11.6 McNaughton’s theorem.

Exercise 17. Let A = (Q,E, i, T ) be a Muller automaton, with

T = {T0, . . . , Tk−1}

Let
A′ = (Q′, E ′, i′,R′)
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be the Rabin automaton defined by Q′ = P(T0) × . . . × P(Tk−1) × Q, i′ = (∅, . . . , ∅, i)
with transitions defined by (U0, . . . , Uk−1, q)· a = (U ′

0, . . . , U
′
k−1, q

′) where q′ = q · a,

U ′

i =

{

∅ if Ui = Ti

Ti ∩ (Ui ∪ {q′}) otherwise.

and R = {(Li, Ri) | 0 6 i 6 k − 1} with Li = {(U0, . . . , Uk−1, q) ∈ Q′ | q /∈ Ti} and
Ri = {(U0, . . . , Uk−1, q) ∈ Q′ | Ui = Ti}. Show that Lω(A) = Lω(A′).

Exercise 18. Verify Example 9.4 by developing in detail Safra’s algorithm.

Exercise 19. Consider a Büchi automaton in which all states are final. Show that the
algorithm described in Section 9 coincides with the usual determinization algorithm.

12 Notes.

The use of finite automata to recognize infinite words appears for the first time in the
work of Büchi [45] and not much later in a paper of Muller [213]. Kleene’s seminal paper
on automata [162] already considers the case of infinite words, but on the left side. The
motivations of Büchi came from the investigation of decidable logical theories. Those of
Muller arose from the study of asynchronous circuits.

Looking for earlier origins of this kind of question leads one to the foundations of
topology and measure theory. This dates back to the beginning of the twentieth century,
with the work of Borel and Lebesgue and, after them, the Polish school, in particular
Suslin, who developed the foundations of analysis (see Bourbaki [37]). We shall come
back to this point in the chapter on topology (Chapter III). Even closer to our subject,
infinite sequences have been studied as sequences of events in classical probability theory.
And, for example, the lemma of Borel-Cantelli makes use of the favorite predicates used
in this chapter: “there is an infinity of occurrences of some event” (cf. Feller [111]). This
aspect of the study of infinite sequences leads to ergodic theory and symbolic dynamics.

Earlier introductory presentations of automata on infinite words include chapters in
books on automata theory (e.g. chapter XIV of [98]) or in multi-author Handbooks (like
the survey of Thomas in [336] or [338] and the survey of Staiger in [307]). The recent
multi-author monograph [129] gives a consolidated overview of the recent research results
achieved in the theory.

The notation used in this chapter is, in general, the one in use elsewhere in automata
theory. In some cases, however, we follow the terminology introduced by Eilenberg
[98]. Thus, we use systematically the terms “recognizable” and “rational” instead of
“regular”. The use of the term “rational” deserves a comment. One may, as first shown
by Schützenberger, generalize the theory of Kleene to formal series in noncommuting
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variables. In this framework, rational series appear as the natural generalization of the
classical notion of rational series in one variable.

Besides Kleene’s theorem, for which we have followed Conway’s presentation [80],
the main results of this chapter are due to Büchi and to McNaughton. The chronology
places first the work of Büchi. He introduced ω-rational sets and automata in connection
with the logical monadic second-order theory of (N, <). We shall come to this theory in
detail in Chapter VIII. His main result says that the class of recognizable sets is closed
under complement. His original proof differs from the one given in this chapter. It uses
semigroup congruences which are introduced in Chapter II. Example 9.4 is due to Gire
(personal communication). See also Staiger [304, Example 2, p. 489]. Theorem 7.8 is
due to Landweber [171]. It is the essential part of Theorem 9.9.

The notation
−→
L is from Eilenberg [98], whereas the classical notation Xω is borrowed

from the theory of ordinals.

McNaughton’s theorem was conjectured by Muller [213], who first introduced the
automata that bear his name. McNaughton’s original proof [192] uses a construction
which has been the object of several further studies. Variants of it were described by
Rabin [256], Choueka [68] and independently by Eilenberg and Schützenberger [98] in
two successive steps:

(1) any recognizable subset of Aω can be written as a finite union of sets of the form

K
−→
L , where K and L are recognizable subsets of A+,

(2) if K and L are recognizable subsets of A+, it is possible to recognize K
−→
L by a

deterministic Muller automaton.

Part (1) will be developed in Chapter II with the syntactic analysis of recognizable
subsets. Part (2) is the subject of Exercise 16.

The proof presented here is due to Safra [272] (see also the tutorial of [268]. It
represents a genuinely new proof both because of its reduced computational complexity
and because it is a direct construction. Theorem 10.8 is an unpublished result of Michel,
presented in the survey of Thomas [338] (see also [110]).

For a general reference concerning the complexity of algorithms, see [120] or [4]
or the volume on algorithms of the Handbook of Theoretical Computer Science [345].
Proposition 10.6 is from [272], where it is credited to Vardi. Theorem 10.8 is also from
[272]. Safra has obtained in [273] a construction which generalizes Proposition 10.2. It
shows that for any nondeterministic Streett automaton with n states and m pairs, there
is an equivalent (deterministic) Rabin automaton with 2nm·log(nm) states and nm pairs
(see the tutorial in [282].

Two earlier references had obtained a construction of an automaton of exponential
size for the complement (Proposition 10.6). Both constructions, by Sistla, Vardi and
Wolper [296] and by Pécuchet [229] make use of semigroups (see Proposition VI.4.5).
Other constructions are possible, either working directly on Büchi automata, or using
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