# An explicit formula for the intersection of two polynomials of regular languages

Jean-Éric Pin<sup>1\*</sup>

LIAFA, University Paris-Diderot and CNRS, France.

Abstract. Let  $\mathcal{L}$  be a set of regular languages of  $A^*$ . An  $\mathcal{L}$ -polynomial is a finite union of products of the form  $L_0a_1L_1 \cdots a_nL_n$ , where each  $a_i$  is a letter of A and each  $L_i$  is a language of  $\mathcal{L}$ . We give an explicit formula for computing the intersection of two  $\mathcal{L}$ -polynomials. Contrary to Arfi's formula (1991) for the same purpose, our formula does not use complementation and only requires union, intersection and quotients. Our result also implies that if  $\mathcal{L}$  is closed under union, intersection and quotient, then its polynomial closure, its unambiguous polynomial closure and its left [right] deterministic polynomial closure are closed under the same operations.

## 1 Introduction

Let  $\mathcal{L}$  be a set of regular languages of  $A^*$ . An  $\mathcal{L}$ -polynomial is a finite union of products of the form  $L_0a_1L_1\cdots a_nL_n$ , where each  $a_i$  is a letter of A and each  $L_i$  is a language of  $\mathcal{L}$ . The polynomial closure of  $\mathcal{L}$ , denoted by  $\text{Pol}(\mathcal{L})$ , is the set of all  $\mathcal{L}$ -polynomials.

It was proved by Arfi [1] that if  $\mathcal{L}$  is closed under Boolean operations and quotient, then  $Pol(\mathcal{L})$  is closed under intersection. This result was obtained by giving an explicit formula for computing the intersection of two polynomials of regular languages.

It follows from the main theorem of [6] that Arfi's result can be extended to the case where  $\mathcal{L}$  is only closed under union, intersection and quotient. However, this stronger statement is obtained as a consequence of a sophisticated result involving profinite equations and it is natural to ask for a more elementary proof.

The objective of this paper is to give a new explicit formula for computing the intersection of two  $\mathcal{L}$ -polynomials. Contrary to the formula given in [1], our formula only requires using union, intersection and quotients of languages of  $\mathcal{L}$ . Our proof is mainly combinatorial, but relies heavily on the notion of syntactic ordered monoid, a notion first introduced by Schützenberger [14] (see also [10]). The main difficulty lies in finding appropriate notation to state the formula, but then its proof is merely a verification.

Our result also leads to the following result, that appears to be new: if  $\mathcal{L}$  is closed under union, intersection and quotient, then its unambiguous polynomial

<sup>\*</sup> Work supported by the project ANR 2010 BLAN 0202 02 FREC.

closure and its left [right] deterministic polynomial closure are closed under the same operations.

Let us mention also that our algorithm can be readily extended to the setting of infinite words by using syntactic ordered  $\omega$ -semigroups [8].

# 2 Background and notation

#### 2.1 Syntactic order

The syntactic congruence of a language L of  $A^*$  is the congruence on  $A^*$  defined by  $u \sim_L v$  if and only if, for every  $x, y \in A^*$ ,

$$xuy \in L \iff xvy \in L$$

The monoid  $M = A^*/\sim_L$  is the syntactic monoid of L and the natural morphism  $\eta: A^* \to M$  is called the syntactic morphism of L. It is a well-known fact that a language is regular if and only if its syntactic monoid is finite.

The syntactic preorder<sup>1</sup> of a language L is the relation  $\leq_L$  over  $A^*$  defined by  $u \leq_L v$  if and only if, for every  $x, y \in A^*$ ,  $xuy \in L$  implies  $xvy \in L$ . The associated equivalence relation is the syntactic congruence  $\sim_L$ . Further,  $\leq_L$ induces a partial order on the syntactic monoid M of L. This partial order  $\leq$  is compatible with the product and can also be defined directly on M as follows: given  $s, t \in M$ , one has  $s \leq t$  if and only if, for all  $x, y \in M$ ,  $xsy \in \eta(L)$  implies  $xty \in \eta(L)$ . The ordered monoid  $(M, \leq)$  is called the syntactic ordered monoid of L.

Let us remind an elementary but useful fact: if  $v \in L$  and  $\eta(u) \leq \eta(v)$ , then  $u \in L$ . This follows immediately form the definition of the syntactic order by taking x = y = 1.

### 2.2 Quotients

Recall that if L is a language of  $A^*$  and x is a word, the *left quotient* of L by x is the language  $x^{-1}L = \{z \in A^* \mid xz \in L\}$ . The *right quotient*  $Ly^{-1}$  is defined in a symmetrical way. Right and left quotients commute, and thus  $x^{-1}Ly^{-1}$  denotes either  $x^{-1}(Ly^{-1})$  or  $(x^{-1}L)y^{-1}$ . For each word v, let us set

$$[L]_{\uparrow v} = \{ u \in A^* \mid \eta(v) \le \eta(u) \}$$
$$[L]_{=v} = \{ u \in A^* \mid \eta(u) = \eta(v) \}$$

<sup>&</sup>lt;sup>1</sup> In earlier papers [6,10,13], I used the opposite preorder, but it seems preferable to go back to Schützenberger's original definition.

**Proposition 2.1.** The following formulas hold:

$$[L]_{\uparrow v} = \bigcap_{\{(x,y)\in A^*\times A^* \mid v\in x^{-1}Ly^{-1}\}} x^{-1}Ly^{-1}$$
(1)

$$[L]_{=v} = [L]_{\uparrow v} - \bigcup_{\eta(v) < \eta(u)} [L]_{\uparrow u}$$

$$\tag{2}$$

$$[L]_{\uparrow v} = \bigcup_{\eta(v) \leqslant \eta(u)} [L]_{=u} \tag{3}$$

*Proof.* A word u belongs to the right hand side of (1) if and only if the condition  $v \in x^{-1}Ly^{-1}$  implies  $u \in x^{-1}Ly^{-1}$ , which is equivalent to stating that  $v \leq_L u$ , or  $\eta(v) \leq \eta(u)$ , or yet  $u \in [L]_{\uparrow v}$ . This proves (1). Formulas (2) and (3) are obvious.  $\Box$ 

Let us make precise a few critical points. First, v always belongs to  $[L]_{\uparrow v}$ . This is the case even if v cannot be completed into a word of L, that is, if v does not belong to any quotient  $x^{-1}Ly^{-1}$ . In this case, the intersection on the right hand side of (1) is indexed by the empty set and is therefore equal to  $A^*$ .

Secondly, the intersection occurring on the right hand side of (1) and the union occurring on the right hand side of (2) are potentially infinite, but they are finite if L is a regular language, since a regular language has only finitely many quotients.

## 3 Infiltration product and infiltration maps

The definition below is a special case of a more general definition given in [7]. A word  $c_1 \cdots c_r$  belongs to the *infiltration product* of two words  $a_1 \cdots a_p$  and  $v = b_1 \cdots b_q$ , if there are two order preserving maps  $\alpha : \{1, \ldots, p\} \to \{1, \ldots, r\}$  and  $\beta : \{1, \ldots, q\} \to \{1, \ldots, r\}$  such that

- (1) for each  $i \in \{1, ..., p\}, a_i = c_{\alpha(i)},$
- (2) for each  $i \in \{1, \ldots, q\}, b_i = c_{\beta(i)},$
- (3) the union of the ranges of  $\alpha$  and  $\beta$  is  $\{1, \ldots, r\}$ .

For instance, the set  $\{ab, aab, abb, aabb, abab\}$  is the infiltration product of ab and ab and the set  $\{aba, bab, abab, abab, abab, baab, baba\}$  is the infiltration product of ab and ba.

A pair of maps  $(\alpha, \beta)$  satisfying Conditions (1)–(3) is called a *pair of infil*tration maps. Note that these conditions imply that  $p + q \leq r$ .

In the example pictured in Figure 1, one has p = 4, q = 2 and r = 5. The infiltration maps  $\alpha$  and  $\beta$  are given by  $\alpha(1) = 1$ ,  $\alpha(2) = 2$ ,  $\alpha(3) = 3$ ,  $\alpha(4) = 4$  and  $\beta(1) = 3$ ,  $\beta(2) = 5$ .



Fig. 1. A pair of infiltration maps.

In order to state our main theorem in a precise way, we need to handle the intervals of the form  $\{\alpha(i)+1,\ldots,\alpha(i+1)-1\}$ , but also the two extremal intervals  $\{1,\ldots,\alpha(1)-1\}$  and  $\{\alpha(p)+1,\ldots,r\}$ . As a means to get a uniform notation, it is convenient to extend  $\alpha$  and  $\beta$  to mappings  $\alpha : \{0,\ldots,p+1\} \rightarrow \{0,\ldots,r+1\}$  and  $\beta : \{0,\ldots,q+1\} \rightarrow \{0,\ldots,r+1\}$  by setting  $\alpha(0) = \beta(0) = 0$  and  $\alpha(p+1) = \beta(q+1) = r+1$ . The two extremal intervals are now of the standard form  $\{\alpha(i)+1,\ldots,\alpha(i+1)-1\}$ , with i = 0 and i = p, respectively. Further, we introduce the two maps  $\bar{\alpha} : \{0,\ldots,r\} \rightarrow \{0,\ldots,p\}$  and  $\bar{\beta} : \{0,\ldots,r\} \rightarrow \{0,\ldots,q\}$  defined by

 $\bar{\alpha}(i) = \max\{k \mid \alpha(k) \leqslant i\} \text{ and } \bar{\beta}(i) = \max\{k \mid \beta(k) \leqslant i\}.$ 

For instance, one gets for our example:

| $\bar{\alpha}(0) = 0$ | $\bar{\alpha}(1) = 1$ | $\bar{\alpha}(2) = 2$ | $\bar{\alpha}(3) = 3$ | $\bar{\alpha}(4) = 4$ | $\bar{\alpha}(5) = 4$ |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $\bar{\beta}(0) = 0$  | $\bar{\beta}(1) = 0$  | $\bar{\beta}(2) = 0$  | $\bar{\beta}(3) = 1$  | $\bar{\beta}(4) = 1$  | $\bar{\beta}(5) = 2$  |

These two functions are conveniently represented in Figure 2



**Fig. 2.** Graphs of  $\bar{\alpha}$  and  $\bar{\beta}$ : for instance,  $\bar{\alpha}(3) = 3$  and  $\bar{\beta}(3) = 1$ .

The next lemmas summarize the connections between  $\alpha$  and  $\bar{\alpha}$ . Of course, similar properties hold for  $\beta$  and  $\bar{\beta}$ .

Lemma 3.1. The following properties hold:

- (1)  $\bar{\alpha}(\alpha(k)) = k$ , for  $0 \leq k \leq p$ .
- (2)  $\bar{\alpha}(s+1) \leq \bar{\alpha}(s) + 1$ , for  $0 \leq s \leq r-1$ .
- (3)  $k \leq \bar{\alpha}(s)$  if and only if  $\alpha(k) \leq s$ , for  $0 \leq k \leq p$  and  $0 \leq s \leq r$ .
- (4)  $k \ge \overline{\alpha}(s)$  if and only if  $\alpha(k+1) \ge s+1$ , for  $0 \le k \le p-1$  and  $0 \le s \le r-1$ .

*Proof.* These properties follow immediately from the definition of  $\bar{\alpha}$ .

**Lemma 3.2.** For  $0 \leq s \leq r-1$ , the conditions  $\bar{\alpha}(s+1) = \bar{\alpha}(s) + 1$  and  $\alpha(\bar{\alpha}(s+1)) = s+1$  are equivalent.

*Proof.* Put  $k = \bar{\alpha}(s)$  and suppose that  $\bar{\alpha}(s+1) = k+1$ . Since  $k+1 \leq \bar{\alpha}(s+1)$ , Lemma 3.1 (3) shows that  $\alpha(k+1) \leq s+1$ . Further, since  $k \geq \bar{\alpha}(s)$ , Lemma 3.1 (4) shows that  $\alpha(k+1) \geq s+1$ . Therefore  $\alpha(k+1) = s+1$  and finally  $\alpha(\bar{\alpha}(s+1)) = s+1$ .

Conversely, suppose that  $\alpha(\bar{\alpha}(s+1)) = s+1$ . Putting  $\bar{\alpha}(s+1) = k+1$ , one gets  $\alpha(k+1) = s+1$  and Lemma 3.1 (4) shows that  $k \ge \bar{\alpha}(s)$ . By Lemma 3.1 (2), one gets  $\bar{\alpha}(s+1) \le \bar{\alpha}(s) + 1$  and hence  $k \le \bar{\alpha}(s)$ . Thus  $\bar{\alpha}(s) = k$  and  $\bar{\alpha}(s+1) = \bar{\alpha}(s) + 1$ .  $\Box$ 

Let us denote by  $P_{\alpha}(s)$  the property  $\bar{\alpha}(s+1) = \bar{\alpha}(s) + 1$ .

**Lemma 3.3.** For  $0 \leq s \leq r-1$ , one of  $P_{\alpha}(s)$  or  $P_{\beta}(s)$  holds.

*Proof.* Since the union of the ranges of  $\alpha$  and  $\beta$  is  $\{1, \ldots, r\}$ , there is an integer  $k \ge 0$  such that either  $\alpha(k+1) = s+1$  or  $\beta(k+1) = s+1$ . In the first case, one gets  $\bar{\alpha}(s+1) = \bar{\alpha}(\alpha(k+1)) = k+1$  and Lemma 3.1 (3) shows that  $\bar{\alpha}(s) \le k$ . Since  $\bar{\alpha}(s+1) \le \bar{\alpha}(s) + 1$  by Lemma 3.1 (2), one also has  $k \le \bar{\alpha}(s)$  and finally  $\bar{\alpha}(s) = k$ , which proves  $P_{\alpha}(s)$ . In the latter case, one gets  $P_{\beta}(s)$  by a similar argument.  $\Box$ 

#### 4 Main result

Let  $a_1, \ldots, a_p, b_1, \ldots, b_q$  be letters of A and let  $K_0, \ldots, K_p, L_0, \ldots, L_q$  be languages of  $A^*$ . Let  $K = K_0 a_1 K_1 \cdots a_p K_p$  and  $L = L_0 b_1 L_1 \cdots b_q L_q$ .

A word of  $K \cap L$  can be factorized as  $u_0 a_1 u_1 \cdots a_p u_p$ , with  $u_0 \in K_0, \ldots, u_p \in K_p$  and as  $v_0 b_1 v_1 \cdots b_q v_q$ , with  $v_0 \in L_0, \ldots, v_q \in L_q$ . These two factorizations can be refined into a single factorization of the form  $z_0 c_1 z_1 \cdots c_r z_r$ , where  $c_1 \cdots c_r$  belongs to the infiltration product of  $a_1 \cdots a_p$  and  $b_1 \cdots b_q$ .

For instance, for p = 4 and q = 2, one could have r = 5, with the relations  $c_1 = a_1, c_2 = a_2, c_3 = a_3 = b_1, c_4 = a_4$  and  $c_5 = b_2$ , leading to the factorization  $z_0c_1z_1c_2z_2c_3z_3c_4z_4c_5z_5$ , as pictured in Figure 3.

| $u_0$ | $a_1$ | $u_1$ | $a_2$ | $u_2$ | $a_3$ | $u_3$ | $a_4$ |       | $u_4$ |       |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|       |       |       |       |       |       |       |       |       |       |       |
| $z_0$ | $c_1$ | $z_1$ | $c_2$ | $z_2$ | $c_3$ | $z_3$ | $c_4$ | $z_4$ | $c_5$ | $z_5$ |
|       |       |       |       |       |       |       |       |       |       |       |
|       |       | $v_0$ |       |       | $b_1$ |       | $v_1$ |       | $b_2$ | $v_2$ |

**Fig. 3.** A word of  $K \cap L$  and its factorizations.

The associated pair of infiltration maps  $(\alpha, \beta)$  is given by

$$\alpha(1) = 1$$
  $\alpha(2) = 2$   $\alpha(3) = 3$   $\alpha(4) = 4$   
 $\beta(1) = 3$   $\beta(2) = 5$ 

Two series of constraints will be imposed on the words  $z_i$ :

$$z_0 \in K_0, z_1 \in K_1, z_2 \in K_2, z_3 \in K_3 \text{ and } z_4c_5z_5 \in K_4,$$
  
 $z_0c_1z_1c_2z_2 \in L_0, z_3c_4z_4 \in L_1 \text{ and } z_5 \in L_2.$ 

We are now ready to state our main result. Let us denote by I(p,q) the set of pairs of infiltration maps  $(\alpha, \beta)$  with domain  $\{1, \ldots, p\}$  and  $\{1, \ldots, q\}$ , respectively. Since  $r \leq p + q$ , the set I(p,q) is finite.

**Theorem 4.1.** Let  $K = K_0 a_1 K_1 \cdots a_p K_p$  and  $L = L_0 b_1 L_1 \cdots b_q L_q$  be two products of languages. Then their intersection is given by the formulas

$$K \cap L = \bigcup_{(\alpha,\beta) \in I(p,q)} U(\alpha,\beta)$$
(4)

where

$$U(\alpha,\beta) = \bigcup_{(z_0,\dots,z_r)\in C(\alpha,\beta)} U_0 c_1 U_1 \cdots c_r U_r$$
(5)

and, for  $0 \leq i \leq r$ ,

$$U_i = [K_{\bar{\alpha}(i)}]_{\uparrow z_i} \cap [L_{\bar{\beta}(i)}]_{\uparrow z_i} \tag{6}$$

and  $C(\alpha, \beta)$  is the set of (r+1)-tuples  $(z_0, \ldots, z_r)$  of words such that

(C<sub>1</sub>) for  $0 \le k \le p$ ,  $z_{\alpha(k)}c_{\alpha(k)+1}z_{\alpha(k)+1}\cdots c_{\alpha(k+1)-1}z_{\alpha(k+1)-1} \in K_k$ , (C<sub>2</sub>) for  $0 \le k \le q$ ,  $z_{\beta(k)}c_{\beta(k)+1}z_{\beta(k)+1}\cdots c_{\beta(k+1)-1}z_{\beta(k+1)-1} \in L_k$ .

For instance, if  $(\alpha, \beta)$  is the pair of infiltration maps of our example, one would have

$$U(\alpha,\beta) = \bigcup_{\substack{(z_0,\dots,z_5)\in C(\alpha,\beta)}} ([K_0]_{\uparrow z_0} \cap [L_0]_{\uparrow z_0}) a_1([K_1]_{\uparrow z_1} \cap [L_0]_{\uparrow z_1}) a_2$$
$$([K_2]_{\uparrow z_2} \cap [L_0]_{\uparrow z_2}) b_1([K_3]_{\uparrow z_3} \cap [L_1]_{\uparrow z_3}) a_4([K_4]_{\uparrow z_4} \cap [L_1]_{\uparrow z_4}) b_2([K_4]_{\uparrow z_5} \cap [L_2]_{\uparrow z_5})$$

and the conditions  $(C_1)$  and  $(C_2)$  would be

- (C<sub>1</sub>)  $z_0 \in K_0, z_1 \in K_1, z_2 \in K_2, z_3 \in K_3, z_4c_5z_5 \in K_4$ ,
- (C<sub>2</sub>)  $z_0c_1z_1c_2z_2 \in L_0$ ,  $z_3c_4z_4 \in L_1$  and  $z_5 \in L_2$ .

Before proving the theorem, it is important to note that if the languages  $K_0$ , ...,  $K_p$ ,  $L_0$ , ...,  $L_q$  are regular, the union indexed by  $C(\alpha, \beta)$  is actually a finite union. Indeed, Proposition 2.1 shows that, if R is a regular language, there are only finitely many languages of the form  $[R]_z$ .

*Proof.* Let U be the right hand side of (4). We first prove that  $K \cap L$  is a subset of U. Let z be a word of  $K \cap L$ . Then z can be factorized as  $u_0a_1u_1 \cdots a_pu_p$ , with  $u_0 \in K_0, \ldots, u_p \in K_p$  and as  $v_0b_1v_1 \cdots b_qv_q$ , with  $v_0 \in L_0, \ldots, v_q \in L_q$ . The common refinement of these two factorizations leads to a factorization of the form  $z_0c_1z_1 \cdots c_rz_r$ , where each letter  $c_k$  is either equal to some  $a_i$  or to some  $b_j$  or both. This naturally defines a pair of infiltration maps  $\alpha : \{1, \ldots, p\} \to \{1, \ldots, r\}$ and  $\beta : \{1, \ldots, q\} \to \{1, \ldots, r\}$ . Conditions (C<sub>1</sub>) and (C<sub>2</sub>) just say that the factorization  $z_0c_1z_1 \cdots c_rz_r$  is a refinement of the two other ones. Now, since, for  $0 \leq i \leq r$ , the word  $z_i$  belongs to  $[K_{\bar{\alpha}(i)}]_{\uparrow z_i} \cap [L_{\bar{\beta}(i)}]_{\uparrow z_i}$ , the word z belongs to U. Thus  $K \cap L \subseteq U$ .

We now prove the opposite inclusion. Let  $r \leq p + q$  be an integer, let  $\alpha : \{1, \ldots, p\} \rightarrow \{1, \ldots, r\}$  and  $\beta : \{1, \ldots, q\} \rightarrow \{1, \ldots, r\}$  be two infiltration maps and let  $(z_0, \ldots, z_r) \in C(\alpha, \beta)$  and  $c_1, \ldots, c_r$  satisfying (C<sub>1</sub>) and (C<sub>2</sub>). It suffices to prove that  $U_0c_1U_1 \cdots c_rU_r$  is a subset of  $K \cap L$ . We need a stronger version of (C<sub>1</sub>) and (C<sub>2</sub>).

Lemma 4.2. The following relations hold:

- (C<sub>3</sub>) for  $0 \leq k \leq p$ ,  $U_{\alpha(k)}c_{\alpha(k)+1}U_{\alpha(k)+1}\cdots c_{\alpha(k+1)-1}U_{\alpha(k+1)-1} \subseteq K_k$ ,
- (C<sub>4</sub>) for  $0 \leq k \leq q$ ,  $U_{\beta(k)}c_{\beta(k)+1}U_{\beta(k)+1}\cdots c_{\beta(k+1)-1}U_{\beta(k+1)-1} \subseteq L_k$ .

Coming back once again to our main example, these conditions would be

- (C<sub>3</sub>)  $U_0 \subseteq K_0, U_1 \subseteq K_1, U_2 \subseteq K_2, U_3 \subseteq K_3, U_4c_4U_5 \subseteq K_4$ ,
- (C<sub>4</sub>)  $U_0c_1U_2c_2U_2 \subseteq L_0, U_3c_4U_4 \subseteq L_1, U_5 \subseteq L_5.$

*Proof.* Let  $\eta_k$  be the syntactic morphism of  $K_k$ . To simplify notation, let us set  $i = \alpha(k) + 1$  and  $j = \alpha(k+1) - 1$ . Since  $\alpha(k) = i - 1 < i < \cdots < j < \alpha(k+1)$ , one gets  $\bar{\alpha}(i-1) = \bar{\alpha}(i) = \ldots = \bar{\alpha}(j) = k$ . Let  $u_{i-1} \in U_{i-1}, u_i \in U_i, \ldots, u_j \in U_j$ . Then  $u_{i-1} \in [U_k]_{\uparrow z_{i-1}}, u_i \in [U_k]_{\uparrow z_i}, \ldots, u_j \in [U_k]_{\uparrow z_j}$  and by definition,  $\eta_k(z_{i-1}) \leq \eta_k(u_{i-1}), \eta_k(z_i) \leq \eta_k(u_i), \ldots, \eta_k(z_j) \leq \eta_k(u_j)$ . Therefore we get

$$\eta_k(z_{i-1}c_iz_i\cdots c_jz_j) = \eta_k(z_{i-1})\eta_k(c_i)\eta_k(z_i)\cdots \eta_k(c_j)\eta_k(z_j)$$
  
$$\leqslant \eta_k(u_{i-1})\eta_k(c_i)\eta_k(u_i)\cdots \eta_k(c_j)\eta_k(u_j) = \eta_k(u_{i-1}c_iu_i\cdots c_ju_j)$$

Now, since  $z_{i-1}c_iz_i\cdots c_jz_j \in K_k$  by (C<sub>1</sub>), we also get  $u_{i-1}c_iu_i\cdots c_ju_j \in K_k$ , which proves (C<sub>3</sub>). The proof of (C<sub>4</sub>) is similar.  $\Box$ 

Now, since  $\bar{\alpha}$  and  $\bar{\beta}$  are surjective, Lemma 4.2 shows that  $U_0c_1U_1\cdots c_rU_r$  is a subset of  $K \cap L$ , which concludes the proof of the theorem.  $\Box$ 

*Example 4.3.* Let  $K = b^*aA^*ba^*$  and  $L = a^*bA^*ab^*$ . The algorithm described in Theorem 4.1 gives for  $K \cap L$  the expression  $aa^*bA^*ba^*a \cup bb^*aA^*ba^*a \cup aa^*bA^*ab^*b \cup bb^*aA^*ab^*b \cup aa^*ba^*a \cup bb^*ab^*b$ .

**Corollary 4.4.** Let  $\mathcal{L}$  be a lattice of regular languages closed under quotient. Then its polynomial closure is also a lattice closed under quotient.

## 5 Some variants of the product

We consider in this section two variants of the product introduced by Schützenberger in [15]: unambiguous and deterministic products. These products were also studied in [2,3,4,5,9,11,12,13].

#### 5.1 Unambiguous product

The marked product  $L = L_0 a_1 L_1 \cdots a_n L_n$  of *n* nonempty languages  $L_0, L_1, \ldots, L_n$  of  $A^*$  is unambiguous if every word *u* of *L* admits a unique factorization of the form  $u_0 a_1 u_1 \cdots a_n u_n$  with  $u_0 \in L_0, u_1 \in L_1, \ldots, u_n \in L_n$ . We require the languages  $L_i$  to be nonempty to make sure that subfactorizations remain unambiguous:

**Proposition 5.1.** Let  $L_0a_1L_1 \cdots a_nL_n$  be an unambiguous product and let  $i_1$ , ...,  $i_k$  be a sequence of integers satisfying  $0 < i_1 < \ldots < i_k < n$ . Finally, let  $R_0 = L_0a_1L_1 \cdots a_{i_1-1}L_{i_1-1}$ ,  $R_1 = L_{i_1}a_{i_1+1}L_1 \cdots a_{i_2-1}L_{i_2-1}$ , ...,  $R_k = L_{i_k}a_{i_k+1}L_{i_k+1} \cdots a_nL_n$ . Then the product  $R_0a_{i_1}R_1 \cdots a_{i_k}R_k$  is unambiguous.

Proof. Trivial.

The unambiguous polynomial closure of a class of languages  $\mathcal{L}$  of  $A^*$  is the set of languages that are finite unions of unambiguous products of the form  $L_0a_1L_1\cdots a_nL_n$ , where the  $a_i$ 's are letters and the  $L_i$ 's are elements of  $\mathcal{L}$ . The term closure actually requires a short justification.

**Proposition 5.2.** Any unambiguous product of unambiguous products is unambiguous.

Proof. Let

$$L_{0} = L_{0,0}a_{1,0}L_{1,0}\cdots a_{k_{0},0}L_{k_{0},0}$$

$$L_{1} = L_{0,1}a_{1,1}L_{1,1}\cdots a_{k_{1},1}L_{k_{1},1}$$

$$\vdots$$

$$L_{n} = L_{0,n}a_{1,n}L_{1,n}\cdots a_{k_{n},n}L_{k_{n},n}$$
(7)

be unambiguous products and let  $L = L_0 b_1 L_1 \cdots b_n L_n$  be an unambiguous product. We claim that the product

$$L_{0,0}a_{1,0}L_{1,0}\cdots a_{k_0,0}L_{k_0,0}b_1L_{0,1}a_{1,1}L_{1,1}\cdots b_nL_{0,n}a_{1,n}L_{1,n}\cdots a_{k_n,n}L_{k_n,n}$$

is unambiguous. Let u be a word of L with two factorizations

 $x_{0,0}a_{1,0}x_{1,0}\cdots a_{k_0,0}x_{k_0,0}b_1x_{0,1}a_{1,1}x_{1,1}\cdots b_nx_{0,n}a_{1,n}x_{1,n}\cdots a_{k_n,n}x_{k_n,n}$  and

$$y_{0,0}a_{1,0}y_{1,0}\cdots a_{k_0,0}y_{k_0,0}b_1y_{0,1}a_{1,1}x_{1,1}\cdots b_ny_{0,n}a_{1,n}y_{1,n}\cdots a_{k_n,n}y_{k_n,n}$$

with  $x_{0,0}, y_{0,0} \in L_{0,0}, \ldots, x_{k_n,n}, y_{k_n,n} \in L_{k_n,n}$ . Setting

$$\begin{aligned} x_0 &= x_{0,0} a_{1,0} x_{1,0} \cdots a_{k_0,0} x_{k_0,0} & y_0 &= y_{0,0} a_{1,0} y_{1,0} \cdots a_{k,0} y_{k_0,0} \\ x_1 &= x_{0,1} a_{1,1} x_{1,1} \cdots a_{k_1,1} x_{k_1,1} & y_1 &= y_{0,1} a_{1,1} y_{1,1} \cdots a_{k_1,1} y_{k_1,1} \\ \vdots & \vdots & \vdots & & \\ x_n &= x_{0,n} a_{1,n} x_{1,n} \cdots a_{k_n,n} x_{k_n,n} & y_n &= y_{0,n} a_{1,n} y_{1,n} \cdots a_{k_n,n} y_{k_n,n} \end{aligned}$$

$$\end{aligned}$$

we get two factorizations of  $u: x_0b_1x_1\cdots b_nx_n$  and  $y_0b_1y_1\cdots b_ny_n$ . Since the product  $L_0b_1L_1\cdots a_nL_n$  is unambiguous, we have  $x_0 = y_0, \ldots, x_n = y_n$ . Each of these words has now two factorizations given by (8) and since the products of (7) are unambiguous, these factorizations are equal. This proves the claim and the proposition.  $\Box$ 

We now consider the intersection of two unambiguous products.

**Theorem 5.3.** If the products  $K = K_0 a_1 K_1 \cdots a_p K_p$  and  $L = L_0 b_1 L_1 \cdots b_q L_q$ are unambiguous, the products occurring in Formula (4) are all unambiguous.

*Proof.* Let  $(\alpha, \beta)$  be a pair of infiltration maps, and let  $U_i = [K_{\bar{\alpha}(i)}]_{\uparrow z_i} \cap [L_{\bar{\beta}(i)}]_{\uparrow z_i}$ , for  $0 \leq i \leq r$ . We claim that the product  $U = U_0 c_1 U_1 \cdots c_r U_r$  is unambiguous. Let

$$u = u_0 c_1 u_1 \cdots c_r u_r = u'_0 c_1 u'_1 \cdots c_r u'_r \tag{9}$$

be two factorizations of a word u of U such that, for  $0 \leq i \leq r$ ,  $u_i, u'_i \in U_i$ . We prove by induction on s that  $u_s = u'_s$ .

Case s = 0. By the properties of  $\alpha$  and  $\beta$ , we may assume without loss of generality that  $\alpha(1) = 1$ , which implies that  $c_1 = a_1$ . It follows from (C<sub>3</sub>) that  $U_0 \subseteq K_0$ . Now the product  $K_0a_1(K_1a_2K_2\cdots a_pK_p)$  is unambiguous by Proposition 5.1, and by (C<sub>3</sub>),  $U_1c_2U_2\cdots c_rU_r$  is contained in  $K_1a_1K_2\cdots a_pK_p$ . Therefore, u admits the two factorizations  $u_0a_1(u_1c_2u_2\cdots c_ru_r)$  and  $u'_0a_1(u'_1c_2u'_2\cdots c_ru'_r)$  in this product. Thus  $u_0 = u'_0$ .

Induction step. Let s > 0 and suppose by induction that  $u_i = u'_i$  for  $0 \le i \le s-1$ . If s = r, then necessarily  $u_s = u'_s$ . If s < r, we may assume without loss of generality that s is in the range of  $\alpha$ . Thus  $\alpha(k) = s$  for some k and  $c_s = a_k$ . We now consider two cases separately.

If  $\alpha(k+1) = s+1$  (and  $c_{s+1} = a_{k+1}$ ), it follows from (C<sub>3</sub>) that u has two factorizations

$$(u_0c_1u_1\cdots c_{s-1}u_{s-1})a_ku_sa_{k+1}(u_{s+1}c_{s+1}u_{s+2}\cdots c_ru_r) \text{ and } (u_0c_1u_1\cdots c_{s-1}u_{s-1})a_ku'_sa_{k+1}(u'_{s+1}c_{s+1}u'_{s+2}\cdots c_ru'_r)$$

over the product  $(K_0a_1K_1\cdots a_{s-1}K_{s-1})a_kK_sa_{k+1}(K_{s+1}a_{k+2}K_{s+2}\cdots a_pK_p)$ . Since this product is unambiguous by Proposition 5.1, we get  $u_s = u'_s$ .

If  $\alpha(k+1) \neq s+1$ , then  $s+1 = \beta(t+1)$  for some t and  $c_{s+1} = b_{t+1}$ . Setting  $i = \beta(t)$ , we get  $c_i = b_t$  and it follows from (C<sub>4</sub>) that u has two factorizations

$$(u_0c_1u_1\cdots c_{i-1}u_{i-1})b_t(u_ic_{i+1}u_{i+1}\cdots c_su_s)b_{t+1}(u_{s+1}c_{s+2}u_{s+2}\cdots c_ru_r) \text{ and } (u_0c_1u_1\cdots c_{i-1}u_{i-1})b_t(u_i'c_{i+1}u_{i+1}'\cdots c_su_s')b_{t+1}(u_{s+1}'c_{s+2}u_{s+2}'\cdots c_ru_r')$$

over the product  $(L_0b_1L_1\cdots b_{t-1}L_{t-1})b_tL_tb_{t+1}(L_{t+1}b_{t+1}L_{t+2}\cdots b_pL_p)$ . This product is unambiguous by Proposition 5.1, and thus

$$u_i c_{i+1} u_{i+1} \cdots c_s u_s = u'_i c_{i+1} u'_{i+1} \cdots c_s u'_s$$

Now the induction hypothesis gives  $u_i=u_i',\,\ldots,\,u_{s-1}=u_{s-1}'$  and one finally gets  $u_s=u_s'.\ \Box$ 

We state separately another interesting property.

**Theorem 5.4.** Let  $K = K_0 a_1 K_1 \cdots a_p K_p$  and  $L = L_0 b_1 L_1 \cdots b_q L_q$  be two unambiguous products and let  $(\alpha, \beta)$  and  $(\alpha', \beta')$  be two pairs of infiltration maps of I(p,q). If the sets  $U(\alpha, \beta)$  and  $U(\alpha', \beta')$  meet, then  $\alpha = \alpha'$  and  $\beta = \beta'$ .

*Proof.* Suppose that a word u belongs to  $U(\alpha, \beta)$  and to  $U(\alpha', \beta')$ . Then u has two decompositions of the form

$$u = u_0 c_1 u_1 \cdots c_r u_r = u'_0 c'_1 u'_1 \cdots c'_{r'} u'_{r'}$$

Condition (C<sub>1</sub>) [(C<sub>2</sub>)] and the unambiguity of the product  $K_0a_1K_1\cdots a_pK_p$ [ $L_0b_1L_1\cdots b_qL_q$ ] show that, for  $0 \leq i \leq p$  and for  $0 \leq j \leq q$ ,

$$u_{\alpha(i)}c_{\alpha(i)+1}u_{\alpha(i)+1}\cdots c_{\alpha(i+1)-1}u_{\alpha(i+1)-1} = u'_{\alpha'(i)}c'_{\alpha'(i)+1}u'_{\alpha'(i)+1}\cdots c_{\alpha'(i+1)-1}u_{\alpha'(i+1)-1} \in K_{i}$$
(10)  
$$u_{\alpha(i)}c_{\alpha(i)+1}u_{\alpha(i)+1}\cdots c_{\alpha(i+1)-1}u'_{\alpha'(i+1)-1} \in K_{i}$$
(10)

We prove by induction on s that, for  $1\leqslant s\leqslant\min(r,r'),$  the following properties hold:

$$\begin{aligned} & E_1(s): \ u_{s-1} = u'_{s-1} \text{ and } c_s = c'_s, \\ & E_2(s): \ \bar{\alpha}(s) = \bar{\alpha}'(s) \text{ and } \bar{\beta}(s) = \bar{\beta}'(s), \\ & E_3(s): \text{ for } i \leqslant \bar{\alpha}(s), \ \alpha(i) = \alpha'(i) \text{ and for } j \leqslant \bar{\beta}(s), \ \beta(j) = \beta'(j) \end{aligned}$$

Case s = 1. We know that either  $\alpha(1) = 1$  or  $\beta(1) = 1$  and that either  $\alpha'(1) = 1$  or  $\beta'(1) = 1$ . Suppose that  $\alpha(1) = 1$ . We claim that  $\alpha'(1) = 1$ . Otherwise, one has  $\beta'(1) = 1$ . Now, Formula (10) applied to i = 0 gives

$$u_0 = u'_0 c'_1 u'_1 \cdots c_{\alpha'(1)-1} u'_{\alpha'(1)-1}$$

and Formula (11) applied to j = 0 gives

$$u_0c_1u_1\cdots c_{\beta(1)-1}u_{\beta(1)-1}=u'_0.$$

Therefore  $u_0 = u'_0$  and  $\alpha'(1) = 1$ , which proves the claim. It follows also that  $a_1 = c_{\alpha(1)} = c_{\alpha'(1)}$  and thus  $c_1 = c'_1$ . We also have in this case  $\bar{\alpha}(1) = \bar{\alpha}'(1) = 1$ . A similar argument shows that if  $\alpha'(1) = 1$ , then  $\alpha(1) = 1$ . Therefore, the conditions  $\alpha(1) = 1$  and  $\alpha'(1) = 1$  are equivalent and it follows that  $\bar{\alpha}(1) = \bar{\alpha}'(1)$ . A dual argument would prove that the conditions  $\beta(1) = 1$  and  $\beta'(1) = 1$  are equivalent and that  $\bar{\beta}(1) = \bar{\beta}'(1)$ .

Induction step. Let s be such that  $1 \leq s+1 \leq \min(r, r')$  and suppose by induction that the properties  $E_1(i)$ ,  $E_2(i)$ ,  $E_3(i)$  hold for  $1 \leq i \leq s$ .

**Lemma 5.5.** Suppose that  $P_{\alpha}(s)$  holds and let  $k = \bar{\alpha}(s)$ . Then

$$s \leqslant \alpha'(k+1) - 1 \tag{12}$$

and

$$u_s = u'_s c'_{s+1} u'_{s+1} \cdots c_{\alpha'(k+1)-1} u'_{\alpha'(k+1)-1}$$
(13)

*Proof.* Applying (10) with i = k, we get

$$u_{\alpha(k)}c_{\alpha(k)+1}u_{\alpha(k)+1}\cdots c_{s}u_{s} = u'_{\alpha'(k)}c'_{\alpha'(k)+1}u'_{\alpha'(k)+1}\cdots c_{\alpha'(k+1)-1}u'_{\alpha'(k+1)-1}$$
(14)

Since  $\bar{\alpha}(s) = \bar{\alpha}'(s)$  by  $E_2(s)$ , one has  $\bar{\alpha}'(s) = k$  and  $\alpha'(k+1) \ge s+1$  by Lemma 3.1, which gives (12). Further, since  $k = \bar{\alpha}(s)$ , it follows from  $E_3(s)$  that  $\alpha(k) = \alpha'(k)$ . Now, for  $i \le s$ ,  $E_1(i)$  implies that  $u_{i-1} = u'_{i-1}$  and  $c_i = c'_i$ . It follows that the word  $u_{\alpha(k)}c_{\alpha(k)+1}u_{\alpha(k)+1}\cdots c_s$  is a prefix of both sides of (14). Therefore, this prefix can be deleted from both sides of (14), which gives (13).  $\Box$ 

We now establish  $E_1(s+1)$ .

**Lemma 5.6.** One has  $u_s = u'_s$  and  $c_{s+1} = c'_{s+1}$ . Further,  $P_{\alpha}(s)$  and  $P_{\alpha'}(s)$  are equivalent and  $P_{\beta}(s)$  and  $P_{\beta'}(s)$  are equivalent.

*Proof.* Let us prove that  $u'_s$  is a prefix of  $u_s$ . By Lemma 3.3, either  $P_{\alpha}(s)$  or  $P_{\beta}(s)$  holds. Suppose that  $P_{\alpha}(s)$  holds. Then by Lemma 5.5,  $u'_s$  is a prefix of  $u_s$ . If  $P_{\beta}(s)$  holds, we arrive to the same conclusion by using (11) in place of (10) in the proof of Lemma 5.5.

Now, a symmetrical argument using the pair  $(\bar{\alpha}', \bar{\beta}')$  would show that  $u_s$  is a prefix of  $u'_s$ . Therefore,  $u_s = u'_s$ . Coming back to (13), we obtain  $\alpha'(k+1) = s+1$  and since by  $E_2(s)$ ,  $k = \bar{\alpha}(s) = \bar{\alpha}'(s)$ , one gets  $\alpha'(\bar{\alpha}'(s) + 1) = s + 1$ , which, by Lemma 3.2, is equivalent to  $P_{\alpha'}(s)$ . Thus  $P_{\alpha}(s)$  implies  $P_{\alpha'}(s)$  and a dual argument would prove the opposite implication.

We also have  $c_{s+1} = c_{\alpha(k+1)} = a_{k+1} = c'_{\alpha'(k+1)} = c'_{s+1}$  and thus  $c_{s+1} = c'_{s+1}$ . Finally, a similar argument works for  $\beta$ .  $\Box$  We now come to the proof of  $E_2(s+1)$  and  $E_3(s+1)$ . Since  $P_{\alpha}(s)$  and  $P_{\alpha'}(s)$  are equivalent, the next two lemma cover all cases.

**Lemma 5.7.** If neither  $P_{\alpha}(s)$  nor  $P_{\alpha'}(s)$  hold, then  $\bar{\alpha}(s+1) = \bar{\alpha}'(s+1)$  and for  $i \leq \bar{\alpha}(s+1)$ ,  $\alpha(i) = \alpha'(i)$ . Similarly, if neither  $P_{\beta}(s)$  nor  $P_{\beta'}(s)$  hold, then  $\bar{\beta}(s+1) = \bar{\beta}'(s+1)$  and for  $i \leq \bar{\beta}(s+1)$ ,  $\beta(i) = \beta'(i)$ .

*Proof.* We just prove the " $\alpha$  part" of the lemma. If neither  $P_{\alpha}(s)$  nor  $P_{\alpha'}(s)$  hold, then  $\bar{\alpha}(s+1) = \bar{\alpha}(s)$  and  $\bar{\alpha}'(s+1) = \bar{\alpha}'(s)$ . Since  $\bar{\alpha}(s) = \bar{\alpha}'(s)$  by  $E_2(s)$ , one gets  $\bar{\alpha}(s+1) = \bar{\alpha}'(s+1)$ . The second property is an immediate consequence of  $E_3(s)$ .  $\Box$ 

**Lemma 5.8.** If both  $P_{\alpha}(s)$  and  $P_{\alpha'}(s)$  hold, then  $\bar{\alpha}(s+1) = \bar{\alpha}'(s+1)$  and for  $i \leq \bar{\alpha}(s+1)$ ,  $\alpha(i) = \alpha'(i)$ . Similarly, if both  $P_{\beta}(s)$  and  $P_{\beta'}(s)$  hold, then  $\bar{\beta}(s+1) = \bar{\beta}'(s+1)$  and for  $i \leq \bar{\beta}(s+1)$ ,  $\beta(i) = \beta'(i)$ .

*Proof.* Again, we just prove the " $\alpha$  part" of the lemma. If both  $P_{\alpha}(s)$  and  $P_{\alpha'}(s)$  hold, then  $\bar{\alpha}(s+1) = \bar{\alpha}(s) + 1$  and  $\bar{\alpha}'(s+1) = \bar{\alpha}'(s) + 1$ . Since  $\bar{\alpha}(s) = \bar{\alpha}'(s)$  by  $E_2(s)$ , one gets  $\bar{\alpha}(s+1) = \bar{\alpha}'(s+1)$ . Property  $E_3(s)$  shows that for  $i \leq \bar{\alpha}(s)$ ,  $\alpha(i) = \alpha'(i)$ . Since  $\bar{\alpha}(s+1) = \bar{\alpha}(s) + 1$ , it just remains to prove that

$$\alpha(\bar{\alpha}(s+1)) = \alpha'(\bar{\alpha}(s+1)) \tag{15}$$

But Lemma 3.2 shows that  $\alpha(\bar{\alpha}(s+1)) = s+1$  and  $\alpha'(\bar{\alpha}'(s+1)) = s+1$ , which proves (15) since  $\bar{\alpha}(s+1) = \bar{\alpha}'(s+1)$ .  $\Box$ 

This concludes the induction step and the proof of Theorem 5.4.  $\Box$ 

**Corollary 5.9.** Let  $\mathcal{L}$  be a lattice of regular languages closed under quotient. Then its unambiguous polynomial closure is also a lattice closed under quotient.

If  $\mathcal{L}$  is a Boolean algebra, then one can be more precise.

**Corollary 5.10.** Let  $\mathcal{L}$  be a Boolean algebra of regular languages closed under quotient. Then its unambiguous polynomial closure is also a Boolean algebra closed under quotient.

Let us conclude with an example which shows that, under the assumptions of Theorem 5.4, the sets  $U(\alpha, \beta)$  cannot be further decomposed as a disjoint union of unambiguous products.

Let  $K = K_0 a K_1$  and  $L = L_0 a L_1$  with  $K_0 = L_1 = 1 + b + c + c^2$  and  $L_0 = K_1 = a + ab + ba + ac + ca + ac^2 + bab + cac + cac^2$ . Then

$$K \cap L = aa + aab + aba + aac + aca + aac^{2} + abab + acac + acac^{2} + baa + baab + baba + baac + baac^{2} + babab + caa + caab + caac + caca + caac^{2} + cacac + cacac^{2}$$

One can write for instance  $K \cap L$  as  $(1 + b + c)aa(1 + b + c + c^2) + (1 + b)a(1 + b)a(1 + b) + (1 + c)a(1 + c)a(1 + c + c^2)$  but the three components of this language

are not disjoint, since they all contain *aa*. Note that the words *acab*, *abac*, *baca* and *caba* are not in  $K \cap L$ .

The syntactic ordered monoid of  $K_0$  and  $L_1$  has 4 elements  $\{1, a, b, c\}$  and is presented by the relations  $a = ba = b^2 = bc = ca = cb = 0$  and  $c^2 = b$ . Its syntactic order is defined by a < b < c < 1.

The syntactic ordered monoid of  $L_0$  and  $K_1$  has 13 elements:

$$\{1, a, b, c, a^2, ab, ac, ba, ca, c^2, ac^2, bab, cac\}$$

and is defined by the relations  $cac^2 = bab$  and

$$b^{2} = bc = cb = a^{2} = aba = aca = bac = cab = c^{2}a = c^{3} = 0.$$

The syntactic order is:



There is only one pair of infiltration maps  $(\alpha, \beta)$  of I(1, 1) that defines a nonempty set  $U(\alpha, \beta)$ . This pair is defined as follows:  $\alpha(1) = 1$  and  $\beta(1) = 2$ . The triples  $(z_0, z_1, z_2)$  of  $C(\alpha, \beta)$  are exactly the triples of words such that  $z_0az_1az_2 \in K \cap L$ . In particular,  $z_0 \in \{1, b, c\}$ ,  $z_1 \in \{1, b, c\}$  and  $z_2 \in \{1, b, c, c^2\}$ . Now, one has

$$\begin{split} & [K_0]_{\uparrow 1} = 1 \quad [K_0]_{\uparrow b} = 1 + b + c + c^2 \quad [K_0]_{\uparrow c} = 1 + c \\ & [K_1]_{\uparrow 1} = 1 \quad [K_1]_{\uparrow b} = 1 + b \quad [K_1]_{\uparrow c} = 1 + c \quad [K_1]_{\uparrow c^2} = 1 + c + c^2 \\ & [L_0]_{\uparrow 1} = 1 \quad [L_0]_{\uparrow b} = 1 + b \quad [L_0]_{\uparrow c} = 1 + c \\ & [L_1]_{\uparrow 1} = 1 \quad [L_1]_{\uparrow b} = 1 + b + c + c^2 \quad [L_1]_{\uparrow c} = 1 + c \quad [L_1]_{\uparrow c^2} = 1 + b + c + c^2 \end{split}$$

which gives the following possibilities for the triples  $(U_0, U_1, U_2)$ , for the following triples  $z = (z_0, z_1, z_2)$ :

| z = (1, 1, 1)     | $U_0 = 1$     | $U_1 = 1$     | $U_2 = 1$           |
|-------------------|---------------|---------------|---------------------|
| z=(b,b,b)         | $U_0 = 1 + b$ | $U_1 = 1 + b$ | $U_2 = 1 + b$       |
| z=(c,c,c)         | $U_0 = 1 + c$ | $U_1 = 1 + c$ | $U_2 = 1 + c$       |
| $z = (b, c, c^2)$ | $U_0 = 1 + b$ | $U_1 = 1 + c$ | $U_2 = 1 + c + c^2$ |
| $z = (c, c, c^2)$ | $U_0 = 1 + c$ | $U_1 = 1 + c$ | $U_2 = 1 + c + c^2$ |

#### 5.2 Deterministic product

The marked product  $L = L_0 a_1 L_1 \cdots a_n L_n$  of n nonempty languages  $L_0, L_1, \ldots, L_n$  of  $A^*$  is left deterministic [right deterministic] if, for  $1 \leq i \leq n$ , the set  $L_0 a_1 L_1 \cdots L_{i-1} a_i [a_i L_i \cdots a_n L_n]$  is a prefix [suffix] code. This means that every word of L has a unique prefix [suffix] in  $L_0 a_1 L_1 \cdots L_{i-1} a_i [a_i L_i \cdots a_n L_n]$ . It is observed in [3, p. 495] that the marked product  $L_0 a_1 L_1 \cdots a_n L_n$  is deterministic if and only if, for  $1 \leq i \leq n$ , the language  $L_{i-1} a_i$  is a prefix code. Since the product of two prefix codes is a prefix code, we get the following proposition.

**Proposition 5.11.** Any left [right] deterministic product of left [right] deterministic products is left [right] deterministic.

*Proof.* This follows immediately from the fact that the product of two prefix codes is a prefix code.  $\Box$ 

Factorizing a deterministic product also gives a deterministic product. More precisely, one has the following result.

**Proposition 5.12.** Let  $L_0a_1L_1 \cdots a_nL_n$  be a left [right] deterministic product and let  $i_1, \ldots, i_k$  be a sequence of integers satisfying  $0 < i_1 < \ldots < i_k < n$ . Finally, let  $R_0 = L_0a_1L_1 \cdots a_{i_1-1}L_{i_1-1}, \ldots, R_k = L_{i_k}a_{i_k+1}L_{i_k+1} \cdots L_{n-1}a_nL_n$ . Then the product  $R_0a_{i_1}R_1 \cdots a_{i_k}R_k$  is left [right] deterministic.

#### *Proof.* Trivial. $\square$

The left [right] deterministic polynomial closure of a class of languages  $\mathcal{L}$  of  $A^*$  is the set of languages that are finite unions of left [right] deterministic products of the form  $L_0a_1L_1\cdots a_nL_n$ , where the  $a_i$ 's are letters and the  $L_i$ 's are elements of  $\mathcal{L}$ .

We can now state the counterpart of Theorem 5.3 for deterministic products.

**Theorem 5.13.** If the products  $K = K_0 a_1 K_1 \cdots a_p K_p$  and  $L = L_0 b_1 L_1 \cdots b_q L_q$ are deterministic, the products occurring in Formula (4) are all deterministic.

*Proof.* Let  $i \in \{0, \ldots, r\}$ . By construction, there exists  $k \ge 0$  such that  $i + 1 = \alpha(k+1)$  or  $i+1 = \beta(k+1)$ . By Lemma 4.2, there exists  $j \le i$  such that either  $U_j c_{j+1} U_{j+1} \cdots U_i \subseteq K_k$  and  $c_{\alpha(k+1)} = a_{k+1}$  or  $U_j c_{j+1} U_{j+1} \cdots U_i \subseteq L_k$  and

 $c_{\alpha(k+1)} = b_{k+1}$ . Suppose we are in the first case and that  $U_i c_{i+1}$  is not a prefix code. Then  $U_j c_{j+1} U_{j+1} \cdots U_i c_{i+1}$  is not a prefix code and thus  $K_k a_{k+1}$  is not a prefix code. This yields a contradiction since the product  $K_0 a_1 K_1 \cdots a_p K_p$  is deterministic.  $\Box$ 

**Corollary 5.14.** Let  $\mathcal{L}$  be a lattice of regular languages closed under quotient. Then its deterministic polynomial closure is also closed under quotient.

## Acknowledgements

I would like to thank Mário J. J. Branco for his careful reading of a first version of this article.

## References

- M. ARFI, Opérations polynomiales et hiérarchies de concaténation, *Theoret. Com*put. Sci. 91 (1991), 71–84.
- M. J. J. BRANCO, On the Pin-Thérien expansion of idempotent monoids, Semigroup Forum 49,3 (1994), 329–334.
- M. J. J. BRANCO, The kernel category and variants of the concatenation product, Internat. J. Algebra Comput. 7,4 (1997), 487–509.
- 4. M. J. J. BRANCO, Two algebraic approaches to variants of the concatenation product, *Theoret. Comput. Sci.* **369**,1-3 (2006), 406–426.
- 5. M. J. J. BRANCO, Deterministic concatenation product of languages recognized by finite idempotent monoids, *Semigroup Forum* **74**,3 (2007), 379–409.
- M. J. J. BRANCO AND J.-E. PIN, Equations for the polynomial closure, in *ICALP* 2009, Part II, S. Albers and W. Thomas (eds.), pp. 115–126, Lect. Notes Comp. Sci. vol. 5556, Springer, Berlin, 2009.
- M. LOTHAIRE, Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1997.
- D. PERRIN AND J.-E. PIN, Infinite Words, Pure and Applied Mathematics vol. 141, Elsevier, 2004. ISBN 0-12-532111-2.
- J.-E. PIN, Propriétés syntactiques du produit non ambigu, in 7th ICALP, pp. 483–499, Lect. Notes Comp. Sci. n° 85, Springer, Berlin, 1980.
- J.-E. PIN, A variety theorem without complementation, Russian Mathematics (Iz. VUZ) 39 (1995), 80–90.
- 11. J.-E. PIN, H. STRAUBING AND D. THÉRIEN, Locally trivial categories and unambiguous concatenation, J. of Pure and Applied Algebra 52 (1988), 297–311.
- J.-E. PIN AND D. THÉRIEN, The bideterministic concatenation product, Internat. J. Algebra Comput. 3 (1993), 535–555.
- J.-E. PIN AND P. WEIL, Polynomial closure and unambiguous product, *Theory Comput. Systems* 30 (1997), 1–39.
- M.-P. SCHÜTZENBERGER, Une théorie algébrique du codage, in Séminaire Dubreil-Pisot, année 1955-56, Exposé No. 15, 27 février 1956, 24 pages, Inst. H. Poincaré, Paris, 1956.
- M.-P. SCHÜTZENBERGER, Sur le produit de concaténation non ambigu, Semigroup Forum 18 (1976), 331–340.