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Abstract

The Conjecture of Rhodes, originally called the “type II conjecture”
by Rhodes, gives an algorithm to compute the kernel of a finite semigroup.
This conjecture has numerous important consequences and is one of the
most attractive problems on finite semigroups. It was known that the
conjecture of Rhodes is a consequence of another conjecture on the finite
group topology for the free monoid. In this paper, we show that the
topological conjecture and the conjecture of Rhodes are both equivalent
to a third conjecture and we prove this third conjecture in a number of
significant particular cases.

1 The conjecture of Rhodes and the topological

conjecture

In this paper, all semigroups (respectively monoids, groups) are finite except in
the case of free monoids or free groups. If M is a monoid, E(M) (respectively
Reg(M)) denotes the set of idempotents (respectively regular elements) of M . If
x ∈ M , xω denotes the unique idempotent of the subsemigroup of M generated
by x.

A block-group monoid is a monoid in which every R-class and every L-class
contain at most one idempotent. A number of equivalent conditions are given
in [11]. For instance, a monoid M is a block-group monoid if and only if, for
every regular J -class D of M , the semigroup D0 is a Brandt semigroup, or if
and only if the submonoid generated by E(M) is J -trivial. The class of all
block-group monoids forms a (pseudo)variety of monoids, denoted by BG.

We refer to [17] for an introduction to the conjecture of Rhodes and for all
undefined notations. Let M be a finite monoid. Recall that the kernel of M is
the submonoid

K(M) =
⋂

1τ−1

1Department of Computer Science. University of Nebraska-Lincoln, Lincoln. NE 68588,

USA.
2CNRS and University of Paris 7, LITP, Tour 55–65, 4 Place Jussieu, 75252 Paris Cedex

05, France.

1



where the intersection is taken over all relational morphisms τ from M into a
group G. D(M) is the smallest submonoid of M closed under “weak conjuga-
tion”: for every s, t ∈ M such that either sts = s or tst = t, the condition
u ∈ D(M) implies sut ∈ D(M). It is sometimes convenient to use the follow-
ing equivalent definition: D(M) is the subset of M generated by the grammar
GM = ({ξ}, ξ, P ) whose productions are

(1) ξ → 1

(2) ξ → ξξ

(3) for every s, t ∈ M such that sts = s, ξ → sξt,

(4) for every s, t ∈ M such that tst = t, ξ → sξt.

It is known that D(M) is a submonoid of K(M), and the conjecture of Rhodes
states that K(M) = D(M) for every monoid M .

We introduce a new monoid R(M), which is the smallest submonoid of M
such that, for every s, t ∈ M and e ∈ E(M), st ∈ R(M) implies set ∈ R(M).
The next proposition makes precise the relations between D(M) and R(M).

Proposition 1.1 For every monoid M , D(M) is contained in R(M).

Proof. . It suffices to show that, if u ∈ R(M) and sts = s, then sut, tus ∈
R(M). Since u ∈ R(M), there exists a sequence 1 = u0, u1, u2, . . . , un = u

such that ui+1 = sieiti and ui = siti for some si, ti ∈ M and ei ∈ E(M).
Now consider the sequence 1 = v0, v1 = st, vi+1 = suit, . . . , vn+1 = sut. Then,
for every i > 0, vi+2 = sui+1t = (ssi)ei(tit) and vi+1 = ssitit. Furthermore,
v1 = 1.(st).1 ∈ E(M) and v0 = 1. Since st is idempotent, it follows that
sut ∈ R(M) as required. The proof for tus is dual.

It is useful to know the behaviour of our three submonoids under quotient.

Proposition 1.2 Let π : M → N be a surjective morphism of monoids. Then

(a) (K(M))π = K(N),

(b) (D(M))π = D(N),

(c) (R(M))π ⊆ R(N).

Proof. (a) By Proposition 4.1 of [17], there exists a finite group G and a re-
lational morphism τ : M → G such that 1τ−1 = K(M). Then π−1τ : N → G

is a relational morphism. Thus 1(π−1τ)−1 = 1τ−1π = K(M)π and hence
K(N) ⊆ K(M)π.

Conversely, let τ : N → G be a relational morphism such that 1τ−1 =
K(N). Then πτ : M → G is a relational morphism. Thus K(M) ⊆ 1(πτ)−1 =
(1τ−1)π−1 = K(N)π−1. Therefore, K(M)π ⊆ K(N)π−1π = K(N).

(b) To every production, ξ → sξt (with sts = s) of GM , there corresponds in
GN the production ξ → (sπ)ξ(tπ) (with (sπ)(tπ)(sπ) = sπ). Therefore, if ξ → u

in GM , then ξ → uπ in GN , and hence uπ ∈ D(N). Conversely, let ξ → s′ξt′

(with s′t′s′ = s′) be a production of GN , and let x ∈ s′π−1 and y ∈ t′π−1. Set
s = (xy)2ω−1x and t = y. Then sts = s, sπ = s′ and tπ = t′. Therefore, ξ → sξt

is a production of GM , and for every u′ ∈ D(N), one can find u ∈ D(M) such
that uπ = u′.

(c) Let u ∈ R(M). Then there exists a sequence 1 = u0, u1, u2, . . . , un = u

such that, for 1 6 i 6 n, ui+1 = sieiti and ui = siti for some si, ti ∈ M and
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ei ∈ E(M). It follows ui+1π = (siπ)(eiπ)(tiπ) and uiπ = (siπ)(tiπ). Since eiπ

is idempotent, this shows that uπ ∈ R(N).

The topological conjecture refers to the coarsest topology on the free monoid
A∗ such that every monoid morphism ϕ from A∗ into a finite discrete group
is continuous (see [15, 18] for more details). It states that for every monoid
morphism π : A∗ → M into a monoid M , if P is a subset of M satisfying

for every s, t ∈ M and e ∈ E(M), st ∈ P implies set ∈ P , (*)

then the language Pπ−1 is open.
We can now prove the main result of this section.

Theorem 1.3 The following statements are equivalent:

(1) for every monoid M , K(M) = D(M) (the conjecture of Rhodes),

(2) for every monoid M , K(M) ⊆ R(M),

(3) the topological conjecture is true.

Proof. It is proved in [16] that the topological conjecture implies the conjecture
of Rhodes. Thus (3) implies (1) and (1) implies (2) follows from Proposition
1.1. Finally, suppose that K(M) is contained in R(M). Let π : A∗ → M be
a monoid morphism and let P be a subset of M satisfying (*). This condition
implies that for every s1, s2, . . . , sk ∈ P ,

R(M)s1R(M)s2R(M) · · ·R(M)skR(M) ⊆ P.

We have to show that the language L = Pπ−1 is open. Let u = a1 · · · an ∈ L.
By [17, Proposition 4.1] there exists a finite group G and a relational morphism
τ : M → G such that 1τ−1 = K(M) ⊆ R(M). Let

M
α−1

−→ N
β

−→ G

be the canonical factorization of τ . Now, by the universal property of the free
monoid, there exists a morphism γ : A∗N such that the following diagram
commutes:

A∗

N

M G

π

γ

βα

τ

Therefore, ω = 1(γβ)−1 is an open set and we have

ωπ = 1β−1γ−1γα ⊆ 1β−1α = 1τ−1 = K(M) ⊆ R(M)

It follows that

(ωa1ω · · ·ωanω)π ⊆ R(M)(a1π)R(M) · · ·R(M)(anπ)R(M) ⊆ P,
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whence ωa1ω · · ·ωanω ⊆ L. Now, by [18, Corollary 4.31], ωa1ω · · ·ωanω is an
open set containing u = a1 · · · an. Therefore L is open, and this proves the
topological conjecture.

2 A reduction result

In this section, we give a simple proof of a theorem of Henckell and Rhodes [8]
which shows that the conjecture of Rhodes can be reduced to the case that M
belongs to the variety BG. We first establish an elementary result.

Proposition 2.1 For every monoid M , the syntactic monoid of R(M) belongs
to BG.

Proof. Let ∼R(M) be the syntactic congruence of R(M) in M . Recall that
u ∼R(M) v if and only if, for every x, y ∈ M ,

xuy ∈ R(M) ⇐⇒ xvy ∈ R(M).

It suffices to show that, for all e, f ∈ E(M), e R f (respectively e L f) implies
e ∼R(M) f . We treat the case e R f (the other case being similar). Then we
have ef = f and fe = e. Suppose that set ∈ R(M). Then (se)ft ∈ R(M) and
hence sft ∈ R(M). Conversely, sft ∈ R(M) implies set ∈ R(M). It follows
that e ∼R(M) f as required.

Theorem 2.2 Let M be a monoid, and let π : M → N be the syntactic mor-
phism of R(M). Then K(M) is contained in R(M) if and only if K(N) is
contained in R(N).

Proof. Suppose first that K(M) is contained in R(M) and let n ∈ K(N).
Since (K(M))π = K(N) by Proposition 1.2, there exists m ∈ K(M) such that
mπ = n. Thus m ∈ R(M) and n = mπ ∈ R(N) by Proposition 1.2. Thus
K(N) is contained in R(N).

Conversely, suppose that K(N) is contained in R(N), and let m ∈ K(M).
Then, by Proposition 1.2, n = mπ ∈ K(N) and hence n ∈ R(N). Therefore,
there exists a sequence 1 = u0, u1, u2, . . . , uk = n such that, for 1 6 i 6 k,
ui+1 = sieiti and ui = siti, for some si, ti ∈ N and ei ∈ E(N). We show
by induction on i that uiπ

−1 is contained in R(M). Since N is the syntactic
monoid of R(M), it is equivalent to show that uiπ

−1 ∩ R(M) 6= ∅. The result
is trivial for i = 0, since 1 ∈ 1π−1. Suppose that uiπ

−1 ∩ R(M) 6= ∅, and let
xi ∈ siπ

−1, yi ∈ tiπ
−1 and let fi ∈ eiπ

−1 be an idempotent. Then xiyi ∈ uiπ
−1

and thus xiyi ∈ R(M) by the induction hypothesis. Therefore, xifiyi ∈ R(M),
(xifiyi)π = ui+1, and hence ui+1π

−1 ∩R(M) 6= ∅. Finally, we have m ∈
nπ−1 = ukπ

−1 and thus m ∈ R(M).

Corollary 2.3 (Henckell and Rhodes[8]) If the conjecture of Rhodes is true
for every monoid M ∈ BG, then it is true for every monoid.
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Proof. Suppose that K(N) = D(N) for every monoid N ∈ BG. Then, by
Proposition 1.1, D(N) is contained in R(N) for every monoid N ∈ BG. Now
let M be a monoid, and let N be the syntactic monoid of R(M). Then N ∈ BG
by Proposition 2.1, and thus K(N) is contained in R(N). By Theorem 2.2, this
implies that K(M) is contained in R(M). By Theorem 1.3, this proves the
conjecture of Rhodes.

3 Some particular cases

In this section, we prove the conjecture “K(M) is contained in R(M)” in some
significant particular cases. We first recall the proof of an important result of
Henckell and Rhodes [9].

Theorem 3.1 If M is a J -trivial monoid, then K(M) is contained in R(M).

Proof. Denote by 6 the R-order on M . Thus x < y means that x 6 y and
that x and y are not R-related. Let E be the set of all sequences (s1, . . . , sn)
such that

1 > s1 > · · · > s1 · · · sn.

In particular, ( ) denotes the empty sequence. For each s ∈ M , we define a
transformation ŝ on E by setting

(s1, . . . , sn)ŝ =



















(s1, . . . , sn, s) if s1 · · · sn > s1 · · · sns,

(s1, . . . , si) if s1 · · · sn = s1 · · · sns, where i is

the smallest index such that si 6= s

and si+1 = · · · = sn = s

ŝ is actually a permutation on E for

(s1, . . . , sn−1, sn) = (s1, . . . , sn−1)ŝ

if sn = s and s1 · · · sn < s1 · · · sn−1,

and

(s1, . . . , sn) = (s1, . . . , sn, sn+1, . . . , sn+k)ŝ

with sn+1 = · · · = sn+k = s

if sn 6= s and s1 · · · sn > s1 · · · sns > · · ·

> s1 · · · sns
k = s1 · · · sns

k+1.

Let S(E) be the symmetric group on E and let τ : M → S(E) be the relational
morphism defined by

mτ = {ŝ1 · · · ŝn | s1 · · · sn = m}.

Let m ∈ K(M). Then, by definition of K(M), m ∈ 1τ−1 and there exist
s1, . . . , sn ∈ M such that s1 · · · sn = m and ŝ1 · · · ŝn is the identity on E.
Set, for every (s1, . . . , sn) ∈ E, (s1, . . . , sn)π = (s1 · · · sn). We claim that, for
0 6 i 6 n,

ui = (( )ŝ1 · · · ŝn−i)πsn−i+1 · · · sn ∈ R(M).
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If i = 0, since ŝ1 · · · ŝn is the identity on E, we have

u0 = (( )ŝ1 · · · ŝn)π = ( )π = 1 ∈ R(M).

By induction, suppose that the claim holds for i, and put ( )ŝ1 · · · ŝn−(i+1) =
(r1, . . . , rk). Thus, by induction ((r1, . . . , rk)ŝn−i)πsn−i+1 · · · sn ∈ R(M). Two
cases arise.

(a) If (r1, . . . , rk)ŝn−i = (r1, . . . , rk, sn−i), then

ui+1 = (r1, . . . , rk)πsn−i · · · sn

= (r1, . . . , rk, sn−i)πsn−i+1 · · · sn

= ((r1, . . . , rk)ŝn−i)πsn−i+1 · · · sn ∈ R(M)

(b) If (r1, . . . , rk)ŝn−i = (r1, . . . , ri) with ri+1 = . . . = rk = sn−i and
r1 · · · rksn−i = r1 · · · rk, then r1 · · · rksn−i = r1 · · · risωn−i, and hence, since
r1 · · · rksn−i+1 · · · sn ∈ R(M), one also has r1 · · · risωn−isn−i+1 · · · sn ∈
R(M), whence r1 · · · risn−isn−i+1 · · · sn ∈ R(M), that is, ui+1 ∈ R(M).

Thus the claim holds, and in particular, un = s1 · · · sn ∈ R(M).

Another important particular case follows from the theorem of Ash [2].

Theorem 3.2 If the idempotents of M commute, then D(M) = K(M) =
E(M) is contained in R(M).

These two results have the following consequences, which should be com-
pared with the results of [6, 5].

Corollary 3.3 If D(M) contains the regular elements of M , then K(M) is
contained in R(M).

Proof. Let π : M → N be the syntactic morphism of R(M). Then, by Propo-
sition 1.2,

(Reg(M))π = Reg(N) ⊆ D(M)π = D(N).

But N ∈ BG by Proposition 2.1, and it is shown in [11] that, for every block-
group monoid N , there exists a group G and a relational morphism τ : N → G

such that 1τ−1 is J -trivial. In particular, K(N) is J -trivial. Finally, since
D(N) is contained in K(N), D(N) is also J -trivial. Therefore, Reg(N) =
E(N), and thus N itself is J -trivial. Now by Theorem 3.1, K(N) is contained
in R(N), and by Theorem 2.2, K(M) is contained in R(M).

Corollary 3.4 If the idempotents of M form a subsemigroup, then K(M) is
contained in R(M).

Proof. Let π : M → N be the syntactic morphism of R(M). Then N ∈ BG by
Proposition 2.1, and, by [11, Proposition 2.3], the idempotents of N generate
a J -trivial monoid T . But since the idempotents of M form a subsemigroup,
T is also an idempotent semigroup (or band). Now a semigroup that is both
J -trivial and idempotent is commutative. In other words, the idempotents of
N commute, and K(N) is contained in R(N) by Theorem 3.2. The corollary
now follows from Theorem 2.2.
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Added in proof

Since the time that this paper was submitted for publication in February 1989,
a number of important results related to this paper including two proofs of the
Rhodes conjecture have appeared. The first proof due to Ash [4, 3] uses Ramsey
Theory and the Theory of Inverse Semigroups. The second proof due to Ribes
and Zaleskii [22] uses the theory of profinite groups acting on profinite graphs.
This last approach was motivated by a conjecture of Pin and Reutenauer [19]:
“The product of a finite collection of finitely generated subgroups of a free group
is closed in the profinite topology.” The main result of [19] showed that this
conjecture implies the Rhodes conjecture.

The main result of the present paper now immediately gives that the topo-
logical conjecture in the free monoid is true. Soon after hearing the proof of
Ash, Margolis proved that the Rhodes conjecture also implied the conjecture of
Pin and Reutenauer cited above [14]. Thus, the Rhodes conjecture is equivalent
to both the topological conjecture on the free monoid and the Pin-Reutenauer
conjecture on the profinite topology of the free group. These and many other
nontrivial consequences of these important occurrences have appeared in [7].
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