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Abstract. Carrying on the work of Arnold, Pécuchet and Perrin, Wilke
has obtained a counterpart of Eilenberg’s variety theorem for finite and
infinite words. In this paper, we extend this theory for classes of lan-
guages that are closed under union and intersection, but not necessarily
under complement. As an example, we give a purely algebraic charac-
terization of various classes of recognizable sets defined by topological
properties (open, closed, FΣ and Gδ) or by combinatorial properties

Carrying on the work of Arnold [1], Pécuchet [7, 8] and Perrin [9–11], Wilke
[25, 26] has obtained a counterpart of Eilenberg’s variety theorem for finite and

infinite words. The word “and” is emphasized in the last sentence, because it
is really important to work simultaneously with finite and infinite words. The
fitness of this approach was corroborated by recent contributions [13, 14, 18, 25,
27].

A variant of the notion of syntactic semigroup was recently proposed by the
author [17]. The key idea is to define a partial order on syntactic semigroups,
leading to the notion of ordered syntactic semigroups. The resulting extension
of Eilenberg’s variety theory permits to treat classes of languages that are closed
under union and intersection, but not necessarily under complement, a major
difference with the original theory.

The aim of this paper is to extend this theory to infinite words, thus com-
pleting the table below. In the setting proposed by Wilke, semigroups are not
suitable any more. They can be replaced by ω-semigroups, which are, roughly
speaking, semigroups equipped with an infinite product [13, 25, 27].

Eilenberg [4] Pin [17]
Finite words Varieties of semigroups Var. of ordered semigroups

⇔ +-varieties ⇔ Positive +-varieties
Wilke [25, 26] This paper

Finite or Varieties of ω-semigroups Var. of ordered ω-semigroups
infinite words ⇔ ∞-varieties ⇔ Positive ∞-varieties

The “ordered” approach has many interesting consequences but leads to a com-
plete rewriting of the theory. We have selected three examples, of rather different
nature, to convince the reader of the power of this new approach.



In Sect. 5, we give a purely algebraic characterization of four classes of rec-
ognizable sets defined by topological properties. This includes in particular the
class of deterministic ω-languages (i.e. recognized by a deterministic Büchi au-
tomaton). Similar results were known only for topological classes closed under
complement. Note that all these characterizations are effective, since a simple
algorithm to compute the syntactic ω-semigroup of a recognizable ω-language
was given in [13].

In Sect. 6 we address a question originally considered by Pécuchet [7, 8]. Since
every recognizable ω-language can be written as a finite union of languages of
the form XY ω, where X and Y are recognizable languages, the question arose to
know whether this result could be “relativized” to varieties. Theorem 3, which
extends the results of Pécuchet, gives such a result for varieties of ordered semi-
groups. It requires the concept of weak recognizability, introduced by Perrin [11],
and the notion of ordered Büchi automaton, which might be interesting in itself.

Our last example, developed in Sect. 7, is a good illustration of the problems
that arise when trying to generalize to infinite words a given class of recognizable
languages. Indeed, as was observed by Pécuchet, there are at least three natural
ways to associate a class of ω-languages to a variety of finite semigroups V.
One can consider the sets recognized by a finite ω-semigroup S whose semigroup
part belongs to V, or those weakly recognized by a semigroup of V, or finally,
inspired by McNaughton’s theorem, the boolean combinations of sets of the form
−→
L where L is recognized by a semigroup of V. We will see how these three classes
relate to each other in our case study, the shuffle ideals.

Due to the lack of place, no proofs are given, but they can be found in [14].
For more details, the reader is referred to [15, 16, 20] for the variety theory for
finite words and to [13, 14, 19, 24–26] for the theory of ω-languages.

1 Notations and basic definitions

Let A be a finite alphabet. The free monoid on A is denoted A∗ and the free
semigroup, A+. The set of infinite words on A is denoted Aω . Finally, A∞ denotes
the set of finite or infinite words. In this paper, a subset X of A∞ will be
systematically identified with the pair (X+, Xω), where X+ = X ∩ A+ and
Xω = X ∩ Aω.

We now briefly review the standard definition of a Büchi automaton and
introduce the notion of an ordered Büchi automaton.

1.1 Büchi automata

A Büchi automaton is a 5-tuple A = (Q, A, E, I, F ) where

(1) (Q, A, E) is a finite (non deterministic) automaton,

(2) I and F are subsets of Q, called the set of initial and final states.

A finite path in A is successful if its origin is in I and its end is in F . An infinite
path p is successful if its origin is in I and if some state of F occurs infinitely
often in p.



The set of finite (respectively infinite) words recognized by A is the set of
the labels of all successful finite (respectively infinite) paths of A. A set of finite
(respectively infinite) words is recognizable (or regular) if it is recognized by a
finite Büchi automaton.

A Büchi automaton A = (Q, A, E, I, F ) is said to be deterministic if I is a
singleton and if E contains no pair of transitions of the form (q, a, q1), (q, a, q2)
with q1 6= q2. In particular, each word u is the label of at most one path starting
from the initial state. It follows that an infinite word is accepted by A if and
only if it has infinitely many prefixes accepted by A. Therefore, if L denotes the
set of finite words recognized by A, then

−→
L = {u ∈ Aω | u has infinitely many prefixes in L}.

is the set of infinite words recognized by A.

1.2 Ordered Büchi automata

An ordered automaton is a Büchi automaton A = (Q, A, E, I, F ) in which the
set of states Q is equipped with a partial order ≤ satisfying the two following
conditions, for all p, q, q′ ∈ Q and a ∈ A:

(1) if p ≤ q and (q, a, q′) ∈ E, there exists a state p′ ≤ q′ such that (p, a, p′) ∈
E,

(2) The set F of final states is an order ideal: if q ∈ F and p ≤ q, then p ∈ F .

Condition (1) can be extended by transitivity as follows:

(3) if p ≤ q and if there is a path from q to q′ labeled by u, there exists a state
p′ ≤ q′ such that u is the label of a path from p to p′.

If A is a deterministic automaton, condition (1) can be simplified as follows

(4) if p ≤ q and if q· a is defined, then p· a is defined and satisfies p· a ≤ q· a.

2 Ordered algebraic structures

We introduce in this section our main algebraic tools : ordered semigroups, ω-
semigroups and syntactic ω-semigroups.

2.1 Ordered semigroups

A quasi-order is a reflexive and transitive relation. Given a quasi-order R, the
relation ∼ defined by x ∼ y if and only if x R y and y R x is an equivalence
relation, called the equivalence relation associated with R. If this equivalence
relation is the equality relation, the relation R is an order .

A relation R on a semigroup S is stable if, for every x, y, z ∈ S, x R y implies
xz R yz and zx R zy. An ordered semigroup is a semigroup S equipped with
a stable order relation ≤ on S. Note that any semigroup, equipped with the
equality relation, becomes an ordered semigroup.



Let S be an ordered semigroup. An ordered subsemigroup of S is a subset T
of S such that t, t′ ∈ T implies tt′ ∈ T . An order ideal of S is a subset I of S
such that, if x ≤ y and y ∈ I, then x ∈ I.

A congruence on an ordered semigroup S is a stable quasi-order which is
coarser than or equal to ≤. In particular, the order relation ≤ is itself a congru-
ence. If � is a congruence on S, then the equivalence relation ∼ associated with
� is a congruence on S. Furthermore, there is a well-defined stable order on the
quotient set S/∼, given by [s] ≤ [t] if and only if s � t. Thus (S/∼,≤) is an
ordered semigroup, also denoted S/�.

Given two ordered semigroups S and T , their product S × T is the ordered
semigroup defined on the set S × T by the law (s, t)(s′, t′) = (ss′, tt′) and the
order given by (s, t) ≤ (s′, t′) if and only if s ≤ s′ and t ≤ t′.

A morphism of ordered semigroups ϕ : S → T is a semigroup morphism
from S into T such that, for every x, y ∈ S, x ≤ y implies ϕ(x) ≤ ϕ(y). A
morphism of ordered semigroups ϕ : S → T is an isomorphism if and only if ϕ
is a bijective semigroup morphism and, for every x, y ∈ S, x ≤ y is equivalent
with ϕ(x) ≤ ϕ(y).

Let S and T be two ordered semigroups. Then S is a quotient of T if there
exists a surjective morphism from T onto S, and S divides T if S is a quotient of
an ordered subsemigroup of T . Division is a quasi-order on ordered semigroups.
Furthermore, one can show that two finite ordered semigroups divide each other
if and only if they are isomorphic.

A subset X of A+ is recognized by an ordered semigroup S if there exists
an ideal order I of S and a semigroup morphism ϕ : A+ → S such that X =
ϕ−1(I). It is not difficult to see that a language is recognizable if and only if it
is recognized by a finite ordered semigroup.

The syntactic congruence of a recognizable subset X of A+ is the stable
quasiorder �X defined on A+ by u �X v if and only if, for every x, y ∈ A∗,

xvy ∈ X ⇒ xuy ∈ X

The equivalence relation ∼X associated with �X is called the syntactic equiva-

lence of X . Thus u ∼X v if and only if, for every x, y ∈ A∗,

xuy ∈ X ⇐⇒ xvy ∈ X

The ordered semigroup S(X) = A+/�X is the ordered syntactic semigroup of
X and the order relation on S(X) the syntactic order of X .

2.2 Transition semigroup of a Büchi automaton

A standard construction associates to each finite automaton a finite semigroup,
its transition semigroup. We define in this section the ordered version of this
notion.

Let A = (Q, A, E, I, F ) be a Büchi automaton. Denote by R(Q) the semi-
group of relations on Q, under composition of relations. Then the map ϕ : A+ →



R(Q), defined by

ϕ(u) = {(q, q′) ∈ Q × Q | there is a path of label u from q to q′}

is a morphism of semigroups, and the semigroup S(A) = ϕ(A+) is called the
transition semigroup of A.

If A is ordered, S(A) is naturally equipped with a relation � defined by
u′ � u if and only if, for all (p, q) ∈ u, there exists q′ ≤ q such that (p, q′) ∈ u′.
Equivalently, u′ � u if and only if, for all (p, q) ∈ u and for all p′ ≤ p, there exists
q′ ≤ q such that (p′, q′) ∈ u. One can show that this relation � is a congruence of
ordered semigroup on (S(A), =), but it is not necessarily an order. The ordered
semigroup SO(A) = (S(A)/�) is called the transition ordered semigroup of A.

2.3 ω-semigroups

Finite semigroups can be viewed as a two-sided algebraic counterpart of finite
automata that recognize finite words. In the case of infinite words, they can be
replaced by ω-semigroups, which are, roughly speaking, semigroups equipped
with an infinite product.

More formally, an ω-semigroup is a two-sorted algebra S = (S+, Sω) equipped
with the following operations:

(1) A product S+ ×S+ → S+, that associates to each pair (s, t) ∈ S+ ×S+ an
element of S+ denoted st,

(2) A mixed product S+×Sω → Sω, that associates to each pair (s, t) ∈ S+×Sω

an element of Sω denoted st,

(3) An infinite product SN
+ → Sω, that associates to each infinite sequence

s0, s1, s2, . . . of elements of S+ an element of Sω denoted s0s1s2 · · · .

These three operations satisfy all possible types of associativity (a precise defini-
tion can be found in [13]). In particular, S+, equipped with the binary operation,
is a semigroup and for all s, t ∈ S+ and u ∈ Sω, s(tu) = (st)u. The infinite prod-
uct of the sequence s, s, s, . . . is denoted sω.

In particular, we denote by A∞ the ω-semigroup (A+, Aω) equipped with the
usual concatenation product.

Given two ω-semigroups S = (S+, Sω) and T = (T+, Tω), a morphism of

ω-semigroups S is a pair ϕ = (ϕ+, ϕω) consisting of a semigroup morphism
ϕ+ : S+ → T+ and of a mapping ϕω : Sω → Tω preserving the mixed product
and the infinite product: for every sequence (sn)n∈N of elements of S+,

ϕω(s0s1s2 · · ·) = ϕ+(s0)ϕ+(s1)ϕ+(s2) · · ·

and for every s ∈ S+, t ∈ Sω, ϕ+(s)ϕω(t) = ϕω(st). In the sequel, we shall omit
the subscripts, and use the simplified notation ϕ instead of ϕ+ and ϕω.

Algebraic concepts like subsemigroup, quotient, division and product are
easily adapted to ω-semigroups.



2.4 Ordered ω-semigroups

An ordered ω-semigroup is an ω-semigroup (S+, Sω) equipped with two partial
orders on S+ and Sω which are stable under the operations of ω-semigroup:

(1) for all s, s′, t ∈ S+, s ≤ s′ implies ts ≤ ts′ and st ≤ s′t,

(2) for all s, s′ ∈ S+ and for all u ∈ Sω, s ≤ s′ implies su ≤ s′u,

(3) if (sn)n∈N and (s′
n
)n∈N are two sequences of elements of SN

+ such that
sn ≤ s′n for all n, then s0s1s2 · · · ≤ s′0s

′

1s
′

2 · · · .

A subset X = (X+, Xω) of A∞ is recognized by an ordered ω-semigroup S if there
exists an ideal order I = (I+, Iω) of S and a morphism of ordered ω-semigroup
ϕ : A∞ → S such that X+ = ϕ−1(I+) and Xω = ϕ−1(Iω).

3 Ordered syntactic ω-semigroup

The syntactic congruence of a recognizable subset X of A∞ is the quasiorder
�X defined on A+ by u �X v if and only if, for every x, y ∈ A∗ and for every
z ∈ Aω,

xvy ∈ X+ ⇒ xuy ∈ X+ (1)

xvyzω ∈ Xω ⇒ xuyzω ∈ Xω (2)

x(vy)ω ∈ Xω ⇒ x(uy)ω ∈ Xω (3)

and on Aω by u �X v if and only if, for every x ∈ A∗,

xv ∈ Xω ⇒ xu ∈ Xω

The syntactic ordered ω-semigroup of X , denoted by S(X), is the quotient of
A∞ by the syntactic congruence of X . It is a finite object, that can be effectively
constructed, given a Büchi automaton recognizing X (see [13].)

4 The variety theorem

We state in this section our extended version of the variety theorem.
A variety of ordered semigroups is a class of finite ordered semigroups closed

under division and finite product. If V is a variety of ordered semigroups, a V-

language is a language recognized by an ordered semigroup of V, or, equivalently,
whose syntactic ordered semigroup belongs to V.

Similarly, a variety of ordered ω-semigroups is a class of finite ordered ω-
semigroups closed under division and finite product. If V is a variety of ordered
ω-semigroups, denote by V(A∞) the set of recognizable subsets of A∞ recognized
by an ordered ω-semigroup of V. This is also the set of subsets of A∞ whose
syntactic ordered ω-semigroup belongs to V.

An ∞-class of recognizable sets is a correspondence which associates a set
C(A∞) of recognizable sets of A∞ with every finite alphabet A. In particular,
the correspondence V → V associates an ∞-class of recognizable sets with every



variety of ordered ω-semigroups. The variety theorem states in particular that
this correspondence is one-to-one. It also gives an abstract description of the
classes V arising in this way.

Given a subset X of A∞, a word u ∈ A∗ and an infinite word v of Aω , set

u−1X = {x ∈ A∞ | ux ∈ X}

Xu−ω = {x ∈ A+ | (xu)ω ∈ X}

Xv−1 = {x ∈ A+ | xv ∈ X}

A positive ∞-variety is an ∞-class such that

(1) For every alphabet A, V(A∞) is closed under finite union and finite inter-
section,

(2) for every semigroup morphism ϕ : A+ → B+, X ∈ V(B∞) implies
ϕ−1(X) ∈ V(A∞),

(3) If X ∈ V(A∞), then, for all u ∈ A∗, u−1X ∈ V(A∞) and Xu−ω ∈ V(A∞)
and for all u ∈ Aω , Xu−1 ∈ V(A∞).

It is important to remember that the elements of a positive ∞-variety are sets
of finite or infinite words. The variety theorem can now be stated.

Theorem 1. The correspondence V → V defines a bijection between varieties

of ordered ω-semigroups and positive ∞-varieties.

Varieties are conveniently defined by identities. Let (u, v) be a pair of words
of A+. An ordered semigroup S satisfies the identity u ≤ v if and only if ϕ(u) ≤
ϕ(v) for every morphism of ordered ω-semigroups ϕ : A+ → S.

Similarly, let (u, v) be a pair of words of A∞. An ordered ω-semigroup S
satisfies the identity u ≤ v if and only if ϕ(u) ≤ ϕ(v) for every morphism of
ordered ω-semigroups ϕ : A∞ → S. Given a set Σ of identities, the class of all
finite ordered ω-semigroups that satisfy all the identities of Σ is a variety of
ordered ω-semigroup, denoted [[Σ]].

In a finite semigroup, the subsemigroup generated by an element x contains a
unique idempotent, denoted by xπ . We will also adopt this notation for identities
(this can be rigorously justified, see [21]). For instance, an ordered ω-semigroup S
belongs to the variety [[xπyω ≤ xω]] if and only if, for every x, y ∈ S+, xπyω ≤ xω .
Note that xπ is an idempotent of S+, while xω and xπyω are elements of Sω.

5 Topological classes

Our ordered version of the variety theorem is perfectly suited to give algebraic
characterization of certain topological properties of recognizable ω-languages.
Similar results [25, 26, 13] were so far limited to classes closed under complement.

Recall that the topology on Aω is defined by considering A as a discrete space
and by taking the product topology. In particular the open sets of Aω are the
sets of the form XAω for some X ⊂ A+. A set is closed if its complement is
open. Open sets form the first level Σ1 of the Borel hierarchy. The second level



Σ2 consists of the countable intersection of open sets. There is a dual hierarchy,
whose first level is the class Π1 of closed sets. The second level Π2 consists of
the countable unions of closed sets. One can show that the recognizable sets of
Σ2 are exactly the deterministic ω-languages. These classes have the following
algebraic characterization.

Theorem 2. Let X be a recognizable subset of Aω and let S(X) be its syntactic

ordered ω-semigroup. Then:

(1) X is in Σ1 if and only if S(X) belongs to [[xπyzω ≤ xω ]],

(2) X is in Π1 if and only if S(X) belongs to [[xω ≤ xπyzω]],

(3) X is in Σ2 if and only if S(X) belongs to [[(xπy)ω ≤ (xπy)πxω]],

(4) X is in Π2 if and only if S(X) belongs to [[(xπy)πxω ≤ (xπy)ω]].

6 Weak recognizability

It is a well know fact that every recognizable set of Aω is a finite union of sets
of the form XY ω, where X and Y are recognizable languages. Pécuchet [7, 8]
succeeded to relativize this result to varieties of semigroups. We give in this
section an even stronger version, that works for varieties of ordered semigroups.

We first need some auxiliary definitions. Let S be a finite ordered semigroup
and let ϕ : A+ → S be a morphism of semigroups. A linked pair is a pair
(s, e) ∈ S×S such that e2 = e and se = s. These linked pairs play an important
role in the study of finite ω-semigroups (see [13].) Denote by ↓s the order ideal
generated by an element s of S. Thus, by definition ↓ s = {t ∈ S | t ≤ s}. An
ω-language is called ϕ-simple if it is of the form

ϕ−1(↓s)
(

ϕ−1(↓e)
)ω

where (s, e) is a linked pair. Note that ϕ−1(↓ s) = ϕ−1(↓ s)
(

ϕ−1(↓ e)
)∗

and

ϕ−1(↓e) =
(

ϕ−1(↓e)
)+

. Furthermore, these two languages are, by construction,
recognized by the ordered semigroup S. Finally, let us say that an ω-language
is weakly recognized by ϕ if it is a finite union of ϕ-simple ω-languages. Our
theorem can now be stated:

Theorem 3. Let V be a variety of ordered semigroups, and let Z be a subset of

Aω. The following conditions are equivalent:

(1) Z is recognized by an ordered Büchi automaton whose ordered transition

semigroup belongs to V,

(2) Z is weakly recognized by an ordered semigroup of V,

(3) Z is a finite union of sets of the form XY ω, where XY ∗ and Y + are

V-languages.

The reader may observe that this result does not fit directly into the theory
of varieties, as developed in Sect. 4. Actually, the connection between weak
recognizability and recognizability is a difficult topic, that cannot be covered
here. But in some cases (see for instance Theorems 5, 7 and 9 below), weak
recognizability is equivalent with recognizability.



7 Shuffle ideals

As an illustration of our results, we investigate in this section the analog for
infinite words of some standard classes of recognizable languages. Recall that
a shuffle ideal is a finite union of languages of the form A∗a1A

∗a2A
∗ · · ·anA∗,

where n > 0 and a1, . . . , an are letters of A. It was shown in [22] that a language
is a shuffle ideal if and only if its syntactic ordered monoid satisfies the identity
x ≤ 1. It is equivalent to saying that its syntactic ordered semigroup satisfies
the identities xy ≤ x and yx ≤ x.

Several extensions to ω-languages can be proposed. A first possibility is to
consider finite unions of sets of the form A∗a1A

∗a2 · · ·A
∗akAω.

Theorem 4. Let Z be a recognizable subset of Aω. The following conditions are

equivalent:

(1) Z is a finite union of sets of the form A∗a1A
∗a2 · · ·A

∗akAω, where a1,

. . . , ak ∈ A,

(2) Z is of the form
−→
L , where L is a shuffle ideal,

(3) S(Z) satisfies the identities xy ≤ x, yx ≤ x and xπyω ≤ xω.

Another possibility is to consider ω-languages whose syntactic ordered ω-semi-
group satisfy the identities xy ≤ x and yx ≤ x.

Theorem 5. Let Z be a recognizable subset of Aω. The following conditions are

equivalent:

(1) Z is a positive boolean combination of sets of the form A∗a1A
∗ · · ·A∗akAω,

with k > 0, a1, . . . , ak ∈ A, or (A∗a)ω, with a ∈ A,

(2) Z is a finite union of sets of the form XY ω, where XY ∗ and Y + are shuffle

ideals,

(3) Z is weakly recognized by an ordered semigroup of [[xy ≤ x, yx ≤ x]],

(4) Z is weakly recognized by an ordered semigroup of [[xπy ≤ xπ, yxπ ≤ xπ ]],

(5) S(Z) satisfies the identities xy ≤ x and yx ≤ x,

(6) S(Z) satisfies the identities xπy ≤ xπ and yxπ ≤ xπ.

The equivalence of conditions (5) and (6) seems to contradict Theorem 1 since
the varieties of ordered ω-semigroups [[xy ≤ x, yx ≤ x]] and [[xπy ≤ xπ , yxπ ≤
xπ ]], which are distinct, define the same class of ω-languages. But in fact, they
define two different classes of languages, and hence, two different classes of ∞-
languages, which explains the paradox.

The previous results lead to consider the variety of ordered semigroups de-
fined by the identity xy ≤ x. The corresponding languages are finite unions of
languages of the form

a0A
∗a1A

∗a2A
∗ · · · anA∗

where a0, a1, . . . , ak ∈ A. We have again two possible generalizations.

Theorem 6. Let Z be a recognizable subset of Aω. The following conditions are

equivalent:



(1) Z is a finite union of sets of the form a0A
∗a1A

∗ · · ·A∗akAω, where a0, a1,

. . . , an ∈ A,

(2) Z is of the form
−→
L , where S(L) ∈ [[xy ≤ x]],

(3) S(Z) satisfies the identities xy ≤ x and xπyω ≤ xω.

The other possibility is to consider the ω-languages whose syntactic ordered
ω-semigroup satisfy the identity xy ≤ x.

Theorem 7. Let Z be a recognizable subset of Aω. The following conditions are

equivalent:

(1) Z is a positive boolean combination of sets of the form a0A
∗a1A

∗ · · · akAω

or (A∗a)ω, where a, a0, . . . , an ∈ A,

(2) Z is a finite union of sets of the form XY ω, where S(XY ∗), S(Y +) ∈
[[xy ≤ x]],

(3) Z is weakly recognized by an ordered semigroup of [[xy ≤ x]],

(4) S(Z) satisfies the identity xy ≤ x.

One can also consider boolean combination of shuffle ideals. These languages are
called piecewise testable and have been intensively studied. They admit a simple,
but deep algebraic characterization, discovered by Simon [23]. Recall that a finite
semigroup is J -trivial if two elements that generate the same ideal are equal. A
recognizable language is piecewise testable if and only if its syntactic semigroup
is J -trivial. There are again two possible extensions to infinite words, which are
more precise versions of results by Pécuchet [7, 8].)

Theorem 8. Let Z be a recognizable subset of Aω. The following conditions are

equivalent:

(1) Z is a boolean combination of sets of the form A∗a1A
∗a2 · · ·A

∗akAω, where

a1, . . . , ak ∈ A,

(2) Z is a boolean combination of sets of the form
−→
L , where L is a shuffle

ideal,

(3) Z =
−→
L , where L is piecewise testable,

(4) Z is a boolean combination of sets of the form
−→
L , where L is piecewise

testable,

(5) S+(Z) is J -trivial and S(Z) satisfies the identity (xπyπ)πxω = (xπyπ)πyω.

Theorem 9. Let Z be a recognizable subset of Aω. The following conditions are

equivalent:

(1) Z is a boolean combination of sets of the form A∗a1A
∗ · · ·A∗akAω, with

a1, . . . , ak ∈ A, or (A∗a)ω, with a ∈ A,

(2) Z is a boolean combination of sets of the form XY ω, where XY ∗ and Y +

are shuffle ideals,

(3) Z is a finite union of sets of the form XY ω, where XY ∗ and Y + are

piecewise testable,

(4) Z is a boolean combination of sets of the form XY ω, where XY ∗ and Y +

are piecewise testable,



(5) Z is weakly recognized by a J -trivial semigroup,

(6) S+(Z) is J -trivial.
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2. J. R. Büchi, Weak second-order arithmetic and finite automata, Z. Math. Logik
und Grundl. Math. 6, (1960) 66–92.
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