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Abstract

Operations on regular languages have been studied for fifty years, but

several major problems remain wide open. This paper surveys the semi-

group approach to these problems. We consider successively the star-

height problem, the Straubing-Thérien’s concatenation hierarchy and the

shuffle operation. On the algebraic side, we present Eilenberg’s variety

theory and its successive improvements, including the recent notion of

C-variety.

Recall that a language is a subset of a finitely generated free monoid. The aim
of this paper is to discuss various instances of the following general problem.

Problem. Given a “basis” of languages, a set of operations and some rules to
use them, describe the languages expressible from the basis by using the opera-
tions according to the rules.

In practice, a basis of languages will consist of a set of very simple languages,
such as the languages of the form {a}, where a is a letter of the alphabet. There
are many possible choices for the operations, but we shall restrict ourselves to
nine of them, that we now introduce.

1 Operations on languages

Let A be a finite alphabet and let A∗ be the free monoid on A. Let us describe
the operations we have in mind.

(1) Boolean operations, which comprise

(a) finite union and finite intersection (these operations are also called
the positive Boolean operations),

(b) complement (denoted by L→ Lc).

(2) Residual : given a language L and a word u of A∗, u−1L = {v | uv ∈ L}
and Lu−1 = {v | vu ∈ L}.
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(3) Star : L∗ is the submonoid of A∗ generated by L. Thus L∗ = {u1u2 · · ·un |
n > 0, u1, . . . , un ∈ L}.

(4) Product : the product of two languages L1 and L2 is the languages L1L2 =
{u1u2 | u1 ∈ L1, u2 ∈ L2}.

(5) Marked product : given letters a1, . . . , ak of A and languages L0, L1, . . . , Lk

ofA∗, the marked product L0a1L1 · · · akLk is the language {u0a1u1 · · · akuk |
u0 ∈ L0, . . . , uk ∈ Lk}.

(6) Shuffle product. The shuffle of two words u and v of A∗ is the set u X v of
words of A∗ of the form u1v1 · · ·unvn, with n > 0, u1, . . . , un, v1, . . . , vn ∈
A∗, u1 · · ·un = u, v1 · · · vn = v. For instance,

ab X ba = {abba, baab, abab, baba}

The shuffle of two languages L1 and L2 of A∗ is the set

L1 X L2 =
⋃

u1∈L1, u2∈L2

u1 X u2

(7) Morphisms. Let A and B be two alphabets, and let ϕ be a function from
A into B∗. Then ϕ extends in a unique way into a morphism from A∗ into
B∗. If L is a language of A∗, ϕ(L) = {ϕ(u) | u ∈ L} is a language of B∗.

(8) Inverse morphisms. If ϕ : A∗ → B∗ is a morphism and L is a language of
B∗, then ϕ−1(L) = {u ∈ A∗ | ϕ(u) ∈ L} is a language of A∗.

In our context, a positive Boolean algebra will be a class of languages closed
under finite union and finite intersection. Since the empty language ∅ (resp.
the full language A∗) can be considered as the union (resp. intersection) of
an empty family of languages, they belong to all positive Boolean algebras. A
Boolean algebra is a positive Boolean algebra closed under complement.

2 Rational and recognisable languages

Our first example is the class of rational languages. It is obtained by taking
the languages {a}, for each letter a, as the basis and by allowing the use of
only three operations, union, product and star, with no particular rules. If
A = {a, b}, languages like A∗abaA∗ or (aba)∗ba ∪ (bb(aa)∗ba)∗ are rational.

Rational languages were characterised by Kleene in a seminal paper pub-
lished in 1956 [13]. Kleene’s theorem states that the rational languages are
exactly the recognisable languages, that can be defined in (at least) three equiv-
alent ways. We recall here two of these definitions, one relying on deterministic
automata and one using finite monoids. A third possibility would be to make
use of nondeterministic automata, but we shall not consider this approach in
this paper.

A finite automaton is a quintuple A = (Q,A,E, q0, F ) where Q is a finite
set (the set of states), A is an alphabet, E is a subset of Q × A × Q (the set
of transitions), q0 is an element of Q (the initial state) and F is a subset of Q
(the set of final states). Two transitions (p, a, q) and (p′, a′, q′) are consecutive
if q = p′. A successful path in A is a finite sequence of consecutive transitions
starting in the initial state and ending in some final state

q0
a1−→ q1

a2−→ q2 · · · qn−1

an−→ qn ∈ F
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The word a1a2 · · · an is its label. The language recognised by A is the set of labels
of all the successful paths in A. A language is recognisable if it is recognised by
some finite automaton.

A finite automaton is deterministic if for each state p ∈ Q and each letter
a ∈ A, there is at most one state q such that (p, a, q) ∈ E. This unique state q
is denoted by p· a. Thus each letter a induces a partial function p → p· a from
Q into itself. One can show that every recognisable language can be recognised
by a deterministic automaton.

The definition involving monoids is more abstract. A monoid morphism
ϕ : A∗ →M recognises a language L of A∗ if there is a subset P of M such that
L = ϕ−1(P ). By a slight abuse of language, we also say in this case that M
recognises L.

It is not too difficult to show that the two definitions, by automata and by
monoids, are equivalent. We can now reformulate Kleene’s theorem as follows.

Theorem 2.1 (Kleene 1956) For a language L, the following conditions are
equivalent:

(1) L is rational,

(2) L is recognised by a finite monoid,

(3) L is recognised by a finite automaton.

The term regular is also frequently usually used in the literature as an equivalent
to recognisable or rational. It is important, however, to distinguish the latter
two notions. First, both of them can be extended to arbitrary monoids, but
they do not coincide in general. Secondly, depending on the problem, it might
be more appropriate to take one definition or the other. Precise examples are
given in the next paragraph.

A consequence of Kleene’s theorem is that the class of recognisable languages
is closed under the nine operations considered in Section 1. The importance of
Kleene’s theorem stems from the fact that some closure properties are transpar-
ent for rational expressions while others are much easier to prove using automata
or monoids. For instance, it is straighforward to see that the class of rational
languages is closed under union, (marked) product, star and morphisms. On the
other hand, it is easy to see that recognisable languages are closed under com-
plement, residuals, shuffle and inverse morphims. It is also possible, although
slightly more difficult, to prove directly that recognisable languages are closed
under (marked) product and star, but proving that rational languages are closed
under complement without invoking Kleene’s theorem is a real challenge. The
skeptical reader may try to find a rational expression for the complement of the
language (((ab)∗aba)∗ba)∗ to apprehend the difficulty of the problem.

The proof of Kleene’s theorem is interesting for itself, since it provides an
algorithm to convert a rational expression into a finite automaton and back. In
the sequel, we shall meet several decidability problems of the form decide whether
a given regular language satisfies a certain property. By Kleene’s theorem, the
solution of such a decision problem is independent of the representation chosen
for the regular language, since descriptions by a rational expression, a finite
automaton or a finite monoid can be translated one into another. However, the
chosen representation has a strong influence on the complexity of the decision
algorithms, a problem that we shall not address in this paper.
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3 Star-height

In this section, we focus our attention on the star operation.

3.1 Star-free languages

The class of star-free languages is obtained by taking the languages {1} and
{a}, for each letter a, as the basic class B and by allowing Boolean operations
and product. According to our general definition of a Boolean algebra, the
languages ∅ and A∗ are star-free. If A = {a, b}, the following languages are also
star-free:

a∗ = (A∗bA∗)c

(ab)∗ = (bA∗ ∪A∗aaA∗ ∪A∗bbA∗ ∪A∗a)c

One can also show that the languages {ab, ba}∗ and (a(ab)∗b)∗ are star-free but
that the languages (aa)∗ and {aba, b}∗ are not. Deciding whether a given ratio-
nal language is star-free is a difficult problem, which was solved by Schützen-
berger in 1965.

Before stating this result, we need to introduce a few definitions. Let A be
a finite deterministic automaton recognising a language L of A∗. A state q is
called accessible if there exists a path from the initial state to q, and coaccessible
if there is a path from q to some final state. By removing the states of A
which are not simultaneously accessible and coaccessible, one obtains a trim
automaton B that also recognises L. A further reduction consists in identifying
two states p and q whenever, for every u ∈ A∗, p·u is final if and only if q ·u is
final. Performing this equivalence on the set of states of B, one obtains a new
automaton, called the minimal automaton of L, which also recognises L. For
instance, the minimal automaton of the language {a, b}∗aA∗b{b, c}∗ is pictured
in Figure 3.1.

1 2 3

b a, c b, c

a

b

a

Figure 3.1: The minimal automaton of {a, b}∗aA∗b{b, c}∗.

The syntactic monoid of a language L can be defined in two equivalent ways.
First, it is the transition monoid of the minimal automaton of L. Secondly, it is
the quotient of A∗ by the syntactic congruence of L, defined on A∗ as follows:
u ∼L v if and only if, for every x, y ∈ A∗,

xvy ∈ L⇔ xuy ∈ L.

The syntactic monoid of the language L = {a, b}∗aA∗b{b, c}∗ and its J -class
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structure are given below

1 1 2 3
a 2 2 2
b 1 3 3
c − 2 3
ab 3 3 3
bc − 3 2
ca − 2 2

∗1

∗b ∗c

∗a ∗ab

∗ca ∗bc

Schützenberger [29] used the syntactic monoid to characterise the star-free lan-
guages. Recall that a finite monoid M is aperiodic if for each x ∈ M , there
exists n > 0 such that xn+1 = xn. Equivalently, a monoid is aperiodic if all the
groups it contains are trivial, or if the Green’s relation H is the equality.

Theorem 3.1 (Schützenberger 1965) A language is star-free if and only if
its syntactic monoid is finite and aperiodic.

A consequence of Schützenberger’s theorem is that one can effectively decide
whether a given regular language is star-free. For instance, {a, b}∗aA∗b{b, c}∗

is star-free, since its syntactic monoid is aperiodic, but (A2)∗ is not, since its
syntactic monoid is the cyclic group of order 2.

3.2 The star-height problem

By Kleene’s theorem, expressions built from letters by using Boolean opera-
tion, product and star represent regular languages. Such expressions are called
extended rational expressions. The star-height of such an expression is the max-
imum number of nested stars occurring in the expression. For instance, the
expression

({a, ba, abb}∗bba ∩ (aa{a, ab}∗))cbbA∗

is of star-height one, while the expression

(

a(ba)∗abb
)∗

bba ∩ (aa{a, ab}∗))cbbA∗

is of star-height two. The star-height of a language is the minimal star-height of
an expression representing the language. In particular a language of star-height
0 is a star-free language.

We have seen that the language (A2)∗ is not star-free. Since (A2)∗ is an
expression of star-height 1, this language has star-height exactly one. However,
it is an open problem to know whether there are languages of star-height 2. We
shall come back on this problem in Section 5.
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4 Concatenation hierarchies

In this section, we introduce a hierarchy among star-free languages of A∗, known
as the Straubing-Thérien’s hierarchy, or concatenation hierarchy.1 For historical
reasons, this hierarchy is indexed by half-integers. The level 0 consists of the
languages ∅ and A∗. The other levels are defined inductively as follows:

(1) the level n+ 1/2 is the class of union of marked products of languages of
level n;

(2) the level n+ 1 is the class of Boolean combination of languages of marked
products of level n.

We call the levels n (for some nonegative integer n) the full levels and the levels
n+ 1/2 the half levels.

It is not clear at first sight whether the Straubing-Thérien’s hierarchy does
not collapse, but this question was solved in 1978 by Brzozowski and Knast [6].

Theorem 4.1 (Brzozowski and Knast 1978) The Straubing-Thérien’s hi-
erarchy is infinite.

It is a major open problem on regular languages to know whether one can
decide whether a given star-free language belongs to a given level.

Problem 2. Given a half integer n and a star-free language L, decide whether
L belongs to level n.

One of the reasons why this problem is particularly appealing is its close con-
nection with finite model theory, first explored by Büchi in the early sixties.
Büchi’s logic comprises a relation symbol < and, for each letter a ∈ A a pred-
icate symbol a. First order formulas are built in the usual way by using these
symbols, the equality symbol, (first order) variables, Boolean connectives and
quantifiers. Formal definitions can be found for instance in [32], but here we
shall just present on an example how sentences are interpreted on finite words.
The sentence

ϕ1 = ∃x ∃y
(

(x < y) ∧ (ax) ∧ (by)
)

,

can intuitively be interpreted on a word u by the English sentence “there exist
two integers x < y such that, in u, the letter in position x is an a and the letter
in position y is a b”. Therefore, the set of words satisfying ϕ1 is A∗aA∗bA∗.
McNaughton and Papert [15] showed that a language is first-order definable
if and only if it is star-free. Thomas [32] (see also [16]) refined this result by
showing that the concatenation hierarchy of star-free languages corresponds,
level by level, to a hierarchy of first order formulas, the Σn-hierarchy. This
hierarchy can be defined inductively as follows:

(1) Σ0 consists of the quantifier-free formulas

(2) Σn+1 consist of the formulas of the form ∃x1 . . .∃xp∀y1 . . . ∀yq ϕ, where
p, q > 0 and ϕ is a Σn-formula.

(3) BΣn denotes the class of formulas that are Boolean combinations (that is,
conjunctions of disjunctions) of Σn-formulas.

1A similar hierarchy, called the dot-depth hierarchy was previously introduced by Brzo-

zowski, but the Straubing-Thérien’s hierarchy is easier to define.
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For instance, ∃x1∃x2∀x3∀x4∀x5∃x6 ϕ, where ϕ is quantifier free, is in Σ3. The
next theorem summarizes the results of [15, 32, 16].

Theorem 4.2

(1) A language is first-order definable if and only if it is star-free.

(2) A language is Σn-definable if and only if it is of level n− 1/2.

(3) A language is BΣn-definable if and only if it is of level n.

Thus deciding whether a language has level n is equivalent to a very natural
problem in finite model theory. The first decidabilty result was obtained by I.
Simon [30].

Theorem 4.3 (Simon 1972) A language has level 1 if and only if its syntactic
monoid is finite and J -trivial.

As in the case of star-free languages, the characterisation is given by a prop-
erty of the syntactic monoid. This raises the question whether other families of
regular languages can be described by an algebraic property of their syntactic
monoid. The solution to this question was given by Eilenberg [10] in his variety
theorem. We shall see in particular that the full levels of the concatenation
hierarchy are varieties in Eilenberg’s sense and thus can be described by some
properties of their syntactic monoid. However, Eilenberg’s theory does not ap-
ply to half levels, because they are not closed under complement. The solution,
proposed in [20], consists of using the syntactic ordered monoid in place of the
syntactic monoid. We briefly describe this extension before stating the variety
theorem and its extended version.

First recall that an ordered monoid is a monoid equipped with an order 6

compatible with the multiplication: x 6 y implies zx 6 zy and xz 6 yz.
We now give two equivalent definitions of the syntactic ordered monoid. We

start with the algorithmic definition, which is probably easier to understand.
Consider a minimal deterministic automaton A = (Q,A, · , i, F ). One defines a
partial order 6 on Q by p 6 q if and only if, for each u ∈ A∗, q ·u ∈ F ⇒ p·u ∈
F . For instance, for the automaton pictured in Figure 4.2, the partial order is
2 6 4 and 1, 2, 3, 4 6 0.

1 2 3 4

0

a b a

a, b

b a
b a, b

Figure 4.2: Minimal automaton of {a, aba}.
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The syntactic ordered monoid of a language is the transition monoid of its
minimal ordered automaton, ordered by u 6 v if and only if for each q ∈ Q,
q ·u 6 q · v.

The second definition is more abstract. The syntactic preorder 6L of a
language L is defined as follows: u 6L v iff, for every x, y ∈ A∗,

xvy ∈ L⇒ xuy ∈ L

This preorder induces a partial order on the syntactic monoid of L, called
the syntactic order of L. Thus the syntactic ordered monoid of L is equal
to (A∗/∼L,6L/∼L).

Example 4.1 The syntactic monoid and the syntactic order of the language
{a, b}∗aA∗b{b, c}∗ are pictured below:

ab

b

1 bc a

c

ca

∗
1

∗
b

∗
c

∗
a

∗
ab

∗
ca

∗
bc

Thus ab is the smallest element in the syntactic order of L, and ca is the greatest.

A variety of finite monoids is a class of finite monoids closed under taking sub-
monoids, quotients and finite products. Similarly, a variety of finite ordered
monoids is a class of finite ordered monoids closed under taking ordered sub-
monoids, quotients and finite products. Varieties of finite (ordered) semigroups
are defined analogously. There is an abundant literature on varieties and we
refer the reader to the books [1, 10, 19] for more details.

A convenient way to define varieties of finite monoids is to use identities.
Let u, v be words of the free monoid A∗. A monoid M satisfies the identity
u = v if, for each morphism ϕ : A∗ → M , ϕ(u) = ϕ(v). Similarly, an ordered
monoid (M,6) satisfies the identity u 6 v if, for each morphism ϕ : A∗ → M ,
ϕ(u) 6 ϕ(v). A variety of (ordered) monoids satisfies an identity if each of its
monoids satisfies it.

The definition of an identity can be extended to profinite identities, which
are formal equalities of the form u = v (or u 6 v) where u and v are profinite
words. We shall not attempt to define here profinite words nor profinite topology
and the reader is referred to [2, 3, 33] for more details. We shall however define
ω-terms, a special case of profinite words. An ω-term on an alphabet A is
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built from the letters of A using the usual concatenation product and the unary
operator x→ xω . Thus, if A = {a, b, c}, abc, aω and ((abωc)ωab)ω are examples
of ω-terms.

Let ϕ : A∗ → M be a morphism from A∗ into a finite monoid. The image
ϕ(t) of an ω-term t is defined recursively as follows. If t is a letter, then ϕ(t) is
already defined. If t and t′ are ω-terms, then ϕ(tt′) = ϕ(t)ϕ(t′). If t = uω, then
ϕ(t) is the unique idempotent power of ϕ(u).

Reiterman’s theorem [28] ensures that a class of finite monoids is a variety
if and only if it can be defined by a set of profinite identities. A similar result
holds for varieties of ordered monoids. We refer to [3] for a detailed survey of
this theory.

It is easy to prove directly that the class of finite (ordered) monoids (semi-
groups) satisfying a given set E of profinite identities is a variety of finite (or-
dered) monoids (semigroups), denoted by [[E]]. Usually the context suffices to
decide whether we are dealing with varieties of monoids or varieties of semi-
groups. For instance [[x2 = x, xy = yx]] is the variety of finite idempotent and
commutative monoids and [[xωyxω 6 xω ]] is the variety of all finite ordered
semigroups S such that, for all s ∈ S and e ∈ E(S), ese 6 e.

A positive variety of languages is a class of recognisable languages V such
that for any alphabets A and B,

(1) V(A∗) is a positive Boolean algebra,

(2) if L ∈ V(A∗) and a ∈ A then a−1L,La−1 ∈ V(A∗),

(3) if ϕ : A∗ → B∗ is a morphism, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗).

A variety of languages is a positive variety V such that, for each alphabet A,
V(A∗) is closed under complement. We can now state the two variety theorems.

Theorem 4.4 (Eilenberg 1976) Let V be a variety of finite monoids. For
each alphabet A, let V(A∗) be the set of all languages of A∗ whose syntactic
monoid is in V. Then V is a variety of languages. Further, the correspon-
dence V → V is a bijection between varieties of finite monoids and varieties of
languages.

Theorem 4.5 (Pin 1995) Let V be a variety of finite ordered monoids. For
each alphabet A, let V(A∗) be the set of all languages of A∗ whose syntactic
ordered monoid is in V. Then V is a positive variety of languages. Further, the
correspondence V → V is a bijection between varieties of finite ordered monoids
and positive varieties of languages.

The next proposition shows that the variety approach is relevant for studying
the concatenation hierarchy.

Proposition 4.6

(1) The star-free languages form a variety of languages.

(2) Each full level of the concatenation hierarchy is a variety of languages.

(3) Each half level of the concatenation hierarchy is a positive variety of lan-
guages.

We shall denote by Vn the variety of finite monoids corresponding to the lan-
guages of level n and by Vn+1/2 the variety of ordered monoids corresponding
to the languages of level n+ 1/2.
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Unfortunately, very few decidability results are known. It is obvious that a
language has level 0 if and only if its syntactic monoid is trivial. The level 1/2
is also easy to study.

Theorem 4.7 (Pin-Weil 1995) A language has level 1/2 if and only if its
ordered syntactic monoid M satisfies the identity x 6 1.

We already mentioned Simon’s characterisation of languages of level 1. The
decidability of level 3/2 was first proved by Arfi [4, 5] and the algebraic char-
acterisation was found by Pin-Weil [24]. We need to introduce the Mal’cev
product to state this result precisely.

Let V be variety of finite ordered semigroups and let M and N be two
ordered monoids. A relational morphism τ : M → N is a V-relational morphism
if, for every ordered subsemigroup T of N in V, the ordered semigroup τ−1(T )
belongs to V. Given a variety of finite monoids W, the class of all ordered
monoids M such that there exists a V-relational morphism from M into an
ordered monoid of W is a variety of ordered monoids, denoted by V M©W and
called the Mal’cev product of V and W.

Theorem 4.8 (Pin-Weil 2001) A language is of level 3/2 if and only if its
ordered syntactic monoid belongs to the Mal’cev product [[xωyxω 6 xω]] M©[[x2 =
x, xy = yx]]. This condition is decidable.

The decidability of level 2 is a major open problem in automata theory. An
algebraic characterisation of V2 was given in [21], but it is not effective. Recall
that a monoid M divides a monoid N if M is a quotient of a submonoid of N .

Theorem 4.9 (Pin-Straubing 1981) A monoid belongs to V2 if and only if
it divides a monoid of upper triangular Boolean matrices.

Several partial results are known and a conjecture was proposed for the
identities of V2, but its decidability is still open. See [27] for recent progress on
this problem.

For the other levels, the decidability problem is also wide open. Pin and
Weil [24, 26] established an algebraic connection between the varieties Vn and
Vn+1/2.

Theorem 4.10 (Pin-Weil 1995) The variety Vn+1/2 is equal to the Mal’cev
product [[xωyxω 6 xω]] M©Vn.

Another result [25] describes, given the identities of a variety of finite monoids
V, a set of identities defining the variety [[xωyxω 6 xω ]] M©V.

Theorem 4.11 (Pin-Weil 1996) The variety [[xωyxω 6 xω ]] M©V is defined
by the profinite identities uωvuω 6 uω, where u and v are profinite words such
that u = u2 and u = v are profinite identities of V.

These results illustrate the power of the algebraic approach, but do not
suffice yet to show that if Vn is decidable, then Vn+1/2 is decidable, except for
n = 1.
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5 Back to the star-height problem

Schützenberger’s theorem gives a characterisation of the languages of star-height
0 and shows that they form a variety of languages. One may wonder whether
this latter result also holds for the languages of star-height 6 1. The answer to
this question reduces to the existence of a language of star-height 2, as shown
in [18]. Unfortunately, this problem is still open.

Theorem 5.1 (Pin 1978) If the languages of star-height 6 1 form a variety
of languages, then there is no language of star-height 2.

The closure properties of the languages of star-height 6 n were analysed in [23].
Recall that a morphism between two free monoids is length-preserving if it maps
each letter to a letter.

Theorem 5.2 (Pin, Straubing, Thérien 1989) For each nonnegative inte-
ger n, the class of all languages of star-height 6 n is closed under Boolean
operations, residuals and inverse of length-preserving morphisms.

Thus the languages of star-height 6 n “almost” form a variety of languages.
In fact, many other interesting classes of languages satisfy the two first condi-
tions defining a variety of languages, but only a weak form of the third condition.
Such examples include languages defined by fragments of first order logic or by
temporal logic. Straubing [31] recently proposed a new extension of the no-
tion of variety which covers these examples. A similar notion was introduced
independently by Ésik and Ito [11].

Let C be a class of morphisms between free monoids, closed under compo-
sition and containing all length-preserving morphisms. Examples include the
classes of all length-preserving morphisms, of all length-multiplying morphisms
(morphisms such that, for some integer k, the image of any letter is a word
of length k), all non-erasing morphisms (morphisms for which the image of
each letter is a nonempty word), all length-decreasing morphisms (morphisms
for which the image of each letter is either a letter or the empty word) and all
morphisms.

A positive C-variety of languages is a class V of recognisable languages satis-
fying the two first conditions defining a positive variety of languages and a third
condition

(3′) if ϕ : A∗ → B∗ is a morphism in C, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗).

A C-variety of languages is a positive C-variety of languages closed under com-
plement. When C is the class of all (resp. length-preserving, length-multiplying,
non-erasing, length-decreasing) morphisms, we use the term all-variety (resp.
lp-variety, lm-variety, ne-variety, de-variety).

Theorem 5.2 gives an interesting example of lp-variety of languages.

Corollary 5.3 For each n > 0, the languages of star-height 6 n form an lp-
variety of languages.

The algebraic counterpart relies on a new syntactic invariant, the syntactic
stamp. A stamp is a surjective morphism from A∗ onto a finite monoid. The
syntactic stamp of a regular language of A∗ is the canonical morphism from A∗

onto its syntactic monoid.
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A stamp ϕ : A∗ → M C-divides a stamp ψ : B∗ → N if there is a pair
(f, η) (called a C-division), where f : A∗ → B∗ is in C, η : N → M is a partial
surjective monoid morphism, and ϕ = η ◦ ψ ◦ f . If f is the identity on A∗, the
pair (f, η) is simply called a division.

A∗ B∗

M NIm(ψ ◦ f) ⊆

f

ϕ ψ

η

Figure 5.3: A division diagram.

The product of two stamps ϕ1 and ϕ2 is the stamp ϕ defined by ϕ(a) =
(ϕ1(a), ϕ2(a)). A C-variety of stamps is a class of stamps closed under C-division
and finite products.

Straubing’s C-variety theorem [31] can now be stated as follows.

Theorem 5.4 Let V be a C-variety of stamps. For each alphabet A, denote by
V(A∗) the set of all languages of A∗ whose syntactic stamp is in V. Then V
is a C-variety of languages. Further, the correspondence V → V is a bijection
between C-varieties of stamps and C-varieties of languages.

The identity approach can be extended to C-varieties of stamps as follows.
Let u, v be two words of B∗. A stamp ϕ : A∗ → M is said to satisfy the C-
identity u = v if, for every C-morphism f : B∗ → A∗, ϕ ◦ f(u) = ϕ ◦ f(v). If M
is ordered, we say that ϕ satisfies the C-identity u 6 v if, for every C-morphism
f : B∗ → A∗, ϕ ◦ f(u) 6 ϕ ◦ f(v). By extension, we say that a language satisfies
an identity if its syntactic stamp satisfies this identity.

Example 5.1 Let ϕ : A∗ → M be a stamp. Consider the identity

xyx = x (1)

If C is the class of all morphisms, ϕ satisfies (1) if and only if, for all x, y ∈ A∗,
ϕ(xyx) = ϕ(x). Now, if C is the class of length-preserving morphisms, ϕ satisfies
(1) if and only if, for all x, y ∈ A, ϕ(xyx) = ϕ(x). If C is the class of length-
multiplying morphisms, ϕ satisfies (1) if and only if, for each k > 0 and for all
x, y ∈ Ak, ϕ(xyx) = ϕ(x).

The definition of identities can be extended to profinite identities to obtain a
generalisation of Reiterman’s theorem to C-varieties [14, 22].

It follows from the previous results that the star-height problem amounts
to showing that the lp-varieties of stamps corresponding to the languages of
star-height 6 n are decidable. But even if these varieties of stamps cannot be
characterized precisely, one can still hope to find some identity satisfied by all
languages of star-height 6 1. It would then suffice to find a regular language
not satisfying this identity to have an example of a language of star-height > 1.
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For recent developments about C-varieties, we refer the reader to the papers
[8, 9, 22].

6 Shuffle product

Introducing the shuffle product into the picture leads to several interesting ques-
tions. First, what are the varieties of languages closed under shuffle? The
commutative varieties of languages closed under shuffle were characterised by
Perrot [17]: they correspond to the varieties of commutative monoids whose
groups belong to a given variety of commutative groups. The variety of all ra-
tional languages is also closed under shuffle. Are there other examples? Esik
and Simon [12] answered this question negatively. Let us say that a variety of
languages is proper if it is not equal to the variety of all rational languages.

Theorem 6.1 (Esik-Simon 1998) The variety of commutative languages is
the largest proper variety of languages closed under shuffle.

Is there a similar result for positive varieties of languages? That is, is there
a largest proper positive variety of languages closed under shuffle? The answer
was given in [7].

Theorem 6.2 (Cano Gómez, Pin 2004) There is a largest positive variety
not containing (ab)∗. It is also the largest proper positive variety closed under
length preserving morphisms and the largest proper positive variety closed under
shuffle.

A characterisation of the corresponding variety of ordered monoids W was
given in the same paper.

Theorem 6.3 (Cano Gómez, Pin 2004) An ordered monoid belongs to W
if and only if, for every pair (a, b) of mutually inverse elements, and for ev-
ery element z of the minimal ideal of the submonoid generated by a and b,
(abzab)ω 6 ab. In particular W is decidable.

It would be interesting to know whether a similar result holds for lp-varieties
of languages: is there a largest proper lp-variety of languages closed under
shuffle? Is there a largest proper positive lp-variety of languages closed under
shuffle?

7 Conclusion

The successive improvements over Eilenberg’s variety theory have considerably
enlarged the scope of the algebraic approach to the study of regular languages.
It has been applied succesfully to a large range of applications, including logic
and finite model theory, circuit complexity, abstract complexity, communication
complexity, infinite words and other structures. However, several exciting prob-
lems remain unsolved and we would like to encourage the semigroup community
to work on these questions.
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