Exercises

October 21, 2008

Jean-Eric Pin

1 Exercise 1

Fill in the following table by YES or NO.

	Intersection	Complement	Morphisms	Product	Residuals
Rational languages are closed under					
Star-free languages are closed under					
Commutative languages are closed under					

2 Exercise 2

Let $A=\{a, b\}$. Indicate, for each of the languages $L_{1}, L_{2}, L_{3}, L_{4}$ whether it is rational, star-free or commutative.
(1) $L_{1}=b A^{*} a b A^{*} \cap A^{*} b b A^{*}$,
(2) $L_{2}=\left\{u \in A^{*}| | u \mid \equiv 2 \bmod 5\right\}$
(3) $L_{3}=\left(A^{2}\right)^{*}(a+b b)$,
(4) $L_{4}=A^{*}(a b+b a) A *$.

Briefly justify your answers.

3 Exercise 3

Compute the transition monoid of the following automaton (Hint: you should find 12 elements).

Is this monoid aperiodic?
Is the language recognized by this automaton rational? Star-free? Commutative?

Solution

4 Exercise 1

Fill in the following table by YES or NO.

	Intersection	Complement	Morphisms	Product	Residuals
Rational languages are closed under	YES	YES	YES	YES	YES
Star-free languages are closed under	YES	YES	NO	YES	YES
Commutative languages are closed under	YES	YES	NO	NO	YES

5 Exercise 2

Let $A=\{a, b\}$. Indicate, for each of the languages $L_{1}, L_{2}, L_{3}, L_{4}$ whether it is rational, star-free or commutative.
(1) $L_{1}=b A^{*} a b A^{*} \cap A^{*} b b A^{*}$ is rational, star-free (a star-free expression for L_{1} is $b \emptyset^{c} a b \emptyset^{c} \cap \emptyset^{c} b b \emptyset^{c}$) but not commutative since $b a b b \in L_{1}$ but $a b b b \notin L_{1}$.
(2) $L_{2}=\left\{u \in A^{*}| | u \mid \equiv 2 \bmod 5\right\}$ is rational (it is recognized by the finite monoid $\mathbb{Z} / 5 \mathbb{Z}$), but not star-free (its syntactic monoid is a group, hence it is not aperiodic), but it is commutative (since $\mathbb{Z} / 5 \mathbb{Z}$ is commutative).
(3) $L_{3}=\left(A^{2}\right)^{*}(a+b b)$ is rational, but not star-free (since $L_{3} a^{-1}=\left(A^{2}\right)^{*}$ is not star-free), nor commutative, since $b a \in L_{3}$ but $a b \notin L_{3}$.
(4) $L_{4}=A^{*}(a b+b a) A^{*}$ is rational, star-free and commutative

6 Exercise 3

The transition monoid M is

		1	2	3
*	1	1	2	3
	a	3	0	0
	b	1	1	2
*	$a a$	0	0	0
	$a b$	2	0	0
	$b a$	3	3	0
*	$b b$	1	1	1
*	$a b b$	1	0	0
*	$b a b$	2	2	0
*	$b b a$	3	3	3
*	babb	1	1	0
*	$b b a b$	2	2	2

Relations $\quad a a=0 \quad a b a=0 \quad b a a=0 \quad b b b=b b \quad a b b a=a \quad b b a b b=b b$
It is aperiodic since $1, a a, b b, a b b, b a b, b b a, b a b b, b b a b$ are idempotent, $a^{2}=(a b)^{2}=(b a)^{2}=0$ and $b^{3}=b^{2}$. Therefore, the language recognized by this automaton is rational and star-free. It is not commutative since $a b \neq b a$ in M.

