Exercices

Jean-Éric Pin

October 21, 2008

1 Exercise 1

Give a rational expression for the following languages:

(1) $a^{-1}(bA^* \cup aabA^*)$ (2) $a^{-1}(A^*abaA^*)$ (3) $a^{-1}(aba)^*$

2 Exercise 2

Consider the automaton \mathcal{A} represented in Figure 1.

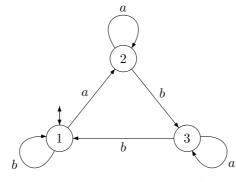


Figure 1: The automaton \mathcal{A} .

Give a rational expression for the language L recognized by \mathcal{A} .

3 Exercise 3

Compute the transition monoid M of the automaton \mathcal{A} (Hint: you should find 12 elements). What are the idempotents of M ?

Is M an aperiodic monoid ? Is it commutative ? Is L star-free ? Is it commutative ?

Solution

4 Exercise 1

- (1) $a^{-1}(bA^* \cup aabA^*) = abA^*$
- (2) $a^{-1}(A^*abaA^*) = A^*abaA^* + baA^*$
- (3) $a^{-1}(aba)^* = ba(aba)^*$

5 Exercise 2

A rational expression for L is $(b + aa^*ba^*b)^*$. There are of course other solutions.

6 Exercise 3

The transition monoid M is

		1	2	3
*	1	1	2	3
*	a	2	$\frac{2}{2}$	$\frac{3}{3}$
	b	1	3	1
	ab	3	3	1
	ba	2	3	2
*	bb	1	1	1
	aba	1 3 3 2	$\frac{1}{3}$	2
	bab	3	1	3
*	bba	2	2	2
*	abab	1	1	3
*	baba	$\frac{1}{3}$	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 3 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \end{array} $
*	bbab	3	3	3

Relations aa = a abb = bb bbb = bb ababa = a babab = b bbaba = bbab

The idempotents are 1, a, bb, bba, abab, baba, bbab. The monoid M is not aperiodic since $(ab)^3 = ab$, but $(ab)^2 \neq ab$. Therefore, the language recognized by this automaton is rational but not star-free. It is not commutative since $ab \neq ba$ in M.