Exercices

Jean-Éric Pin

October 21, 2008

1 Exercise 1

Give a rational expression for the following languages:
(1) $a^{-1}\left(b A^{*} \cup a a b A^{*}\right)$
(2) $a^{-1}\left(A^{*} a b a A^{*}\right)$
(3) $a^{-1}(a b a)^{*}$

2 Exercise 2

Consider the automaton \mathcal{A} represented in Figure 1.

Figure 1: The automaton \mathcal{A}.
Give a rational expression for the language L recognized by \mathcal{A}.

3 Exercise 3

Compute the transition monoid M of the automaton \mathcal{A} (Hint: you should find 12 elements). What are the idempotents of M ?
Is M an aperiodic monoid ? Is it commutative ?
Is L star-free? Is it commutative?

Solution

4 Exercise 1

(1) $a^{-1}\left(b A^{*} \cup a a b A^{*}\right)=a b A^{*}$
(2) $a^{-1}\left(A^{*} a b a A^{*}\right)=A^{*} a b a A^{*}+b a A^{*}$
(3) $a^{-1}(a b a)^{*}=b a(a b a)^{*}$

5 Exercise 2

A rational expression for L is $\left(b+a a^{*} b a^{*} b\right)^{*}$. There are of course other solutions.

6 Exercise 3

The transition monoid M is

		1	2	3
$*$	1	1	2	3
$*$	a	2	2	3
	b	1	3	1
	$a b$	3	3	1
	$b a$	2	3	2
	$b b$	1	1	1
	$a b a$	3	3	2
$*$	$b a b$	3	1	3
$*$	$b b a$	2	2	2
$*$	$b a b a b$	1	1	3
$*$	$b b a b$	3	2	3
	3	3	3	

Relations $\quad a a=a \quad a b b=b b \quad b b b=b b \quad a b a b a=a \quad b a b a b=b \quad b b a b a=b b a b$

The idempotents are $1, a, b b, b b a, a b a b, b a b a, b b a b$. The monoid M is not aperiodic since $(a b)^{3}=a b$, but $(a b)^{2} \neq a b$. Therefore, the language recognized by this automaton is rational but not star-free. It is not commutative since $a b \neq b a$ in M.

