Exercises

Jean-Éric Pin

October 21, 2008

1 Exercise 1

Consider the automaton \mathcal{A} represented in Figure 1.

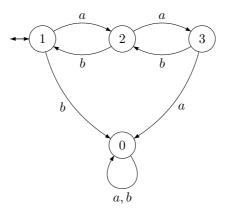


Figure 1: The automaton \mathcal{A} .

Give a rational expression for the language L recognized by \mathcal{A} .

2 Exercise 2

Compute the transition monoid M of the automaton \mathcal{A} (Hint: you should find 15 elements). What are the idempotents of M? Is M an aperiodic monoid ? Is it commutative ? Is L star-free ? Is it commutative ?

3 Exercise 3

Can L be defined by a first order formula ? Justify your answer.

Solution

4 Exercise 1

 $(a(ab)^*b)^*$

5 Exercise 2

The transition monoid M is

			1	2	3
*	1	1	1	2	3
	2	a	2	3	0
	3	b	0	1	2
	4	aa	3	0	0
*	5	ab	1	2	0
*	6	ba	0	2	3
	7	bb	0	0	1
*	8	aaa	0	0	0
	9	aab	2	0	0
	10	abb	0	1	0
	11	baa	0	3	0
	12	bba	0	0	2
*	13	aabb	1	0	0
*	14	abba	0	2	0
*	15	bbaa	0	0	3

The relations are

aba = a	bab = b	bbb = 0	aaa = 0
baaa = 0	baab = abba	aabba = aab	abbaa = baa

The idempotents are $\{1, ab, ba, aaa, aabb, abba, bbaa\}$. This monoid is aperiodic but not commutative. Therefore L is star-free, but not commutative.

6 Exercise 3

By McNaughton's theorem, every star-free language can be defined by a first order formula.