MPRI, Fondations mathématiques de la théorie des automates

Olivier Carton, Jean-Éric Pin

Examen du 3 février 2008. Durée: 2 h 30, notes de cours autorisées

Abstract

Avertissement : On attachera une grande importance à la clarté, à la précision et à

 la concision de la rédaction.On rappelle qu'un langage L de A^{*} est commutatif si, pour tout $a, b \in A$ et $x, y \in A^{*}$, xaby $\in L$ entraîne $x b a y \in L$, ce qui revient à dire que son monoïde syntactique est commutatif.

Le mélange de deux mots u et v est le langage $u \amalg v$ formé des mots $u_{1} v_{1} u_{2} v_{2} \cdots u_{k} v_{k}$ où $k \geqslant 0$ et les u_{i} et les v_{i} sont des mots A^{*} tels que $u_{1} u_{2} \cdots u_{k}=u$ et $v_{1} v_{2} \cdots v_{k}=v$. Par exemple,

$$
a b \amalg b a=\{a b a b, a b b a, b a b a, b a a b\} .
$$

Par extension, le mélange de deux langages K et L est le langage

$$
K \amalg L=\bigcup_{u \in K, v \in L} u \amalg v
$$

On admettra sans démonstration que le mélange est une opération commutative et associative, distributive par rapport à l'union.

Mélange et langages commutatifs

Si M est un monoïde, on note $\mathcal{P}(M)$ le monoïde des parties de M, muni du produit suivant: si X et Y sont des parties de $M, X Y=\{x y \mid x \in X$ et $y \in Y\}$.

Question 1. Soient $\eta_{1}: A^{*} \rightarrow M_{1}$ et $\eta_{2}: A^{*} \rightarrow M_{2}$ les morphismes syntactiques de deux langages L_{1} and L_{2}. Soit $\mu: A^{*} \rightarrow \mathcal{P}\left(M_{1} \times M_{2}\right)$ le morphisme défini, pour chaque $a \in A$, par $\mu(a)=\left\{\left(\eta_{1}(a), 1\right),\left(1, \eta_{2}(a)\right)\right\}$. Montrer que μ reconnaît $L_{1} \amalg L_{2}$.

Question 2. En déduire que si L_{1} et L_{2} sont reconnaissables, $L_{1} \amalg L_{2}$ l'est également et que si L_{1} et L_{2} sont des langages commutatifs, $L_{1} \amalg L_{2}$ l'est également.

On note $[u]$ la fermeture commutative d'un mot u. Par exemple,

$$
[a b a b]=\{a a b b, a b a b, a b b a, b a a b, b a b a, b b a a\} .
$$

Question 3. Soint $u \in A^{*}$ et $B \subseteq A$. Montrer que $B^{*} \amalg[u]$ est l'ensemble des mots v tels que $|v|_{a} \geqslant|u|_{a}$ si $a \in B$ et $|v|_{a}=|u|_{a}$ si $a \notin B$. En déduire que les langages de la forme $B^{*} \amalg[u]$ sont à la fois sans-étoile et commutatifs. ${ }^{1}$

Question 4. Montrer qu'un langage est à la fois sans-étoile et commutatif si et seulement si il est union finie de langages de la forme $B^{*} \amalg[u]$, où $u \in A^{*}$ et $B \subseteq A$.

[^0]Question 5. Montrer que l'ensemble des langages sans-étoile et commutatifs de A^{*} forme la plus petite algèbre de Boole de langages de A^{*} fermée par les opérations $L \mapsto L W a$, pour chaque lettre a.

Mélange et langages non commutatifs

On note \mathcal{C} la plus petite algèbre de Boole de langages \mathcal{L} de A^{*} telle que
(1) \mathcal{L} contient tous les langages de la forme $\{a b\}$, où a et b sont deux lettres distinctes de A,
(2) \mathcal{L} est fermée par les opérations $L \mapsto L W a$, pour chaque lettre a de A.

La question 5 montre que \mathcal{C} contient aussi tous les langages sans-étoile et commutatifs de A^{*}.
Question 6. Montrer que \mathcal{C} contient les langages de la forme $\{a b b\}$, où a et b sont deux lettres de A.

Question 7. Démontrer que \mathcal{C} contient tous les langages de la forme $\{u\}$ où u est un mot. En déduire que \mathcal{C} contient tous les langages finis.
Un langage L est dit valable s'il existe un langage sans étoile commutatif C tel que la différence symétrique $L \triangle C$ soit finie.

Question 8. Démontrer que \mathcal{C} est l'ensemble des langages valables.
Question 9. Vérifier que les langages valables vérifient les trois équations $x^{\omega}=x^{\omega+1}, x^{\omega} y=y x^{\omega}$ et $x^{\omega} y z=x^{\omega} z y$, où x est un mot non vide de A^{*} et y et z sont des mots quelconques de A^{*}.

On peut démontrer que ces équations caractérisent les langages valables.

Mélange et produit

Dans cette partie, A désigne un alphabet contenant au moins une lettre, a une lettre de A et L_{1} et L_{2} deux langages rationnels de A^{*}.

Question 10. Démontrer que si L_{1} et L_{2} satisfont l'équation $a^{\omega+1}=a^{\omega}$, alors le langage $L_{1} L_{2}$ satisfait la même équation.

Question 11. Démontrer que si L_{1} et L_{2} satisfont l'équation $a^{\omega+1}=a^{\omega}$, alors le langage $L_{1} \amalg L_{2}$ satisfait la même équation.

Question 12. Donner un exemple de langage ne satisfaisant pas l'équation $a^{\omega+1}=a^{\omega}$.
Question 13. La plus petite algèbre de Boole de langages fermée par produit et par mélange est elle égale à l'ensemble de tous les langages rationnels?

MPRI, Fondations mathématiques de la théorie des automates

Olivier Carton, Jean-Éric Pin

February 3, 2009. Duration: 2h 30.

Warning : Clearness, accuracy and concision of the writing will be rewarded.

Recall that a language L of A^{*} is commutative if, for all $a, b \in A$ and $x, y \in A^{*}$, xaby $\in L$ implies $x b a y \in L$, which amounts to saying that the syntactic monoid of L is commutative.

The shuffle of two words u and v is the language $u \amalg v$ consisting of all words $u_{1} v_{1} \cdots u_{2} v_{2} \cdots u_{k} v_{k}$ where $k \geqslant 0$ and the u_{i} and the v_{i} are words of A^{*} such that $u_{1} u_{2} \cdots u_{k}=u$ and $v_{1} v_{2} \cdots v_{k}=v$. For instance,

$$
a b Ш b a=\{a b a b, a b b a, b a b a, b a a b\}
$$

By extension, the shuffle of two languages K and L is the language

$$
K \amalg L=\bigcup_{u \in K, v \in L} u \amalg v
$$

It is known that the shuffle is a commutative and associative operation, which is also distributive over union.

Shuffle and commutative languages

Given a monoid $M, \mathcal{P}(M)$ denotes the monoid of subsets of M, equipped with the following product: if X and Y are subsets of $M, X Y=\{x y \mid x \in X$ et $y \in Y\}$.

Question 1. Let $\eta_{1}: A^{*} \rightarrow M_{1}$ and $\eta_{2}: A^{*} \rightarrow M_{2}$ be the syntactic morphisms of the languages L_{1} and L_{2}. Let $\mu: A^{*} \rightarrow \mathcal{P}\left(M_{1} \times M_{2}\right)$ be the morphism defined, for each letter $a \in A$, by $\mu(a)=\left\{\left(\eta_{1}(a), 1\right),\left(1, \eta_{2}(a)\right)\right\}$. Show that μ recognizes $L_{1} \amalg L_{2}$.

Question 2. Deduce from the previous question that if L_{1} and L_{2} are regular, $L_{1} \amalg L_{2}$ is also regular and that if L_{1} and L_{2} are commutative languages, $L_{1} \amalg L_{2}$ is also a commutative language.

Let us denote by $[u]$ the commutative closure of a word u. For instance,

$$
[a b a b]=\{a a b b, a b a b, a b b a, b a a b, b a b a, b b a a\} .
$$

Question 3. Let $u \in A^{*}$ and $B \subseteq A$. Show that $B^{*} \amalg[u]$ is the set of all words v such that $|v|_{a} \geqslant|u|_{a}$ if $a \in B$ and $|v|_{a}=|u|_{a}$ if $a \notin B$. Deduce that the languages of the form $B^{*} \amalg[u]$ are star-free and commutative. ${ }^{2}$

Question 4. Show that a language is star-free and commutative if and only if it is a finite union of languages of the form $B^{*} \amalg[u]$, where $u \in A^{*}$ and $B \subseteq A$.

[^1]Question 5. Show that the set of star-free and commutative languages of A^{*} forms the least [i.e. smallest] Boolean algebra of languages of A^{*} closed under the operations $L \mapsto L W a$, for each letter a.

Shuffle and noncommutative languages

We denote by \mathcal{C} the least Boolean algebra \mathcal{L} of languages of A^{*} such that
(1) \mathcal{L} contains all the languages of the form $\{a b\}$, where a and b are two distinct letters of A,
(2) \mathcal{L} is closed under the operations $L \mapsto L \amalg a$, for each lettre a of A.

Question 5 shows that \mathcal{C} also contains the commutative star-free languages of A^{*}.
Question 6. Show that \mathcal{C} contains the languages of the form $\{a b b\}$, where a and b are two letters of A.

Question 7. Prove that \mathcal{C} contains all languages of the form $\{u\}$ where u is a word. Deduce from this fact that \mathcal{C} contains all finite languages.

A language L is said to be good if there exists a commutative star-free language C such that the symmetric difference $L \triangle C$ is finite.

Question 8. Show that \mathcal{C} is the set of good languages.
Question 9. Show that every good languages satisfies the three equations $x^{\omega}=x^{\omega+1}, x^{\omega} y=y x^{\omega}$ and $x^{\omega} y z=x^{\omega} z y$, where x is a nonempty word of A^{*} and y and z are arbitrary words of A^{*}.

One can show that these equations characterise good languages.

Shuffle and product

In this section, A denotes an alphabet containing at least one letter, a denotes a letter of A and L_{1} and L_{2} are two regular languages of A^{*}.

Question 10. Show that if L_{1} and L_{2} satisfy the equation $a^{\omega+1}=a^{\omega}$, then the language $L_{1} L_{2}$ satisfies the same equation.

Question 11. Show that if L_{1} and L_{2} satisfy the equation $a^{\omega+1}=a^{\omega}$, then the language $L_{1} Ш L_{2}$ satisfies the same equation.

Question 12. Give an example of a language which does not satisfy the equation $a^{\omega+1}=a^{\omega}$.
Question 13. Does every regular language belong to the least Boolean algebra of languages closed under product and shuffle?

Solution

Shuffle and commutative languages

Question 1. For each word $u \in A^{*}$, one has $\mu(u)=\left\{\left(\eta_{1}\left(u_{1}\right), \eta_{1}\left(u_{2}\right)\right) \mid u \in u_{1} \amalg u_{2}\right\}$. Suppose that $u \in L_{1} \amalg L_{2}$ and that $\mu(v)=\mu(u)$. Then there exist two words $u_{1} \in L_{1}$ and $u_{2} \in L_{2}$ such that $u \in u_{1} \amalg u_{2}$, and there exist two words $v_{1}, v_{2} \in A^{*}$ such that $v \in v_{1} \amalg v_{2}, \eta_{1}\left(u_{1}\right)=\eta_{1}\left(v_{1}\right)$ and $\eta_{2}\left(u_{2}\right)=\eta_{2}\left(v_{2}\right)$. It follows that $v_{1} \in L_{1}$ and $v_{2} \in L_{2}$ and $v \in L_{1} \amalg L_{2}$. thus μ recognizes $L_{1} \amalg L_{2}$ 。

Question 2. In particular, if L_{1} and L_{2} are regular, M_{1} and M_{2} are finite and thus $\mathcal{P}\left(M_{1} \times M_{2}\right)$ is also finite. Therefose $L_{1} \amalg L_{2}$ is regular. If L_{1} and L_{2} are commutative, then M_{1} and M_{2} are commutative and $\mathcal{P}\left(M_{1} \times M_{2}\right)$ is also commutative. Consequently, $L_{1} W L_{2}$ is commutative.

Question 3. Since B^{*} and $[u]$ are commutative languages, the language $B^{*} \amalg[u]$ is commutative. Further, $B^{*} \amalg[u]$ is a finite union of languages of the form $B^{*} \amalg v$ with $v \in[u]$. If $v=a_{1} \cdots a_{n}$, $B^{*} \amalg v=B^{*} a_{1} B^{*} a_{2} \cdots B^{*} a_{n} B^{*}$. Since B^{*} is star-free, $B^{*} \amalg v$ is also star-free. It follows that every finite union of languages of the form $[u] \amalg B^{*}$ is commutative and star-free.

Question 4. Let L be a commutative and star-free language. Let $\varphi: A^{*} \rightarrow M$ be its syntactic morphism, let $P=\varphi(L)$ and let N be the exponent of M. Since $L=\bigcup_{m \in P} \varphi^{-1}(m)$, it suffices to prove the result for $L=\varphi^{-1}(m)$, for some $m \in M$. We claim that $L=\bigcup_{u \in F}[u] \amalg B^{*}$, where

$$
\begin{aligned}
& B=\{a \in A \mid m \varphi(a)=m\} \text { and } \\
& F=\left\{u \in A^{*}| | u|\leqslant N| A \mid, \varphi(u)=m \text { and for all subwords } v \text { of } u, \varphi(v) \neq m\right\}
\end{aligned}
$$

If $u \in F$ and $w \in[u] \amalg B^{*}$, then $w \in u^{\prime} \amalg v$ for some $u^{\prime} \in[u]$ and some $v \in B^{*}$. Since M is commutative, it follows that $\varphi(w)=\varphi(u) \varphi(v)=m \varphi(v)=m$. Thus $u \in L$. Conversely, let $w \in L$ and let u be a minimal subword of w in L. By construction, $\varphi(u)=m$ and for all subwords v of $u, \varphi(v) \neq m$. Further, if $|u| \geqslant N|A|$, then $|u|_{a}>N$ for some letter $a \in A$. Therefore, u can be written as $u_{1} a u_{2}$ for some words u_{1}, u_{2} such that $\left|u_{1} u_{2}\right|_{a} \geqslant N$. Since M is commutative and $\varphi\left(a^{N}\right)=\varphi\left(a^{N+1}\right)$, it follows that $\varphi\left(u_{1} u_{2}\right)=\varphi(u)$, a contradiction with the definition of u. Thus $|u| \leqslant N|A|$ and $u \in F$.

Let v be the unique word such that $w \in u \amalg v$. Since M is commutative, $\varphi(w)=\varphi(u) \varphi(v)$, that is $m=m \varphi(v)$. Since M is aperiodic and commutative, it is \mathcal{J}-trivial and thus $m \varphi(a)=m$ for each letter a of v. In other words, $v \in B^{*}$ and $w \in[u] \amalg B^{*}$.

Question 5. Let \mathcal{F} be the least Boolean algebra of languages of A^{*} closed under the operations $L \mapsto L Ш a$, for each letter a.

Let $a \in A$. Then $A^{*} \in \mathcal{F}$ and thus $A^{*} \amalg a=A^{*} a A^{*} \in \mathcal{F}$. Since \mathcal{F} is a Boolean algebra it contains all the languages of the form B^{*} (see Proposition 2.5, Chapter 9). Further, if $u=a_{1} \cdots a_{n}$, then $[u]=a_{1} \amalg \cdots a_{n}$. It follows by induction that $B^{*} \amalg[u] \in \mathcal{F}$. Thus, by Question $5, \mathcal{F}$ contains all star-free and commutative languages.

The same argument shows that the star-free and commutative languages forms a Boolean algebra closed the operations $L \mapsto L \amalg a$, for each letter a.

Shuffle and noncommutative languages

Question 6. If $a=b,\{a b b\}$ is a commutative finite (and hence star-free) language. If $a \neq b$, one has $a b b=((a b \amalg b) \cap(b b \amalg a)) \backslash(b a \amalg b)$. Now, $\{b b\}$ is a commutaive language and hence belongs to \mathcal{C}. The languages $\{a b\}$ and $\{b a\}$ are also in \mathcal{L} by definition. The result follows, since \mathcal{C} is closed under Boolean operations and shuffle by a letter.

Question 7. It suffices to show that \mathcal{C} contains the languages of the form $\{u\}$, for each word u. Let $n=|u|-1$ and $E=\left\{(v, a) \in A^{n} \times A \mid u \in v \amalg a\right\}$. The result will follow from the formula

$$
\begin{equation*}
\{u\}=\left(\bigcap_{(v, a) \in E} v \amalg a\right) \backslash\left(\bigcup_{(v, a) \in\left(A^{n} \times A\right) \backslash E} v \amalg a\right) \tag{*}
\end{equation*}
$$

Let L be the right hand side of $(*)$. It is clear that $u \in L$. Suppose that L contains another word w. Then $|w|=|u|$ and, for every $(v, a) \in E, u \in v \amalg a$ if and only if $w \in v \amalg a$. Let f be the largest common prefix of u and w. Assuming $u \neq w$, one can write $u=f a u^{\prime}$ and $w=f b w^{\prime}$, for some $u^{\prime}, w^{\prime} \in A^{*}, a, b \in A$ and $a \neq b$. We claim that f is the empty word. Otherwise, let c be a letter of f and let $f=f_{1} c f_{2}$. Let us assume that $c \neq a$ (the case $c \neq b$ would be symmetric). Then $u \in f_{1} f_{2} a u^{\prime} \amalg c$ and thus $w=f_{1} c f_{2} b w^{\prime} \in f_{1} f_{2} a u^{\prime} \amalg c$. This means that c has to be inserted in the word $f_{1} f_{2} a u^{\prime}$ to produce $f_{1} c f_{2} b w^{\prime}$. Since $a \neq b$, this insertion cannot occur inside the prefix $f_{1} f_{2} a$. Therefore $f_{1} f_{2} a=f_{1} c f_{2}$, a contradiction, since $\left|f_{1} f_{2} a\right|_{a}>\left|f_{1} c f_{2}\right|_{a}$.

Thus the largest common prefix of u and w is the empty word, and by a symmetric argument, their largest common suffix is also the empty word. Let c be the first letter of u^{\prime}. Then $u^{\prime}=c x$ for some word $x \in A^{*}$. It follows that $u \in a x \amalg c$ and thus $w \in a x \amalg c$. Since the first letter of w is b, it means that $c=b$ and $w=b a x$. It follows that x is a common suffix of u and w and thus x is the empty word. Therefore $u=a b$ and $w=b a$, a contradiction, since $|u| \geqslant 3$.

Question 8. Show that \mathcal{C} is the set of good languages.
Question 9. Show that every good languages satisfies the three equations $x^{\omega}=x^{\omega+1}, x^{\omega} y=y x^{\omega}$ and $x^{\omega} y z=x^{\omega} z y$, where x is a nonempty word of A^{*} and y and z are arbitrary words of A^{*}.
One can show that these equations characterise good languages.

Shuffle and product

Question 10. Let L_{1} and L_{2} be languages of A^{*} satisfying the identity $a^{\omega+1}=a^{\omega}$ and let L be their product. Let n be the lcm of the exponents of the languages L_{1}, L_{2} and L. It suffices to prove that $a^{n+1} \sim_{L} a^{n}$. Suppose that $x a^{n} y \in L$. Since $a^{n} \sim_{L} a^{2 n}$, one has $x a^{2 n} y \in L$ and thus $x a^{2 n} y=u_{1} u_{2}$ for some $u_{1} \in L_{1}$ and $u_{2} \in L_{2}$. It follows that one of the words u_{1} or u_{2} contains a^{n} as a factor. Since the two cases are symmetrical, we may assume that $u_{1}=x a^{n} z$ for some $z \in A^{*}$. It follows that $x a^{n+1} z \in L_{1}$, since L_{1} satisfies the identity $a^{\omega+1}=a^{\omega}$. Thus $x a^{2 n+1} y \in L$ and finally $x a^{n+1} y \in L$ since $a^{2 n} \sim_{L} a^{n}$. Therefore L satisfies the equation $a^{\omega+1} \leqslant a^{\omega}$. The opposite direction is similar.

Question 11. Let L_{1} and L_{2} be languages of A^{*} satisfying the equation $a^{\omega+1}=a^{\omega}$ and let $L=L_{1} \amalg L_{2}$. Let n be the lcm of the exponents of the languages L_{1}, L_{2} and L.

Suppose that $x a^{n} y \in L$. Since $a^{n} \sim_{L} a^{2 n}$, one has $x a^{2 n} y \in L$ and thus $x a^{2 n} y \in u_{1} Ш u_{2}$ for some $u_{1} \in L_{1}$ and $u_{2} \in L_{2}$. It follows that one of the words u_{1} or u_{2} contains a^{n} as a factor. If, for instance $u_{1}=x a^{n} z$ for some $z \in A^{*}$, then $x a^{n+1} z \in L_{1}$ since L_{1} satisfies the identity $a^{\omega+1}=a^{\omega}$. It follows that $x a^{2 n+1} y \in L$ and finally $x a^{n+1} y \in L$ since $a^{2 n} \sim_{L} a^{n}$. Thus L satisfies the identity $a^{\omega+1} \leqslant a^{\omega}$. The opposite direction is similar.

Question 12. The language $(a a)^{*}$ does not satisfy the equation $a^{\omega+1}=a^{\omega}$.
Question 13. Every language of the least Boolean algebra of languages closed under product and shuffle satisfies the equation $a^{\omega+1}=a^{\omega}$. Therefore, $(a a)^{*}$ does not belong to this Boolean algebra.

[^0]: ${ }^{1}$ La proposition 2.8 du chapitre 9 donne une description de ces langages.

[^1]: ${ }^{2}$ Proposition 2.8 in Chapter 9 gives a description of these languages.

