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⋆ ⋆ ⋆

Avertissement : On attachera une grande importance à la clarté, à la précision et à
la concision de la rédaction.

On rappelle qu’un langage L de A∗ est commutatif si, pour tout a, b ∈ A et x, y ∈ A∗, xaby ∈ L
entrâıne xbay ∈ L, ce qui revient à dire que son monöıde syntactique est commutatif.

Le mélange de deux mots u et v est le langage u X v formé des mots u1v1u2v2 · · · ukvk où
k > 0 et les ui et les vi sont des mots A∗ tels que u1u2 · · ·uk = u et v1v2 · · · vk = v. Par exemple,

ab X ba = {abab, abba, baba, baab}.

Par extension, le mélange de deux langages K et L est le langage

K X L =
⋃

u∈K,v∈L

u X v

On admettra sans démonstration que le mélange est une opération commutative et associative,
distributive par rapport à l’union.

Mélange et langages commutatifs

Si M est un monöıde, on note P(M) le monöıde des parties de M , muni du produit suivant:
si X et Y sont des parties de M , XY = {xy | x ∈ X et y ∈ Y }.

Question 1. Soient η1 : A∗ → M1 et η2 : A∗ → M2 les morphismes syntactiques de deux
langages L1 and L2. Soit µ : A∗ → P(M1 × M2) le morphisme défini, pour chaque a ∈ A, par
µ(a) = {(η1(a), 1), (1, η2(a))}. Montrer que µ reconnâıt L1 X L2.

Question 2. En déduire que si L1 et L2 sont reconnaissables, L1 X L2 l’est également et que si
L1 et L2 sont des langages commutatifs, L1 X L2 l’est également.

On note [u] la fermeture commutative d’un mot u. Par exemple,
[abab] = {aabb, abab, abba, baab, baba, bbaa}.

Question 3. Soint u ∈ A∗ et B ⊆ A. Montrer que B∗
X [u] est l’ensemble des mots v tels que

|v|a > |u|a si a ∈ B et |v|a = |u|a si a /∈ B. En déduire que les langages de la forme B∗
X [u]

sont à la fois sans-étoile et commutatifs.1

Question 4. Montrer qu’un langage est à la fois sans-étoile et commutatif si et seulement si il
est union finie de langages de la forme B∗

X [u], où u ∈ A∗ et B ⊆ A.

1La proposition 2.8 du chapitre 9 donne une description de ces langages.

1



Question 5. Montrer que l’ensemble des langages sans-étoile et commutatifs de A∗ forme la plus
petite algèbre de Boole de langages de A∗ fermée par les opérations L 7→ L X a, pour chaque
lettre a.

Mélange et langages non commutatifs

On note C la plus petite algèbre de Boole de langages L de A∗ telle que

(1) L contient tous les langages de la forme {ab}, où a et b sont deux lettres distinctes de A,

(2) L est fermée par les opérations L 7→ L X a, pour chaque lettre a de A.

La question 5 montre que C contient aussi tous les langages sans-étoile et commutatifs de A∗.

Question 6. Montrer que C contient les langages de la forme {abb}, où a et b sont deux lettres
de A.

Question 7. Démontrer que C contient tous les langages de la forme {u} où u est un mot. En
déduire que C contient tous les langages finis.

Un langage L est dit valable s’il existe un langage sans étoile commutatif C tel que la différence
symétrique L △ C soit finie.

Question 8. Démontrer que C est l’ensemble des langages valables.

Question 9. Vérifier que les langages valables vérifient les trois équations xω = xω+1, xωy = yxω

et xωyz = xωzy, où x est un mot non vide de A∗ et y et z sont des mots quelconques de A∗.

On peut démontrer que ces équations caractérisent les langages valables.

Mélange et produit

Dans cette partie, A désigne un alphabet contenant au moins une lettre, a une lettre de A et
L1 et L2 deux langages rationnels de A∗.

Question 10. Démontrer que si L1 et L2 satisfont l’équation aω+1 = aω, alors le langage L1L2

satisfait la même équation.

Question 11. Démontrer que si L1 et L2 satisfont l’équation aω+1 = aω, alors le langage L1 X L2

satisfait la même équation.

Question 12. Donner un exemple de langage ne satisfaisant pas l’équation aω+1 = aω.

Question 13. La plus petite algèbre de Boole de langages fermée par produit et par mélange est
elle égale à l’ensemble de tous les langages rationnels?
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Warning : Clearness, accuracy and concision of the writing will be rewarded.

Recall that a language L of A∗ is commutative if, for all a, b ∈ A and x, y ∈ A∗, xaby ∈ L
implies xbay ∈ L, which amounts to saying that the syntactic monoid of L is commutative.

The shuffle of two words u and v is the language u X v consisting of all words u1v1 · · ·u2v2 · · ·ukvk

where k > 0 and the ui and the vi are words of A∗ such that u1u2 · · ·uk = u and v1v2 · · · vk = v.
For instance,

ab X ba = {abab, abba, baba, baab}

By extension, the shuffle of two languages K and L is the language

K X L =
⋃

u∈K,v∈L

u X v

It is known that the shuffle is a commutative and associative operation, which is also distributive
over union.

Shuffle and commutative languages

Given a monoid M , P(M) denotes the monoid of subsets of M , equipped with the following
product: if X and Y are subsets of M , XY = {xy | x ∈ X et y ∈ Y }.

Question 1. Let η1 : A∗ → M1 and η2 : A∗ → M2 be the syntactic morphisms of the languages
L1 and L2. Let µ : A∗ → P(M1 × M2) be the morphism defined, for each letter a ∈ A, by
µ(a) = {(η1(a), 1), (1, η2(a))}. Show that µ recognizes L1 X L2.

Question 2. Deduce from the previous question that if L1 and L2 are regular, L1 X L2 is
also regular and that if L1 and L2 are commutative languages, L1 X L2 is also a commutative
language.

Let us denote by [u] the commutative closure of a word u. For instance,
[abab] = {aabb, abab, abba, baab, baba, bbaa}.

Question 3. Let u ∈ A∗ and B ⊆ A. Show that B∗
X [u] is the set of all words v such that

|v|a > |u|a if a ∈ B and |v|a = |u|a if a /∈ B. Deduce that the languages of the form B∗
X [u] are

star-free and commutative.2

Question 4. Show that a language is star-free and commutative if and only if it is a finite union
of languages of the form B∗

X [u], where u ∈ A∗ and B ⊆ A.

2Proposition 2.8 in Chapter 9 gives a description of these languages.
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Question 5. Show that the set of star-free and commutative languages of A∗ forms the least [i.e.
smallest] Boolean algebra of languages of A∗ closed under the operations L 7→ L X a, for each
letter a.

Shuffle and noncommutative languages

We denote by C the least Boolean algebra L of languages of A∗ such that

(1) L contains all the languages of the form {ab}, where a and b are two distinct letters of A,

(2) L is closed under the operations L 7→ L X a, for each lettre a of A.

Question 5 shows that C also contains the commutative star-free languages of A∗.

Question 6. Show that C contains the languages of the form {abb}, where a and b are two letters
of A.

Question 7. Prove that C contains all languages of the form {u} where u is a word. Deduce from
this fact that C contains all finite languages.

A language L is said to be good if there exists a commutative star-free language C such that the
symmetric difference L △ C is finite.

Question 8. Show that C is the set of good languages.

Question 9. Show that every good languages satisfies the three equations xω = xω+1, xωy = yxω

and xωyz = xωzy, where x is a nonempty word of A∗ and y and z are arbitrary words of A∗.

One can show that these equations characterise good languages.

Shuffle and product

In this section, A denotes an alphabet containing at least one letter, a denotes a letter of A
and L1 and L2 are two regular languages of A∗.

Question 10. Show that if L1 and L2 satisfy the equation aω+1 = aω, then the language L1L2

satisfies the same equation.

Question 11. Show that if L1 and L2 satisfy the equation aω+1 = aω, then the language L1 X L2

satisfies the same equation.

Question 12. Give an example of a language which does not satisfy the equation aω+1 = aω.

Question 13. Does every regular language belong to the least Boolean algebra of languages
closed under product and shuffle?
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Solution

Shuffle and commutative languages

Question 1. For each word u ∈ A∗, one has µ(u) = {(η1(u1), η1(u2)) | u ∈ u1 X u2}. Suppose
that u ∈ L1 X L2 and that µ(v) = µ(u). Then there exist two words u1 ∈ L1 and u2 ∈ L2 such
that u ∈ u1 X u2, and there exist two words v1, v2 ∈ A∗ such that v ∈ v1 X v2, η1(u1) = η1(v1)
and η2(u2) = η2(v2). It follows that v1 ∈ L1 and v2 ∈ L2 and v ∈ L1 X L2. thus µ recognizes
L1 X L2.

Question 2. In particular, if L1 and L2 are regular, M1 and M2 are finite and thus P(M1 ×M2)
is also finite. Therefose L1 X L2 is regular. If L1 and L2 are commutative, then M1 and M2 are
commutative and P(M1 × M2) is also commutative. Consequently, L1 X L2 is commutative.

Question 3. Since B∗ and [u] are commutative languages, the language B∗
X [u] is commutative.

Further, B∗
X [u] is a finite union of languages of the form B∗

X v with v ∈ [u]. If v = a1 · · · an,
B∗

X v = B∗a1B
∗a2 · · ·B∗anB∗. Since B∗ is star-free, B∗

X v is also star-free. It follows that
every finite union of languages of the form [u] X B∗ is commutative and star-free.

Question 4. Let L be a commutative and star-free language. Let ϕ : A∗ → M be its syntactic
morphism, let P = ϕ(L) and let N be the exponent of M . Since L =

⋃

m∈P ϕ−1(m), it suffices to
prove the result for L = ϕ−1(m), for some m ∈ M . We claim that L =

⋃

u∈F [u] X B∗, where

B = {a ∈ A | mϕ(a) = m} and

F = {u ∈ A∗ | |u| 6 N |A|, ϕ(u) = m and for all subwords v of u, ϕ(v) 6= m}.

If u ∈ F and w ∈ [u] X B∗, then w ∈ u′
X v for some u′ ∈ [u] and some v ∈ B∗. Since M is

commutative, it follows that ϕ(w) = ϕ(u)ϕ(v) = mϕ(v) = m. Thus u ∈ L. Conversely, let w ∈ L
and let u be a minimal subword of w in L. By construction, ϕ(u) = m and for all subwords v
of u, ϕ(v) 6= m. Further, if |u| > N |A|, then |u|a > N for some letter a ∈ A. Therefore, u can
be written as u1au2 for some words u1, u2 such that |u1u2|a > N . Since M is commutative and
ϕ(aN ) = ϕ(aN+1), it follows that ϕ(u1u2) = ϕ(u), a contradiction with the definition of u. Thus
|u| 6 N |A| and u ∈ F .

Let v be the unique word such that w ∈ u X v. Since M is commutative, ϕ(w) = ϕ(u)ϕ(v),
that is m = mϕ(v). Since M is aperiodic and commutative, it is J -trivial and thus mϕ(a) = m
for each letter a of v. In other words, v ∈ B∗ and w ∈ [u] X B∗.

Question 5. Let F be the least Boolean algebra of languages of A∗ closed under the operations
L 7→ L X a, for each letter a.

Let a ∈ A. Then A∗ ∈ F and thus A∗
X a = A∗aA∗ ∈ F . Since F is a Boolean algebra it

contains all the languages of the form B∗ (see Proposition 2.5, Chapter 9). Further, if u = a1 · · · an,
then [u] = a1 X · · · an. It follows by induction that B∗

X [u] ∈ F . Thus, by Question 5, F
contains all star-free and commutative languages.

The same argument shows that the star-free and commutative languages forms a Boolean
algebra closed the operations L 7→ L X a, for each letter a.

Shuffle and noncommutative languages
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Question 6. If a = b, {abb} is a commutative finite (and hence star-free) language. If a 6= b,
one has abb = ((ab X b) ∩ (bb X a)) \ (ba X b). Now, {bb} is a commutaive language and hence
belongs to C. The languages {ab} and {ba} are also in L by definition. The result follows, since
C is closed under Boolean operations and shuffle by a letter.

Question 7. It suffices to show that C contains the languages of the form {u}, for each word u.
Let n = |u|−1 and E = {(v, a) ∈ An×A | u ∈ v X a}. The result will follow from the formula

(∗) {u} =
(

⋂

(v,a)∈E

v X a
)

\
(

⋃

(v,a)∈(An×A)\E

v X a
)

Let L be the right hand side of (∗). It is clear that u ∈ L. Suppose that L contains another word
w. Then |w| = |u| and, for every (v, a) ∈ E, u ∈ v X a if and only if w ∈ v X a. Let f be the
largest common prefix of u and w. Assuming u 6= w, one can write u = fau′ and w = fbw′, for
some u′, w′ ∈ A∗, a, b ∈ A and a 6= b. We claim that f is the empty word. Otherwise, let c be a
letter of f and let f = f1cf2. Let us assume that c 6= a (the case c 6= b would be symmetric). Then
u ∈ f1f2au′

X c and thus w = f1cf2bw
′ ∈ f1f2au′

X c. This means that c has to be inserted in
the word f1f2au′ to produce f1cf2bw

′. Since a 6= b, this insertion cannot occur inside the prefix
f1f2a. Therefore f1f2a = f1cf2, a contradiction, since |f1f2a|a > |f1cf2|a.

Thus the largest common prefix of u and w is the empty word, and by a symmetric argument,
their largest common suffix is also the empty word. Let c be the first letter of u′. Then u′ = cx
for some word x ∈ A∗. It follows that u ∈ ax X c and thus w ∈ ax X c. Since the first letter of
w is b, it means that c = b and w = bax. It follows that x is a common suffix of u and w and thus
x is the empty word. Therefore u = ab and w = ba, a contradiction, since |u| > 3.

Question 8. Show that C is the set of good languages.

Question 9. Show that every good languages satisfies the three equations xω = xω+1, xωy = yxω

and xωyz = xωzy, where x is a nonempty word of A∗ and y and z are arbitrary words of A∗.

One can show that these equations characterise good languages.

Shuffle and product

Question 10. Let L1 and L2 be languages of A∗ satisfying the identity aω+1 = aω and let L be
their product. Let n be the lcm of the exponents of the languages L1, L2 and L. It suffices to
prove that an+1 ∼L an. Suppose that xany ∈ L. Since an ∼L a2n, one has xa2ny ∈ L and thus
xa2ny = u1u2 for some u1 ∈ L1 and u2 ∈ L2. It follows that one of the words u1 or u2 contains an

as a factor. Since the two cases are symmetrical, we may assume that u1 = xanz for some z ∈ A∗.
It follows that xan+1z ∈ L1, since L1 satisfies the identity aω+1 = aω. Thus xa2n+1y ∈ L and
finally xan+1y ∈ L since a2n ∼L an. Therefore L satisfies the equation aω+1 6 aω. The opposite
direction is similar.

Question 11. Let L1 and L2 be languages of A∗ satisfying the equation aω+1 = aω and let
L = L1 X L2. Let n be the lcm of the exponents of the languages L1, L2 and L.

Suppose that xany ∈ L. Since an ∼L a2n, one has xa2ny ∈ L and thus xa2ny ∈ u1 X u2 for
some u1 ∈ L1 and u2 ∈ L2. It follows that one of the words u1 or u2 contains an as a factor. If, for
instance u1 = xanz for some z ∈ A∗, then xan+1z ∈ L1 since L1 satisfies the identity aω+1 = aω.
It follows that xa2n+1y ∈ L and finally xan+1y ∈ L since a2n ∼L an. Thus L satisfies the identity
aω+1 6 aω. The opposite direction is similar.

Question 12. The language (aa)∗ does not satisfy the equation aω+1 = aω.

Question 13. Every language of the least Boolean algebra of languages closed under product and
shuffle satisfies the equation aω+1 = aω. Therefore, (aa)∗ does not belong to this Boolean algebra.
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