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1. Introduction.
The aim of this paper is to show that the two classes of recognizable (or regular)languages of the title are actually the same. But a title has to be short and ours does notmention two other important characterizations given in this paper: an algebraic character-ization, on which our proofs rely, and a more algorithmic one in terms of �nite automata.This gives four possible points of view to look at our class and so, the reader may choosebetween combinatorics, topology, algebra or automata according to her or his preferences.We present the language perspective, the topological aspects, the algebraic characterizationand the connections with automata in this order.The polynomial closure of a class of languages L of A� is the set of languages that are�nite unions of languages of the form L0a1L1 � � � anLn, where the ai's are letters and the Li'sare elements of L. The fact that letters are inserted between the Li's is a technical facilitythat makes life easier. The terminology polynomial closure, �rst introduced by Sch�utzen-berger [23], comes from the algebraic notation for the rational expressions, in which unionis denoted by +. This closure operation leads to natural hierarchies among recognizablelanguages. De�ne a boolean algebra as a set of languages of A� closed under �nite unionand complement. Now, start with a given boolean algebra of recognizable languages, andcall it the level 0. Then de�ne recursively the higher levels as follows: the level n + 1=2 isthe polynomial closure of the level n and the level n + 1 is the boolean closure of the leveln + 1=2. Note that a set of level m is also a set of level n for every n � m. The mainproblems concerning these hierarchies is to know whether they are in�nite and whether eachlevel is decidable.At least three di�erent hierarchies of this type were proposed in the literature and thethree of them were proved to be in�nite. If one starts with �nite or co�nite languages(�),one gets the famous \dot-depth hierarchy". This hierarchy was presented for instance in theinvited lecture of I. Simon at the ICALP 1993 [24]. If one starts with the trivial booleanalgebra (A� and ;) one gets the Straubing-Th�erien concatenation hierarchy. These hierar-chies have some nice connections with quanti�ers hierarchies in formal logic [25,17]. Thethird hierarchy, called the group languages hierarchy [10], is obtained by taking the grouplanguages as level 0. A group language is simply a recognizable language accepted by apermutation automaton, that is, a complete deterministic �nite automaton in which eachletter induces a permutation on the set of states. Thus our class, the polynomial closure ofgroup languages, is exactly the level 1=2 of this hierarchy. It may seem a little disappointingto stay below level 1 of a hierarchy, but the reader should be aware that the decidabilityproblem is an open problem (for the three hierarchies) for all levels > 1: : : The decidabilityof level 1 is now proved for the three hierarchies, but it is an extremely di�cult result for
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the group languages hierarchy [8,7]. One of the non-trivial consequences of the results ofthis paper is that level 1=2 is also decidable.The Hall topology (also called pro�nite group topology) was �rst introduced for the freegroup by M. Hall [6] and extended to the case of free monoids by Reutenauer [19]. The grouplanguages form a basis for this topology, that is, the open sets are �nite or in�nite unionsof group languages. There are several other equivalent de�nitions for this topology, that aredetailed in section 3. Of course, an open set is not in general recognizable and there are alsorecognizable languages which are not open. Our main result states that a recognizable setis open if and only if it belongs to the polynomial closure of group languages. This resultlooks like a conjuring trick since it amounts to replace in�nite union by �nite union andproduct.A simple characterization can also be given in terms of syntactic monoids. Recallthat a monoid is a set equipped with an associative multiplication and an identity (denotedby 1) for this multiplication. An ordered monoid (M;�) is a monoid M equipped with a(partial) stable order relation �: for every u; v; x 2M , u � v implies ux � vx and xu � xv.An order ideal of (M;�) is a subset I of M such that, if x � y and y 2 I, then x 2 I.Let (M;�) be an ordered monoid and let � be a surjective semigroup morphism fromA� onto M , which can be considered as a morphism of ordered monoid from (A�;=) onto(M;�). In this paper, the post�x notation x� (resp. x��1) will be used in place of the morestandard notation �(x) (resp. ��1(x)). A language of A� is said to be recognized by � ifL = P��1 for some order ideal P of M . By extension, L is said to be recognized by (M;�)if there exists a surjective morphism from A� onto M that recognizes L. If M is a �nitegroup, then the only stable order relation is the equality relation (see Lemma [??]) and thusevery subset of M is an order ideal. It follows that a language L is a group language if andonly if there exists a monoid morphism � from A� onto a �nite group G and a subset P ofG such that L = P��1.Let L be a language of A�. One de�nes a stable quasiorder �L and a congruencerelation �L on A� by setting

u �L v if and only if, for every x; y 2 A�, xvy 2 L implies xuy 2 L
u �L v if and only if u �L v and v �L u

The congruence �L is called the syntactic congruence of L and the quasiorder �L induces astable order �L onM(L) = A�=�L. The ordered monoid (M(L);�L) is called the syntacticordered semigroup of L, the relation �L is called the syntactic order of L and the canonicalmorphism �L from A� onto M(L) is called the syntactic morphism of L. Finally, the subsetP = L�L of M(L) is called the syntactic image of L. It is a well-known fact that a languageis recognizable if and only if its syntactic monoid is a �nite monoid. Similarly, a languageis a group language if and only if its syntactic monoid is a �nite group. Now, the authorconjectured in [11] that a recognizable language L is open if and only if its syntactic image Psatis�es the following property: for every s; t 2 M(L) and for every idempotent e 2 M(L),st 2 P implies set 2 P . This is equivalent to saying that the ordered syntactic monoid of Lsatis�es the simple identity
e � 1 for every idempotent e 2M (1:1)

This conjecture was proved by Ribes and Zalesskii [21] using sophisticated algebraic tools(pro�nite trees acting on groups). Now by our main result, condition 1.1 also characterizesthe polynomial closure of group languages. We also prove two topological properties: two
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disjoint recognizable open sets can be separated by a clopen set and the closure of a recog-nizable open set of A� is a recognizable clopen set. Again, the proof makes use of algebraicand combinatorial arguments.Finally, we show that a recognizable language belongs to the polynomial closure ofthe group languages if and only if the graph which is the direct product of two copies of thereexive and transitive closure of its minimal automaton contains no con�guration of theform

where q1 is a �nal state and q2 is a non �nal state. This result leads to a polynomial timealgorithm for testing, given an n-state deterministic automaton A, whether the languageaccepted by A belongs to the polynomial closure of the group languages, or, equivalently, isopen in the Hall topology.We tried to keep the paper self-contained. The techniques of semigroup theory re-quired in the proofs are introduced in section 2. The Hall topology is de�ned in section 3,the main result is presented in section 4 and the algorithms are discussed in section 5. Theseparation property is presented in section 6. Some open problems are discussed in section7.
2. Useful facts about monoids

In this section, we state without proof three results of semigroup theory that areneeded in this paper.If M and N are monoids, a monoid morphism � : M ! N is a map from M into Nsuch that (u�)(v�) = (uv)� for every u; v 2 M . An idempotent of M is an element e suchthat e2 = e. The set of idempotents of a monoid M is denoted by E(M).
Proposition 2.1. In a �nite monoid, every element has a unique idempotent power.
The unique idempotent power of an element x is usually denoted x!. Our second result canbe considered as a weak form of Ramsey's theorem in combinatorics [12].
Proposition 2.2. Let  be a monoid morphism from A� onto a �nite monoid M andlet k be a positive integer. Then there exists an integer N and an idempotent e of Msuch that every word of A� of length greater that N factorizes as u = u0u1 � � �uk+1 withu1; u2; : : : ; uk 2 A+ and u1 = u2 = : : : = uk = e.

The last result may appear somewhat arti�cial to the reader. It is in fact connected toone of the deepest results in semigroup theory, but it would take us too far a�eld to presentthis topic. The interested reader is referred to the survey article [7]. Let M be a �nitemonoid and let D(M) be the smallest submonoid of M closed under weak conjugation, thatis, such that the conditions a�aa = a and n 2 D(M) imply an�a 2 D(M) and �ana 2 D(M).One can see D(M) as the subset of M generated by the following context-free grammar
(S! SS + 1
S! aS�a+ �aSa for each pair (a; �a) such that a�aa = a.
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Notice that sinceM is �nite, D(M) can be e�ectively calculated. It is easy to see that D(M)always contains E(M). Indeed, if e is an idempotent, then one can take a = �a = e andn = 1. Then since 1 2 D(M) (because D(M) is a monoid), one has an�a = ee = e 2 D(M).

The deep result of Ash [1,2], �rst conjectured by Rhodes, states that this submonoidD(M) is related to �nite groups as follows.

Theorem 2.3. Let � : A� ! M be a surjective monoid morphism. Then there existsa �nite group G and a monoid morphism � : A� ! G such that D(M) = fu� j u 2A� and u� = 1g.

Notice that nothing is said about the size of the group G, which can actually be ratherlarge.

3. The Hall topology
We de�ne in this section the Hall topology. It follows from a well known result ofalgebra (the free group is residually �nite [6]) that two distinct words u and v of A� canalways be separated by a �nite group in the following sense: there exists a �nite group Gand a monoid morphism ' : A� ! G such that u' 6= v'. We give here a self-contained proofof this fact. Consider the minimal deterministic (but non complete) automaton recognizingthe language fu; vg. For instance, if u = abbab and v = ababb, this automaton is drawn in�gure 3.1.

Figure 3.1. The minimal automaton of fabbab; ababbg.

In this automaton, each letter induces an injective map from the set of states into itself.Complete these injective maps into permutation of the set of states in an arbitrary way andremove the �nal state corresponding to the letter v. One such completion is shown in �gure3.2 below.
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Figure 3.2. A possible completion.
The resulting automaton is a permutation automaton, which recognizes a group languageL. By construction, u 2 L but v =2 L. Therefore, the syntactic monoid of L, which is a �nitegroup, separates u and v.Set, for every u; v 2 A�,

r(u; v) = min f Card(G) j G is a �nite group that separates u and v g
and d(u; v) = e�r(u;v)
with the usual conventions min ; = 1 and e�1 = 0. Then d is a distance (in fact anultrametric distance) which de�nes a topology on A�, called the pro�nite group topology ofthe free monoid. This topology, introduced by Reutenauer [19], is an analogue for the freemonoid to the topology of the free group introduced by M. Hall [6]. It is the coarsest topologysuch that every monoid morphism from A� into a discrete �nite group is continuous. Thegroup languages form a basis for this topology and the concatenation product is a continuousoperation. The interested reader is referred to [11,19] for a more detailed study of the Halltopology. An example of a converging sequence is given by the following proposition, dueto [19].
Proposition 3.1. For every word u 2 A�, limn!1un! = 1.

As the multiplication is continuous and a closed set contains the limit of any converg-ing sequence, it follows that if L is a closed set, and if xun!y 2 L for all n � 0, then xy 2 L.This gives the following corollary [11,16]. Recall that u+ = fun j n > 0g.
Corollary 3.2. Let L be a closed set and u be a word of A�. If xu+y � L, then xy 2 L.

In fact, the converse of Corollary 3.2 is also true. This was �rst conjectured by theauthor and recently proved by Ribes and Zalesskii [21] (see also [1,2] and the survey [7] forrelated problems).
Theorem 3.3. A recognizable set of A� is closed if and only if for every u 2 A�, xu+y � Limplies xy 2 L.

Since an open set is the complement of a closed set, one can also state:
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Theorem 3.4. A recognizable set of A� is open if and only if for every u 2 A�, xy 2 Limplies xu+y \ L 6= ;.

These conditions can be easily converted in terms of ordered syntactic monoids.
Theorem 3.5. Let L be a recognizable language of A� and let (M;�) be its orderedsyntactic monoid.(1) L is closed if and only if for every e 2 E(M), 1 � e.(2) L is open if and only if for every e 2 E(M), e � 1.
Proof. We give the proof for the open sets. The case of closed sets is dual. By Theorem3.4, it su�ces to verify that condition 1.1 is equivalent with condition 3.1

for every u 2 A�, xy 2 L implies xu+y \ L 6= ;: (3:1)
Let � : A� ! M be the syntactic morphism of L and let P = L�. Let e 2 E(M). Byde�nition of the order on M , e � 1 if and only if, for every s; t 2M , st 2 P implies set 2 P .Assume that condition 1.1 is satis�ed and let u 2 A�. By Proposition 2.1, there existsan integer ! > 0 such that (u�)! is idempotent. Therefore, for every x; y 2 A�, xy 2 Limplies xu!y 2 L and xu+y \ L 6= ;. Thus condition 3.1 is veri�ed.Conversely, assume that condition 3.1 is satis�ed. Let e 2 E(M) and s; t 2 M besuch that st 2 P . Let x 2 s��1, y 2 t��1 and u 2 e��1. Then xy 2 L and by 3.1, thereexists n > 0 such that xuny 2 L. Since u and u2 are syntactically equivalent, this impliesxuy 2 L and thus condition 1.1 is veri�ed.

Corollary 3.6. A recognizable language is clopen if and only if it is a group languge.
Proof. By Theorem 3.5, a recognizable language is clopen if and only if the identity is theunique idempotent of its syntactic monoid. Now a �nite monoid with a unique idempotentis a group.

We also need a slightly stronger condition on the syntactic image.
Corollary 3.7. Let P be the syntactic image of a recognizable open set of A�. Thens1s2 � � � sn 2 P implies D(M)s1D(M) � � �D(M)snD(M) � P .
Proof. It su�ces to prove that

for every s; t 2M , st 2 P implies sD(M)t � P . (3:2)
Indeed, 3.2 applied with t = 1 (resp. s = 1) shows that s 2 P implies sD(M) � Pand D(M)s � P . Therefore, s 2 P implies D(M)sD(M) � P . Next, assume by induc-tion that s1s2 � � � sn�1 2 P implies D(M)s1D(M) � � �D(M)sn�1D(M) � P and supposethat s1s2 � � � sn 2 P . Then, for each d0; d1; : : : ; dn 2 D, d0s1d1 � � � dn�2sn�1sndn 2 P bythe induction hypothesis. Set s = d0s1d1 � � � dn�2sn�1 and t = sndn. Property 3.2 givesd0s1d1 � � � dn�2sn�1dn�1sndn 2 P and thus D(M)s1D(M) � � �D(M)snD(M) � P .We now prove 3.2. Let N be the set of all n 2 M such that st 2 P implies snt 2 P .Then N is a submonoid of M which contains E(M) by Theorem 3.5. Now if a�aa = a and
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n 2 N , then st 2 P implies sa�at 2 P and s�aat 2 P since a�a and �aa are idempotents (because(a�a)(a�a) = (a�aa)�a = a�a and (�aa)(�aa) = �a(a�aa) = �aa). Now the condition (sa)(�at) 2 Pimplies (sa)n(�at) 2 P and thus an�a 2 N . Similarly, (s�a)(at) 2 P implies (s�a)n(at) 2 Pwhence �ana 2 N . ThereforeN is closed under weak conjugation and thus containsD(M).

Theorem 3.5 also has some strong consequences on the algebraic structure of M .Recall that an element �x of a monoid M is an inverse of an element x if x�xx = x and�xx�x = �x. A block group is a monoid such that every element has at most one inverse.
Theorem 3.8. Let L be a recognizable language of A�. If L is open or closed, then itssyntactic monoid is a block group.
Proof. Let (M;�) be the ordered syntactic monoid of L. Suppose that an element x hastwo inverses x1 and x2. Then (x1x)(x1x) = (x1xx1)x = x1x and similarly, xx1, x2x andxx2 are idempotent. Thus if L is closed, Theorem 3.5 shows that x1 � (x2x)x1(xx2) =x2(xx1x)x2 = x2xx2 = x2 and similarly x2 � x1. Thus x1 = x2 and M is a block group.The proof is similar for L open.

A subset I of a monoidM is an ideal if, for every x 2 I and y 2M , xy; yx 2 I. Idealsare naturally ordered by inclusion. It is not di�cult to see that in a �nite monoid, there isa smallest non-empty ideal, called the minimal ideal of M . Standard results of semigrouptheory show that the minimal ideal of a block group is a group. Therefore Theorem 3.8gives the following corollary.
Corollary 3.9. Let L be a recognizable language of A�. If L is open or closed, then theminimal ideal of its syntactic monoid is a group.

4. Main result
Denote by A�G the set of all group languages on A� and by Pol(A�G) the polynomialclosure of A�G. Thus a language is in Pol(A�G) if it is a �nite union of languages of theform L0a1L1 � � � akLk where the Li's are group languages. The following result was provedin [11,16].

Theorem 4.1. Every recognizable set of Pol(A�G) is open in the Hall topology.
Our main result states that the converse is also true.

Theorem 4.2. Every recognizable open set belongs to Pol(A�G).
Proof. Let X be a recognizable open set of A� and let � : A� !M be the syntactic monoidof X. Let P = X� be the image of X in M . By theorem 2.3, there exist a �nite groupG and a monoid morphism � : A� ! G such that D(M) = fu� j u 2 A� and u� = 1g.Let R = 1��1. By construction, R is recognized by G and thus is a group language.Furthermore, for every u 2 R, u� = 1 and thus R� = D(M). Let  : A� ! M �G be themonoid morphism de�ned by m = (m�;m�) and let N = N() be the integer occurring inProposition 2.2 for k = 2. Thus every word of A� of length > N factorizes as u = u0u1u2u3
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with u1; u2 2 A+ and u1 = u2 = f where f is an idempotent of M �G. Note that, since1 is the unique idempotent of G, f = (e; 1) for some e 2 E(M). Therefore, the condition onu1 and u2 can be rewritten as u1� = u2� = e and u1� = u2� = 1. In particular, it followsthat u1; u2 2 R. We claim that

X = [
a1���an2Xn�N

Ra1Ra2 � � �RanR (4:1)

Let Y be the right hand side of the formula 4.1. To verify the inclusion Y � X, it su�cesto prove that Y � is contained in P . Let a1 � � � an 2 X, with n � N . Then (a1 � � � an)� 2X� = P . Now
(Ra1Ra2 � � �RanR)� = (R�)(a1�)(R�) � � � (an�)(R�)� D(M)(a1�)D(M) � � �D(M)(an�)D(M)

It follows, by Corollary 3.7, that (Ra1Ra2 � � �RanR)� is contained in P and thus Y � iscontained in P .We now prove the inclusion X � Y . Let u 2 X. We show by induction on the lengthof u that u 2 Y . If juj � N , then u = a1 � � � an with n � N . Since the empty word belongsto R, one also has u 2 Ra1R � � � anR and thus u 2 Y . Assume that juj > N . Then ufactorizes as u0u1u2u3 as indicated above. It follows that u� = (u0�)(u1�)(u2�)(u3�) =(u0�)ee(u3�) = (u0�)e(u3�) = (u0�)(u1�)(u3�) = (u0u1u3)�. Thus u� = u0� whereu0 = u0u1u3. Now, since u0 is shorter that u, one has u0 2 Y by the induction hypothesis.Therefore, there exists a word a1 � � � an 2 X (with n � N) and words r0; r1; : : : ; rn 2 R suchthat u0 = r0a1r1 � � � anrn. Thus u0, u1 and u3 can be factorized as follows
u0 = r0a1r1 � � � air0iu1 = r00i ai+1 � � � ajr0ju3 = r00j aj+1 � � � anrn

with r0ir00i = ri and r0jr00j = rj for some i; j such that 0 � i � j � n. Now r0ju2r00j 2 Rsince (r0ju2r00j )� = (r0j�)(u2�)(r00j �) = (r0j�)1(r00j �) = (r0jr00j )� = rj� = 1. It follows thatu = u0u1u2u3 = r0a1r1 � � � aj(r0ju2r00j )aj+1 � � � anrn whence u 2 Ra1R � � � anR and u 2 Y .

It is interesting to note that the integer N occurring in the proof of Theorem 4.2depends on the cardinality of the group G. Although we didn't give any explicit bound onthe size of G, it su�ces to know that G is �nite to prove the existence of the bound N .Another surprising consequence of the proof is the polynomial expression of X givenby the formula 4.1. Recall that a language is in Pol(A�G) if it is a �nite union of languagesof the form L0a1L1 � � � akLk where the Li's are group languages. But formula 4.1 showsthat the Li's occurring in the expression for X are all equal to R. In other words, everypolynomial of group languages for X is equivalent to a polynomial in R. This surprisingresult can be explained in two steps.
Lemma 4.3. Let H be a �nite group, P a subset of H and  : A� ! H be a surjectivemorphism. Then P�1 is equal to a polynomial in 1�1.
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Proof. First, P�1 = Sg2P g�1. Thus, it su�ces the result for P = fgg. We claim that

g�1 = [
a1���ak2E(1

�1)a1(1�1) � � � (1�1)ak(1�1) (4:2)
where E is the set of words a1 � � � ak such that (a1 � � � ak) = g and the k+1 elements 1, a1,(a1 � � � ak) are all distincts. Let L be the right hand side of 4.2. The inclusion L � g�1
is clear. Conversely, if u = g, there exists a unique factorization u = u0a1u1 � � � akuk suchthat(1) u0; : : : ; uk 2 A�, a1; : : : ; ak 2 A,(2) for 1 � i � k, u0a1 : : : ui�1aiui is the longest pre�x of u such that (u0a1 : : : ui�1ai) =(u0a1 : : : ui�1aiui) and u0 is the longest pre�x such that u0 = 1.By construction, ui = 1 and a1 � � � ak 2 E. Therefore u 2 L, which proves the claim andthe lemma.

It follows that polynomial expressions of group languages are equivalent with poly-nomial expressions of group languages of the form 1�1 (inverse image of the identity).However this does not explain yet why only one group language occurs in formula 4.1. Thetrick is that if L0, : : : , Ln are group languages recognized by groups G0, : : : , Gn, respec-tively, then the group G = G0 � : : : � Gn recognizes L0, : : : , Ln. Indeed, suppose thatLi = Pi�1i for some Pi � Gi and some monoid morphism i : A� ! Gi and let �i : Gi ! Gbe the group morphism de�ned by g�i = (1; : : : ; 1; g; 1; : : : ; 1), where g is in the i-th po-sition. Finally, set 'i = i�i and Qi = Pi�i. Then Pi = Pi�i��1i = Qi��1i and thusLi = Qi��1i �1i = Qi'�1i .
5. Algorithms

In this section, we give a polynomial time algorithm for testing, given an n-statedeterministic automaton A, whether the language L accepted by A belongs to Pol(A�G),or, equivalently, whether L is open in the Hall topology. First we may assume that A is acomplete, minimal, deterministic automaton, since completion and minimalization can beachieved in polynomial time and do not increase the number of states by more than one.Before giving the details of our algorithms, let us �x some convenient notations. Given a�nite (complete) deterministic automaton A = (Q;A; �), we denote by A2 = (Q2; A; �) thedirect product of two copies of A, where the action of A on Q2 is given by
(q1; q2) � a = (q1 � a; q2 � a)

We also denote by G(A) (resp. G2(A)) the reexive and transitive closure of the transitiongraph of A (resp. A2). For instance, if A is the automaton represented below

Figure 5.1.
then A2 is the automaton
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Figure 5.2.
and G2(A) is the graph

Figure 5.3.
A labelled graph G is a con�guration of A if G is isomorphic to a subgraph of G2(A). Wecan now characterize the open recognizable subsets of A� as follows.
Theorem 5.1. Let A = (Q;A;E; fig; F ) be the minimal automaton of a language L.Then L is open if and only if there exist no con�guration of A of the form

Figure 5.4.
with q1 2 F and q2 =2 F .
Proof. Suppose that L is open, and consider a con�guration in A of the form above. Thenthere exist two words u and y such that, in A, p �u = q �u = q, p �y = q1 and q �y = q2. SinceA is minimal, every state of A is accessible and in particular, there exists a word x 2 A�such that i � x = p. On the one hand, i � xy = p � y = q1 2 F and thus xy 2 L. On theother hand, for every n > 0, i � xuny = p � uny = q � y = q2 =2 F . Therefore xu+y \L = ;, incontradiction with Theorem 3.4.Conversely, suppose that A has no con�guration of the form above. We show that Lis open by using Theorem 3.4. Let x, y and u be words such that xy 2 L. By Proposition
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2.1, there exists an integer n such that q � un = q � u2n for all q 2 Q. Set v = un, p = i � x,q = p � v, q1 = p � y and q2 = q � y. Then q � v = p � v2 = p � v = q and q1 = i � xy 2 F sincexy 2 L. Therefore q2 2 F , otherwise A would contain a forbidden con�guration. It followsi � xvy = q2 2 F and thus xvy 2 L. Therefore xu+y \ L 6= ; and L is open.

The previous result yields to a polynomial time algorithm to check whether the lan-guage accepted by of a n-state deterministic automaton is open.
Corollary 5.2. There is a polynomial time algorithm for testing whether the languageaccepted by an n-state minimal automaton is open.
Proof. One can check whether A contains a con�guration of the form 5.4 by computing G2and by verifying there are no quadruples fp; q; q1; q2g of states such that(a) �(p; q); (q; q)� is an edge in G2(A), and(b) �(p; q); (q1; q2)� is an edge in G2(A),(c) q1 2 F and q2 =2 F .Since G2 has n2 vertices, this gives a polynomial algorithm.

6. A separation result
A languageK separates two (disjoint) languages L1 and L2 if either L1 � K � A�nL2or L2 � K � A� n L1. The aim of this section is to prove the following theorem:

Theorem 6.1. Any two disjoint languages of Pol(A�G) can be separated by a grouplanguage.
Theorem 6.1 follows from a series of lemm� of independent interest. Let L1 and L2be two disjoint languages of Pol(A�G).

Lemma 6.2. There exists a morphism � from A� onto an ordered monoid satisfying 1.1which recognizes simultaneously L1 and L2.
Proof. Let, for i = 1; 2, �i : A� ! Mi be the syntactic morphism of Li. Let � : A� !M1�M2 be the morphism de�ned by a� = (a�1; a�2) for every a 2 A and let M = A��. ByTheorem 3.8, M1 and M2 are ordered monoids satisfying 1.1 and thus M is also an orderedmonoid satisfying 1.1. For i = 1; 2, let Ii = f(x1; x2) 2M j xi 2 Li�ig. Then Ii is an orderideal of M : if (x1; x2) 2 Ii and (y1; y2) � (x1; x2) for some (y1; y2) 2 M , then yi � xiand since Li�i is an order ideal of Mi, yi 2 Li�i and (y1; y2) 2 Ii. Finally Ii��1 = Li sinceLi�i��1i = Li. Thus � simultaneously recognizes L1 and L2.

Let M be an ordered monoid satisfying 1.1 recognizing simultaneously L1 and L2.Given a subset I of M , denote by �I the smallest subset E of M containing I and such that,if x 2 E and y is comparable to x, then y 2 E.
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Lemma 6.3. If I is an order ideal of M , then �I recognizes a group language.
Proof. It su�ces to show that the syntactic monoid of �I in M is a group. Let e 2 E(M).Then e � 1 by de�nition of the order on M . We claim that e ��I 1. Indeed, for everyx; y 2M , xey � xy and thus the conditions xey 2 �I and xy 2 �I are equivalent by de�nitionof �I. Thus the identity is the unique idempotent of M=��I . It follows by Propostion 2.1that, for each element x of M=��I , x!�1 is an inverse of x and thus M=��I is a group.

We now establish some properties of ordered monoids satisfying 1.1. We �rst considerthe case of ordered groups.
Lemma 6.4. The only stable order relation on a �nite group is the equality relation.
Proof. Suppose that x � y. Then x!�1 � y!�1 and thus x � y = x!y = xx!�1y �xy!�1y = xy! = x, that is, x = y.
Lemma 6.5. If two elements ofM have a common upper bound, they also have a commonlower bound.
Proof. By Corollary 3.9, the minimal ideal ofM is a group G. Let e be its identity. If x � zand y � z, then ex � ez and ey � ez. Since G is an ideal, e 2 G implies ex; ey; ez 2 G. Nowby Lemma 6.4, the restriction of the order to G is the equality relation. Thus ex = ez = eyand since e � 1, ex � x and ey � y. Thus ex is a common lower bound of x and y.
Lemma 6.6. Let I be an order ideal of M . Then x 2 �I if and only if there exists y 2 Isuch that y � x.
Proof. Let J = fx 2M j 9y 2 I such that y � xg. Then J contains I and is a subset of �Iby de�nition. Let x; y 2M be such that x � y. If x 2 J , there exists z 2 I such that z � x.It follows z � y by transitivity and thus y 2 J . Conversely, if y 2 J , there exists z 2 I suchthat z � y. Since y is a common upper bound of x and z, there exists by Lemma 6.5 anelement t such that t � x and t � z. Now t 2 I since z 2 I. Thus x 2 J . It follows thatx 2 J if and only if y 2 J and therefore �I = J .
Lemma 6.7. If I1 and I2 are two disjoint order ideals of an ordered monoid satisfying 1.1,then �I1 and �I2 are also disjoint.
Proof. Assume that �I1 and �I2 are not disjoint and let z 2 �I1 \ �I2. By Lemma 6.6, thereexist x1; x2 2 I such that x1 � z and x2 � z. Now, by Lemma 6.5, there exists t such thatt � x1 and t � x2. It follows that t 2 I1 \ I2, a contradiction.

We can now conclude the proof of Theorem 6.1. Let K = �I1��1. Since �I1 containsI1, K contains L1. Furthermore, K is a group language by Lemma 6.3 and since �I1 and �I2are disjoint by Lemma 6.7, K is disjoint from L2.
Theorem 6.1 has some interesting topological consequences.
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Corollary 6.8. Any two disjoint recognizable open sets can be separated by a recognizableclopen set.

I am indebted to Daniel Lascar, from the Department of Logic, University of ParisVII, for pointing out the next corollary. Let us �rst mention another consequence of theconjecture on open sets mentionned in the introduction and recently proved by Ribes andZalesskii [21]. As it was shown in [16], this former conjecture implies that the closure of arecognizable language is also recognizable. The next corollary shows that the closure of arecognizable open language is a group language.
Corollary 6.9. The closure of a recognizable open set is a recognizable clopen set.
Proof. Let L be a recognizable open set and let �L be its closure. Since �L is recognizable,its complement is a recognizable open set, disjoined from L. By Corollary 6.8, there existsa clopen set C such that L � C � �L. It follows that C = �L, since �L is by de�nition thesmallest closed set containing L.

7. Conclusion and open problems
To sum up, we have proved the following theorem

Theorem 7.1. Let L be a recognizable set of A�, let M be its syntactic monoid and letP be its syntactic image. Then the following conditions are equivalent.(a) L belongs to the polynomial closure of group languages,(b) L is open in the group topology,(c) for every u 2 A�, xy 2 L implies xu+y \ L 6= ;.(d) for every s; t 2M and e 2 E(M), st 2 P implies set 2 P ,(e) the minimal automaton of L doesn't contain the con�guration given in �gure 5.4,with q1 2 F and q2 =2 F .
and we have derived some topological consequences of this result. The Hall topology, asde�ned in this article, is actually a special case of the topologies de�ned by Hall in hisseminal paper [6]. Indeed, one can attach a topology to each class of �nite groups closedunder taking subgroups, quotients and �nite direct products. For instance, one may considerthe p-groups (for some prime p), the solvable groups or the nilpotent groups. To have thede�nition of the corresponding topology, just replace in the de�nition every occurrence of\group" by \p-group" (resp. solvable group, nilpotent group). One can show, in these threeexamples, that the topology can be de�ned by a distance. The question is now to characterizethe recognizable open sets with respect to these topologies and the polynomial closure ofthe corresponding group languages. There is some hope to solve both questions in the caseof p-groups since Ribes and Zalesskii have recently proved an analogous of their result forp-groups [22], but the problem seems to be more di�cult for the two other classes: : :
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