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1 Introduction.

The most important tool for classifying recognizable languages is Eilen-
berg’s variety theorem [1], which gives a one-to-one correspondence be-
tween (pseudo)-varieties of finite semigroups and varieties of recognizable
languages. Varieties of recognizable languages are classes of recognizable
languages closed under union, intersection, complement, left and right quo-
tients and inverse morphisms. Recall that one passes from a language to a
finite semigroup by computing its syntactic semigroup.

However, certain interesting families of recognizable languages, which are
not varieties of languages, also admit a syntactic characterization. The aim
of this paper is to show that such results are not isolated, but are instances of
a result as general as Eilenberg’s theorem. On the language side, we consider
positive varieties of languages, which have the same properties as varieties
of languages except they are not supposed to be closed under complement.
On the algebraic side, varieties of finite semigroups are replaced by varieties
of finite ordered semigroups. Our main result states there is a one-to-one
correspondence between positive varieties of languages and varieties of finite
ordered semigroups. Due to the lack of space, we shall just give a few
examples of this correspondence and defer to future papers the detailed
study of our new types of varieties. For instance, P. Weil and the author
have shown that the theorems of Birkhoff and Reiterman can be extended
to ordered semigroups by replacing equations by inequations.

The proof of the main result is of course inspired by the proof of Eilen-
berg’s theorem, although there are some subtle adjustments to do. The basic
definitions and properties of ordered semigroups are presented in section 2.
Recognizable sets are introduced in section 3, but our definition extends
the standard one since we are dealing with ordered semigroups. The notion
of syntactic ordered semigroup is defined in section 4. The main result is
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stated and proved in section 5 and a few examples are presented in section
6.

2 Ordered semigroups

An ordered semigroup (S,≤) is a semigroup S equipped with an order re-
lation ≤ on S such that, for every u, v, x ∈ S, u ≤ v implies ux ≤ vx and
xu ≤ xv. An order ideal of (S,≤) is a subset I of S such that, if x ≤ y and
y ∈ I, then x ∈ I. The order ideal generated by an element x is the set [x]
of all y ∈ S such that y ≤ x.

A morphism of ordered semigroups ϕ : (S,≤) → (T,≤) is a semigroup
morphism from S into T such that, for every x, y ∈ S, x ≤ y implies
ϕ(x) ≤ ϕ(y). If ϕ : (R,≤) → (S,≤) and ψ : (S,≤) → (T,≤) are morphisms
of ordered semigroups, then ψ◦ϕ : (R,≤) → (T,≤) is a morphism of ordered
semigroups. A morphism of ordered semigroups ϕ : (S,≤) → (T,≤) is an
isomorphism if there exists a morphism of ordered semigroups ψ : (T,≤) →
(S,≤) such that ϕ ◦ ψ = IdT and ψ ◦ ϕ = IdS . Therefore, one has the
following characterization of isomorphisms.

Proposition 2.1 A morphism of ordered semigroups ϕ : (S,≤) → (T,≤)
is an isomorphism if and only if ϕ is a bijective semigroup morphism and,

for every x, y ∈ S, x ≤ y is equivalent with ϕ(x) ≤ ϕ(y).

Proof. If ϕ is an isomorphism then there exists a morphism of ordered
semigroups ψ : (T,≤) → (S,≤) such that ϕ ◦ ψ = IdS and ψ ◦ ϕ = IdT .
In particular ϕ is a bijection. Furthermore x ≤ y implies ϕ(x) ≤ ϕ(y) and
ϕ(x) ≤ ϕ(y) implies ψ(ϕ(x)) ≤ ψ(ϕ(y)), that is, x ≤ y.

Conversely, suppose that ϕ is a bijection such that, for every x, y ∈ S,
x ≤ y is equivalent with ϕ(x) ≤ ϕ(y). Let ψ : (S,≤) → (T,≤) be the inverse
of ϕ. Then ψ is a semigroup morphism. It is also a morphism of ordered
semigroups. Indeed, for every x, y ∈ T such that x ≤ y, one has ψ(x) ≤ ψ(y)
since x = ϕ(ψ(x)) and y = ϕ(ψ(y)). Thus ϕ is an isomorphism.

The following example shows that a bijective morphism of ordered semi-
groups is not necessarily an isomorphism.

Example 2.1 Let U1 = {0, 1} be the two element semigroup defined by
1.1 = 1 and 0.0 = 0.1 = 1.0 = 0. Let ≤ the order on U1 defined by 0 ≤ 1.
Then the identity on U1 defines a bijective morphism of ordered semigroups
from (U1,=) into (U1,≤). However, this is not an isomorphism.

The next propositions show that order ideals are preserved under union,
intersection, inverse morphisms and residual.
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Proposition 2.2 Let (S,≤) be an ordered semigroup and let (Pi)i∈I be a

family of order ideals of S. Then
⋂

i∈I Pi and
⋃

i∈I Pi are order ideals of S.

Proof. Let y ∈
⋂

i∈I Pi and let x ≤ y. Then for all i ∈ I, y ∈ Pi and thus
x ∈ Pi. It follows that x ∈

⋂

i∈I Pi and thus
⋂

i∈I Pi is an order ideal of S.
Similarly, if y ∈

⋃

i∈I Pi, there exists i ∈ I such that y ∈ Pi and thus x ∈ Pi.
It follows that x ∈

⋃

i∈I Pi and thus
⋃

i∈I Pi is an order ideal of S.

Proposition 2.3 Let ϕ : (S,≤) → (T,≤) be a morphism of ordered semi-

groups. If I is an order ideal of T , then ϕ−1(I) is an order ideal of S.

Proof. Let y ∈ ϕ−1(I) and let x ≤ y. Then ϕ(y) ∈ I and ϕ(x) ≤ ϕ(y).
It follows ϕ(x) ∈ I since I is an order ideal and thus x ∈ ϕ−1(I).

Proposition 2.4 Let I be an order ideal of an ordered semigroup (S,≤).
Then for every s ∈ S1, s−1I and Is−1 are order ideals of S. More generally,

if K is a subset of S1, K−1I and IK−1 are order ideals of S.

Proof. If y ≤ x and x ∈ K−1I then sx ∈ I for some x ∈ K and since
sy ≤ sx, it follows sy ∈ I, whence y ∈ K−1I. Thus K−1I is an order ideal.
The proof for IK−1 is dual.

We say that (S,≤) is an ordered subsemigroup of (T,≤) if S is a sub-
semigroup of T and the order on S is the restriction to S of the order on
T .

We say that (T,≤) is an ordered quotient of (S,≤) if there exists a sur-
jective morphism of ordered semigroups ϕ : (S,≤) → (T,≤). For instance,
any ordered semigroup (S,≤) is a quotient of (S,=). An ordered semigroup
(S,≤) divides an ordered semigroup (T,≤) if (S,≤) is an ordered quotient
of an ordered subsemigroup of (T,≤).

Given a family (Si,≤)i∈I of ordered semigroups, the product
∏

i∈I(Si,≤)
is the ordered semigroup defined on the set

∏

i∈I Si by the law

(si)i∈I(s
′
i)i∈I = (sis

′
i)i∈I

and the order given by

(si)i∈I ≤ (s′i)i∈I if and only if, for all i ∈ I, si ≤ s′i.

Let A be a set and let A+ be the free semigroup on A. Then (A+,=) is
an ordered semigroup. We show that (A+,=) is in fact the free ordered
semigroup on A.
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Proposition 2.5 If ϕ : A → S is a function from A into an ordered

semigroup (S,≤), there exists a unique morphism of ordered semigroups

ϕ̄ : (A+,=) → (S,≤) such that ϕ(a) = ϕ̄(a) for every a ∈ A. Moreover ϕ̄ is

surjective if and only if ϕ(A) is a generator set of S.

Proof. Since A+ is the free semigroup on A, there exists a unique semigroup
morphism ϕ̄ : A+ → S such that ϕ(a) = ϕ̄(a) for every a ∈ A. Now u = v
implies ϕ(u) = ϕ(v) and thus also ϕ(u) ≤ ϕ(v). Thus ϕ is a morphism of
ordered semigroups.

Corollary 2.6 Let η : (A+,=) → (S,≤) be a morphism of ordered semi-

groups and let β : (T,≤) → (S,≤) be a surjective morphism of ordered

semigroups. Then there exists a morphism of ordered semigroups ϕ : (A+,=
) → (T,≤) such that η = β ◦ ϕ.

Proof. Let us associate with each letter a ∈ A an element ϕ(a) of β−1(η(a)).
We thus define a function ϕ : A→ T which can be extended to a semigroup
morphism ϕ : A+ → T such that η = β ◦ ϕ.

(A+,=)

(T,≤) (S,≤)

ϕ η

β

But since the order on A+ is the equality, ϕ is in fact a morphism of ordered
semigroups.

3 Recognizable sets

Let (S,≤) be an ordered semigroup and let η : (S,≤) → (T,≤) be a surjec-
tive morphism of ordered semigroups. An order ideal Q of S is said to be
recognized by η if there exists an order ideal P of T such that Q = η−1(P ).
Notice that this condition implies η(Q) = ηη−1(P ) = P . By extension, an
order ideal Q of S is said to be recognized by (T,≤) if there exists a surjective
morphism of ordered semigroups from (S,≤) onto (T,≤) that recognizes Q.
The next propositions show how the main operations on order ideals are
captured by this definition.

Proposition 3.1 Let I be a set and, for each i ∈ I, let ηi : (S,≤) → (Si,≤)
be a surjective morphism of ordered semigroups. If each ηi recognizes an

order ideal Qi of S, then the order ideals ∩i∈IQi and ∪i∈IQi are recognized

by an ordered subsemigroup of the product
∏

i∈I(Si,≤).
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Proof. For each i ∈ I, let Pi be an order ideal of Si such that Qi = η−1
i (Pi).

Let η : S →
∏

i∈I(Si,≤) be the morphism defined by η(u) = (ηi(u))i∈I . Put
S′ = η(S), P =

∏

i∈I Pi and

P ′ =
⋃

j∈I

∏

i∈I

P ′
i,j where P ′

i,j =

{

Pi if i = j

Si if i 6= j

Then (S′,≤) is an ordered subsemigroup of
∏

i∈I(Si,≤). Furthermore P ∩S ′

and P ′ ∩ S′ are order ideals of (S ′,≤). Indeed, if y ≤ x and x ∈ P (resp.
x ∈ P ′), then for all (resp. for at least one) i ∈ I, xi ∈ Pi. Thus yi ∈ Pi

and thus y ∈ P (resp. y ∈ P ′). It follows that P ∩ S ′ and P ′ ∩ S′ are order
ideals of (S ′,≤). Finally, ∩i∈IQi = η−1(P ∩ S′) and ∪i∈IQi = η−1(P ′ ∩ S′).
Thus (S′,≤) recognizes ∩i∈IQi and ∪i∈IQi.

Proposition 3.2 Let ϕ : (R,≤) → (S,≤) and η : (S,≤) → (T,≤) be two

surjective morphisms of ordered semigroups. If η recognizes an order ideal

Q of S, then η ◦ ϕ recognizes ϕ−1(Q).

Proof. By definition, there exists an order ideal P of T such that Q =
η−1(P ). It follows that ϕ−1(Q) = ϕ−1(η−1(P )) = (η ◦ ϕ)−1(P ).

Proposition 3.3 Let η : (S,≤) → (T,≤) be a surjective morphism of or-

dered semigroups. If η recognizes an order ideal Q of S, it also recognizes

K−1Q and QK−1 for every subset K of S1.

Proof. Indeed, if Q = η−1(P ) and R = η(K), then K−1Q = η(R−1P ) and
QK−1 = η(PR−1). Now, by Proposition 2.4, R−1P and PR−1 are order
ideals of (T,≤).

4 Syntactic ordered semigroup

Let (T,≤) be an ordered semigroup and let P be an order ideal of T . We
define on T two relations �P and ∼P by setting

u �P v if and only if, for every x, y ∈ T 1, xvy ∈ P implies xuy ∈ P

u ∼P v if and only if u �P v and v �P u

Proposition 4.1 The relation �P is a stable quasiorder on T and the re-

lation ∼P is a semigroup congruence.
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Proof. The relation �P is clearly reflexive. Suppose that u �P v and
v �P w. Then, for every x, y ∈ T 1, xwy ∈ P implies xvy ∈ P and xvy ∈ P
implies xuy ∈ P . Therefore xwy ∈ P implies xuy ∈ P and thus u �P w. It
follows that �P is transitive. Let x, y ∈ T 1. If u �P v, then xuy �P xvy
since if sxvyt ∈ P then sxuyt ∈ P . Thus �P is stable. It follows that ∼P is
stable and thus, is a congruence.

The congruence ∼P is called the syntactic congruence of P in T . The
quasiorder �P on T induces a stable order ≤P on S(P ) = T/∼P . The
ordered semigroup (S(P ),≤P ) is called the syntactic ordered semigroup of
P , the relation ≤P is called the syntactic order of P and the canonical
morphism ηP from T onto S(P ) is called the syntactic morphism of P .

Proposition 4.2 The map ηP defines a surjective morphism of ordered

semigroups from (T,≤) onto (S(P ),≤P ) which recognizes P .

Proof. Since ∼P is a semigroup congruence, ηP is a semigroup morphism.
Let u and v be two elements of T such that u ≤ v. Suppose that xvy ∈ P .
Then xuy ≤ xvy since u ≤ v and thus xuy ∈ P since P is an order ideal. It
follows that u �P v, whence ηP (u) ≤P ηP (v). Thus ηP defines a surjective
morphism of ordered semigroups from (T,≤) onto (S(P ),≤P ). We claim
that ηP recognizes P . If u ∈ P and u ∼P v, then, for all s, t ∈ T 1, sut ∈ P
if and only if svt ∈ P . In particular, for s = t = 1, u ∈ P implies v ∈ P .
Therefore P is saturated by ∼P , which proves the claim.

Proposition 4.3 Let ϕ : (R,≤) → (S,≤) be a surjective morphism of or-

dered semigroups and let P be an order ideal of (R,≤). The following prop-

erties hold:

(1) The morphism ϕ recognizes P if and only if ηP factorizes through it.

(2) Let π : (S,≤) → (T,≤) be a surjective morphism of ordered semi-

groups. If π ◦ ϕ recognizes P , then ϕ recognizes P .

Proof. (1) First, by Proposition 4.2, (S(P ),≤P ) recognizes P and Q =
ηP (P ) is an order ideal of (S(P ),≤P ) such that P = η−1

P (Q). If ηP factorizes
through ϕ, there exists a morphism of ordered semigroups ψ : (S,≤) →
(S(P ),≤P ) such that ηP = ψ ◦ ϕ.

(T,≤)

(S,≤) (S(P ),≤P )

ϕ ηP

ψ
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Then ψ is onto and, by Proposition 2.3, K = ψ−1(Q) is an order ideal of S.
Furthermore, ϕ−1(K) = ϕ−1(ψ−1(Q)) = η−1

P (Q) = P . Thus ϕ recognizes
P .

Conversely, if ϕ recognizes P , there exists an order ideal Q of S such
that P = ϕ−1(Q). Let u, v ∈ R be such that ϕ(u) ≤ ϕ(v). We claim
that u �P v. If x, y ∈ R1 and xvy ∈ P , then ϕ(xvy) ∈ ϕ(P ) = Q.
Now since ϕ(xuy) = ϕ(x)ϕ(u)ϕ(y) ≤ ϕ(x)ϕ(v)ϕ(y) = ϕ(xvy), it follows
xuy ∈ ϕ−1(Q) = P , proving the claim. Therefore ϕ(u) = ϕ(v) implies
u ∼P v and thus, by [4], Proposition I.1.4, there exists a surjective semigroup
morphism ψ : S → S(P ) such that ηP = ψ ◦ ϕ. In fact ψ is a morphism of
ordered semigroups. Indeed, let u′ and v′ be two elements of S such that
u′ ≤ v′. Since ϕ is onto, there exist two elements u and v of R such that
u′ = ϕ(u) and v′ = ϕ(v). By the claim, u � v and thus ηP (u) ≤P ηP (v),
that is, ψ(u′) ≤ ψ(v′). Thus ηP factorizes through ϕ.

(2) If π ◦ ϕ recognizes P then by (1), ηP factorizes through π ◦ ϕ. But
then ηP factorizes through ϕ and thus by (1), ϕ recognizes P .

The previous definitions and results apply in particular for free semi-
groups. Indeed, if A is a finite alphabet, then (A+,=) is an ordered semi-
group and every subset of A+ is an order ideal. Furthermore, if (S,≤) is
an ordered semigroup, every surjective semigroup morphism η : A+ → S
induces a surjective morphism of ordered semigroups from (A+,=) onto
(S,≤). Therefore, a language L ⊂ A+ is said to be recognized by a semi-
group morphism η : A+ → (S,≤) if there exists an order ideal P of S such
that L = η−1(P ). By extension, given an ordered semigroup (S,≤) and an
order ideal P of S, we say that (S, P ) recognizes L ⊂ A+ if there exists a
surjective semigroup morphism η : A+ → S such that L = η−1(P ).

In particular, we shall denote by (S(L),≤L) (or simply S(L)) the syn-
tactic ordered semigroup of a language L.

Corollary 4.4 Let L a language of A+ and let (S,≤) be an ordered semi-

group. Then

(1) (S,≤) recognizes L if and only if (S(L),≤L) is a quotient of (S,≤).

(2) If (T,≤) recognizes L and (T,≤) is a quotient of (S,≤), then (S,≤)
recognizes L.

Proof. (1) One applies Proposition 4.3 with (R,≤) = (A+,=) and P = L.
Thus if ϕ : (A+,=) → (S,≤) recognizes L, then ηL factorizes through ϕ
and therefore (S(L),≤L) is a quotient of (S,≤). Conversely, suppose there
exists a surjective morphism of ordered semigroups β : (S,≤) → (S(L),≤L

). Then, by Corollary 2.6, there exists a morphism of ordered semigroups
ϕ : (A+,=) → (S,≤) such that ηL = β ◦ϕ. Therefore, ηL factorizes through
ϕ and by Proposition 4.3, ϕ recognizes L.
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(2) If (T,≤) recognizes L, then by (1), (S(L),≤L) is a quotient of (T,≤).
Therefore if (T,≤) is a quotient of (S,≤), then (S(L),≤L) is a quotient of
(S,≤) and thus by (1), (S,≤) recognizes L.

5 Varieties of ordered semigroups

A variety of finite ordered semigroups is a class of finite ordered semigroups
closed under the taking of ordered subsemigroups, ordered quotients and
finite products.

Recall that a class of recognizable languages is a correspondence C which
associates with each finite alphabet A a set C(A+) of recognizable languages
of A+.

If V is a variety of finite ordered semigroups, we denote by V(A+) the set
of recognizable languages of A+ whose ordered syntactic semigroup belongs
to V. The following is an equivalent definition:

Proposition 5.1 V(A+) is the set of languages of A+ recognized by an

ordered semigroup of V.

Proof. If L ∈ V(A+), then the ordered syntactic semigroup of L, which
recognizes L, belongs to V. Conversely, if L is recognized by an ordered
semigroup (S,≤) of V, then by Corollary 4.4, the ordered syntactic semi-
group of L is a quotient of (S,≤) and thus belongs also to V.

The correspondence V → V associates with each variety of finite ordered
semigroups a class of recognizable languages. The next proposition shows
that this correspondence is one to one.

Theorem 5.2 Let V and W be two varieties of finite ordered semigroups.

Suppose that V → V and W → W. Then V ⊂ W if and only if, for every

finite alphabet A, V(A+) ⊂ W(A+). In particular, V = W if and only if

V = W.

Proof. If V ⊂ W, it follows immediately from the definitions that V(A+) ⊂
W(A+). The converse is based on the following proposition.

Proposition 5.3 Let V be a variety of ordered semigroups and let (S,≤) ∈
V. Then there exist a finite alphabet A and languages L1, . . . , Lk ∈ V(A+)
such that (S,≤) is isomorphic with a subsemigroup of S(L1)× · · · × S(Lk).

Proof. Since S is finite, there exists a finite alphabet A and a surjective
semigroup morphism ϕ : A+ → S. For each s ∈ S, put Ls = ϕ−1([s]). Since
[s] is an order ideal, Ls is recognized by (S,≤) and thus Ls ∈ V(A+). Let
(Ss,≤s) be the ordered syntactic semigroup of Ls. Since (S,≤) recognizes
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Ls, Corollary 4.4 shows that (Ss,≤s) is a quotient of (S,≤). We denote
by πs : (S,≤) → (Ss,≤s) the projection and by π : S →

∏

s∈S(Ss,≤s) the
morphism of ordered semigroups defined by π(x) = (πs(x))s∈S . We claim
that, for each x, y ∈ S, x ≤ y if and only if π(x) ≤ π(y). Since π is a
morphism of ordered semigroups, it is clear that x ≤ y implies π(x) ≤ π(y).
Conversely, if π(x) ≤ π(y), then in particular, πy(x) ≤y πy(y). This means
that, for every s, t ∈ S1, syt ≤ y implies sxt ≤ y and for s = t = 1, one
gets x ≤ y. This proves the claim. It follows in particular that π is one
to one and by Proposition 2.1 that S is isomorphic with a subsemigroup of
∏

s∈S(Ss,≤s).

We can now complete the proof of theorem 5.2. Suppose that V(A+) ⊂
W(A+) for every finite alphabet A and let S ∈ V. Then by Proposi-
tion 5.3, S is isomorphic with a subsemigroup of the form S(L1) × · · · ×
S(Lk), where L1, . . . , Lk ∈ V(A+). It follows that L1, . . . , Lk ∈ W(A+), i.e.
S(L1), . . . , S(Lk) ∈ W. Therefore S ∈ W.

We now characterize the classes of languages which can be associated
with a variety of ordered semigroups.
A positive variety of languages is a class of recognizable languages V such
that

(1) for every alphabet A, V(A+) is closed under finite union and finite
intersection,

(2) if ϕ : A+ → B+ is a semigroup morphism, L ∈ V(B+) implies
ϕ−1(L) ∈ V(A+),

(3) if L ∈ V(A+) and if a ∈ A, then a−1L and La−1 are in V(A+).

In particular, V(A+) always contain the empty set and the set A+ since
∅ =

⋃

i∈∅ Li and A+ =
⋂

i∈∅ Li.

Proposition 5.4 Let V be a variety of finite ordered semigroups. If V →
V, then V is a positive variety of languages.

Proof. Let L,L1, L2 ∈ V(A+) and let a ∈ A. Then by definition S(L),
S(L1), S(L2) are in V. By Proposition 3.1, the languages L1 ∪ L2 and
L1 ∩ L2 are recognized by an ordered subsemigroup T of S(L1) × S(L2).
Now since V is a variety of ordered semigroups, T ∈ V and thus L1 ∪ L2

and L1 ∩L2 belong to V(A+). Since ∅ and A+ are recognized by the trivial
ordered semigroup ({1},=), which is certainly in V, condition (1) is satisfied.
Similarly, Proposition 3.3 shows that the languages a−1L and La−1 are
recognized by S(L) and Proposition 3.2 shows that, if ϕ : B+ → A+ is a
semigroup morphism, then ϕ−1(L) is recognized by S(L). Thus conditions
(2) and (3) are satisfied.

9



Theorem 5.5 For every positive variety of languages V, there exists a va-

riety of finite ordered semigroups V such that V → V.

Proof. Let V be the variety of ordered semigroups generated by the ordered
semigroups of the form S(L) where L ∈ V(A+) for a certain alphabet A.
Suppose that V → W; we shall in fact show that V = W. First, if L ∈
V(A+), we have S(L) ∈ V by definition and therefore L ∈ W(A+), still by
definition. Therefore, for every alphabet A, V(A+) ⊂ W(A+).

The inclusion W(A+) ⊂ V(A+) is more difficult to prove. Let L ∈
W(A+). Then S(L) ∈ V and since V is the variety generated by the ordered
semigroups of the form S(L) where L is a language of V, there exist an integer
n > 0 and, for 1 ≤ i ≤ n, alphabets Ai and languages Li ∈ Vi(A

+
i ) such

that S(L) divides S(L1)× · · · × S(Lk) = (S,≤). Since S(L) divides (S,≤),
S(L) is quotient of an ordered subsemigroup (T,≤) of (S,≤). By Corollary
4.4, (T,≤) recognizes L. Therefore there exists a surjective morphism of
ordered semigroups ϕ : (A+,=) → (T,≤) and an order ideal P of T such
that L = ϕ−1(P ). Let ι : (T,≤) → (S,≤) be the identity on T and let
πi : (S,≤) → S(Li) be the i-th projection defined by πi(s1, . . . , sn) = si.
Put ϕ′ = ι ◦ ϕ, ϕi = πi ◦ ϕ

′ and let ηi : A+ → S(Li) be the syntactic
morphism of Li. Since ηi is onto, there exists by Corollary 2.6 a morphism
of ordered semigroups ψi : A+ → A+

i such that ϕi = ηi ◦ ψi. We can
summarize the situation by a diagram:

A+ A+
i

S S(Li)

ψi

πi

ηi
ϕi

ϕ′

We recall that we are seeking to prove that L ∈ V(A+), which is finally
obtained by a succession of reductions of the problem.

(1) We have

L = ϕ−1(P ) =
⋃

s∈P

ϕ−1([s])

Since V(A+) is closed under union, it suffices to establish that for every
s ∈ T we have ϕ−1([s]) ∈ V(A+).

(2) Put ι(s) = (s1, . . . , sn). We claim that

ϕ−1([s]) =
⋂

1≤i≤n

ϕ−1
i ([si])
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Indeed, we have the following sequence of equivalences

u ∈ ϕ−1([s]) ⇐⇒ s ≥ ϕ(u)

⇐⇒ ι(s) ≥ ι(ϕ(u)) = ϕ′(u)

⇐⇒ for 1 ≤ i ≤ n, πi(ι(s)) ≥ πi(ϕ
′(u))

⇐⇒ for 1 ≤ i ≤ n, si ≥ ϕi(u)

⇐⇒ for 1 ≤ i ≤ n, ϕi(u) ∈ [si]

⇐⇒ u ∈
⋂

1≤i≤n

ϕ−1
i ([si])

As V(A+) is closed under intersection, it suffices to establish that, for
1 ≤ i ≤ n, ϕ−1

i ([si]) ∈ V(A+).

(3) Since ϕi = ηi ◦ ψi, one has ϕ−1
i ([si]) = ψ−1(η−1

i ([si]). Now since V
is a positive variety of languages, it suffices to prove that η−1

i ([si]) ∈
V(A+

i ), which results from the following lemma.

Lemma 5.6 Let V be a positive variety of languages, A a finite alphabet

and let L ∈ V(A+). Let η : A+ → (S(L),≤L) be the syntactic morphism of

L. Then for every x ∈ S(L), η−1([x]) ∈ V(A+).

Proof. Let P = η(L). Then P is an order ideal of (S(L),≤L) such that
L = η−1(P ). We claim that

[x] =
⋂

(s,t)∈E

s−1Pt−1 where E = {(s, t) | sxt ∈ P}

Indeed, let x ∈ s−1Pt−1 and let u ∈ [x], that is, u ≤L x. Since s−1Pt−1 is
an order ideal by Proposition 2.4, it follows u ∈ s−1Pt−1. This proves that
[x] is contained in

⋂

(s,t)∈E s
−1Pt−1. Conversely, let u ∈

⋂

(s,t)∈E s
−1Pt−1.

If sxt ∈ P , then (s, t) ∈ E and thus u ∈ s−1Pt−1, that is, sut ∈ P . It
follows that u ≤L x and thus u ∈ [x], which proves the claim. It follows in
particular

η−1([x]) =
⋂

(s,t)∈E

(

η−1(s)
)−1

L
(

η−1(t)
)−1

Now L ∈ V(A+) by hypothesis and V(A+) is closed under finite intersection
and left and right quotients. Therefore η−1([x]) ∈ V(A+).

In conclusion, we have proved the following theorem.

Theorem 5.7 The correspondence V → V defines a one to one correspon-

dence between the varieties of finite ordered semigroups and the positive

varieties of languages.
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As for Eilenberg’s variety theorem, there is an analogous theorem for va-
rieties of ordered monoids. In this case, the definitions of a class of languages
and of a positive variety have to be modified as follows.

A class of recognizable languages is a correspondence C which associates
with each finite alphabet A a set C(A∗) of recognizable languages of A∗. A
positive variety of languages is a class of recognizable languages V such that

(1) for every alphabet A, V(A∗) is closed under finite union and finite
intersection,

(2) if ϕ : A∗ → B∗ is a monoid morphism, L ∈ V(B∗) implies ϕ−1(L) ∈
V(A∗),

(3) if L ∈ V(A∗) and if a ∈ A, then a−1L and La−1 are in V(A∗).

The monoid version of our result is proved exactly in the same way.

Theorem 5.8 The correspondence V → V defines a one to one correspon-

dence between the varieties of finite ordered monoids and the positive vari-

eties of languages.

6 Some examples

Since equality is an order relation, any finite semigroup S can be considered
as a an ordered semigroup (S,=) and any variety of finite semigroups V

can be regarded as a variety of finite ordered semigroups. Note that, since
any ordered semigroup (S,≤) is a quotient of (S,=), this variety contains
all ordered semigroups (S,≤) such that S ∈ V. In particular, Eilenberg’s
varieties theorem is a special instance of our result corresponding to varieties
of ordered monoids in which the order is the equality relation. Equivalently,
varieties of languages are also positive varieties of languages.

We just present three other instances of the correspondence between
positive varieties of languages and varieties of ordered semigroups. Other
examples will be given in subsequent papers. Recall that a language is
cofinite if its complement is finite.

Theorem 6.1 A language is empty or cofinite if and only if it is recognized

by a finite ordered nilpotent semigroup S in which 0 ≤ s for all s ∈ S.

Proof. If L is empty, its ordered syntactic semigroup is trivial and the result
is clear. If L is cofinite, its ordered syntactic semigroup is nilpotent [1, 4].
Let η : A+ → S be the syntactic morphism and let P be the image of L in
S. Since L is cofinite, it contains arbitrary long words and thus P contains
0. Therefore, for every x, y ∈ S1, xsy ∈ P implies x0y = 0 ∈ P . Thus 0 ≤ s
in S.

Conversely, let (S,≤) be a finite ordered nilpotent semigroup in which
0 ≤ s for all s ∈ S and let ϕ : A+ → (S,≤) be a morphism of ordered

12



semigroups. Finally, let I be an order ideal of S. If I is empty, ϕ−1(I) is
the empty language. If I is non-empty, it certainly contains 0, since 0 is the
minimal element of S. It follows that ϕ−1(I) is cofinite.

Since the finite ordered nilpotent semigroups S in which 0 is the smallest
element form a variety of finite ordered semigroups, one obtains the following
corollary.

Corollary 6.2 Let, for each alphabet A, V(A+) be the class of empty or

cofinite languages of A+. Then V is a positive variety of languages.

Our second example deals with idempotent and commutative monoids
(or semilattices). Let A be an alphabet and B be a subset of A. Denote by
L(B) the set of words containing at least one occurrence of every letter of
B. Equivalently,

L(B) =
⋂

a∈B

A∗aA∗

Theorem 6.3 Let A be an alphabet. A language of A∗ is a finite union

of languages of the form L(B) for some subset B of A if and only if it is

recognized by an ordered idempotent and commutative monoid M in which

the identity is the greatest element.

Proof. Let L = L(B) for some subset B of A, let η : A∗ → M be the
syntactic morphism of L and let P be the image of L in M . It is well known
[1, 4] that M is idempotent and commutative. Let x, y, s ∈ A∗. If xy ∈ L,
then xsy ∈ L by construction. It follows that, for every x, y, s ∈M , xy ∈ P
implies xsy ∈ P . Therefore s ≤ 1 for all s ∈M .

Conversely, let M be an ordered idempotent and commutative monoid
in which 1 is the greatest element and let ϕ : A∗ → (M,≤) be a morphism of
ordered monoids. Let I be an order ideal and let L = ϕ−1(I). Let u ∈ L and
let c(u) be the set of letters occurring in u. We claim that L(c(u)) is a subset
of L. First, since M is idempotent and commutative, ϕ(u) =

∏

b∈c(u) ϕ(b).
On the other hand, if v ∈ L(c(u)), then ϕ(v) ≤

∏

b∈c(u) ϕ(b) and thus ϕ(v) ∈
I, since I is an ideal. Thus v is in L. It follows that L =

⋃

u∈L L(c(u)).
But since each c(u) is a subset of A, this apparently infinite union is in fact
finite.

For our last example, we need two definitions. Recall that a word u =
a1a2 · · · an (where the ai’s are letters) is a subword of a word v if v =
v0a1v1a2 · · · anvn for some words v0, v1, . . . , vn. A language L is a shuffle

ideal if any word which has a subword in L is also in L.

Theorem 6.4 A language is a shuffle ideal if and only if it is recognized by

a finite ordered monoid in which 1 is the greatest element.

13



Proof. By a well-known theorem of Higman (cf [3], chapter 6), every shuffle
ideal is a finite union of languages of the form A∗a1A

∗a2 · · · akA
∗, where the

ai’s are letters. In particular, every shuffle ideal is recognizable.
Let L be a shuffle ideal and let η : A∗ → (M,≤) be its syntactic mor-

phism. If xy ∈ L, then xsy ∈ L for every s ∈ A∗. It follows that, for every
x, y, s ∈M , xy ∈ P implies xsy ∈ P . Therefore s ≤ 1 and 1 is the greatest
element.

Conversely, let (M,≤) be a finite ordered monoid in which 1 is the great-
est element and let ϕ : A→ (M,≤) be a morphism of ordered monoids. Let
I be an order ideal of S and let L = ϕ−1(I). If xy ∈ L, then ϕ(xy) =
ϕ(x)ϕ(y) ∈ I. Now since ϕ(s) ≤ 1, ϕ(xsy) = ϕ(x)ϕ(s)ϕ(y) ≤ ϕ(x)ϕ(y) and
thus ϕ(xsy) ∈ I. It follows that xsy ∈ L and thus L is a shuffle ideal.

Notice that every finite ordered monoid in which 1 is the maximum is
J -trivial. This implies that the variety V of ordered monoids in which 1 is
the maximum is a subvariety of the variety J of ordered J -trivial monoids.
But V is a proper subvariety of J, since the languages corresponding to J are
closed under complement. This seems to be in contradiction with the result
of Straubing and Thérien [5] stating that every finite J -trivial monoid is the
quotient of an ordered monoid in which 1 is the maximum. However, this
quotient is in the sense of monoids and not in the sense of ordered monoids.

Also note that our three examples have a dual version, obtained by
reversing the order. For instance, the dual version of our first example can
be stated as follows. Let, for each alphabet A, V(A+) be the class formed
by the finite languages and by A+. Then V is a positive variety. The
corresponding variety of ordered semigroup is the variety of ordered finite
nilpotent semigroups in which 0 is the maximum.
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