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Abstract. In this survey paper, we present known results and open
questions on a proper subclass of the class of regular languages. This
class, denoted by W, is especially robust: it is closed under union, inter-
section, product, shuffle, left and right quotients, inverse of morphisms,
length preserving morphisms and commutative closure. It can be defined
as the largest positive variety of languages not containing the language
(ab)∗. It admits a nontrivial algebraic characterization in terms of finite
ordered monoids, which implies that W is decidable: given a regular lan-
guage, one can effectively decide whether or not it belongs to W. We
propose as a challenge to find a constructive description and a logical
characterization of W.

Warning. In this paper, square brackets are used as a substitute to “respec-
tively” to gather several definitions [properties] into a single one.

The search for robust classes of regular languages is an old problem of au-
tomata theory, which occurs in particular in the study of regular model checking
[3]. In this survey paper, we present known results and open questions on a
proper subclass of the class of regular languages, introduced a few years ago
by the authors in connection with the study of the shuffle product [6, 7]. This
class, denoted by W, is especially robust: it is closed under union, intersection,
product, shuffle, left and right quotients, inverse of morphisms, length preserving
morphisms and commutative closure. Furthermore, this class is decidable: there
is an algorithm to decide whether a given regular language belongs to W or not.
As such, it might offer an appropriate framework for modeling certain problems
arising in the verification of concurrent systems.

The class W is also interesting on its own and appears in the study of three
operations on languages: length preserving morphisms, inverse of substitutions
and shuffle product. More specifically, W is the largest proper positive variety
of languages closed under one of these operations. It is also the largest positive
variety of languages not containing the language (ab)∗.

⋆ The authors acknowledge support from the AutoMathA programme of the European
Science Foundation.



All these results rely on an algebraic characterization of W in terms of ordered
monoids (Theorem 4.3). It gives us the opportunity to review this algebraic
approach and to apply it to a concrete example.

Our paper is organised as follows. In Section 1, we briefly introduce the defi-
nitions needed for this paper, including the notion of ordered automaton, which
might be new to most readers. Section 2 presents the algebraic background.
Again, the less familiar notions are probably those of ordered monoid and of
profinite monoids. Section 3 is devoted to general results derived from the al-
gebraic approach, including specific results on length preserving morphisms and
the shuffle operation. The class W, its algebraic characterization and its main
properties are presented in Section 4. Closure under partial commutation is dis-
cussed in Section 5. Finally, we propose a few open problems on W in the final
section. One of them is to find a logical characterization for W, a problem which
is widely open.

1 Languages and automata

In this paper, an alphabet is a finite set whose elements are called letters. The
free monoid A∗ is the set of words on the alphabet A. The length of a word u is
denoted by |u|. The empty word, denoted by 1, is the unique word of length 0.

1.1 Ordered automata

An ordered automaton is a deterministic automaton equipped with a partial
order on its set of states. This order is required to be compatible with the action
of each letter. Formally, we are given an automaton A = (Q,A, · , i, F ) and a
partial order 6 on Q such that, for all p, q ∈ Q and a ∈ A, p 6 q implies
p· a 6 q · a.

If A is a minimal deterministic automaton, there is a canonical way to define
a partial order on Q, called the syntactic order on Q. Define a relation 6 on Q
by p 6 q if and only if for each u ∈ A∗,

q ·u ∈ F ⇒ p·u ∈ F

It is clear that 6 is reflexive and transitive. To see it is a partial order, suppose
that p 6 q and q 6 p. Then, for all u ∈ A∗, one gets q ·u ∈ F if and only if
p·u ∈ F , which gives p = q since A is minimal.

Thus every language admits a minimal ordered automaton. In the remainder
of this paper, we consider only regular languages and finite automata.

Example 1.1. For the minimal automaton of the language (ab)∗ represented in
Figure 1, the order on the set of states is 1 < 0 and 2 < 0.
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Figure 1. The minimal automaton of (ab)∗.

Example 1.2. For the minimal automaton of the language (ab)∗ ∪A∗aaA∗ (with
A = {a, b}) represented in Figure 2, the order on the set of states is 0 < 1 < 3
and 0 < 2 < 4 < 3.
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Figure 2. The minimal automaton of (ab)∗ ∪ A∗aaA∗.

1.2 Operations on languages

A number of operations preserve regular languages: Boolean operations, product,
star, shuffle, quotients, morphisms, inverse of morphisms, etc.

Boolean operations comprise union, intersection and complement. Let L1

and L2 be two languages of A∗. The (concatenation) product of L1 and L2 is the
language

L1L2 = {x1x2 | x1 ∈ L1, x2 ∈ L2}

Their shuffle is the language

L1 X L2 = {w ∈ A∗ | w = u1v1 · · ·unvn for some n > 0 such that

u1 · · ·un ∈ L1, v1 · · · vn ∈ L2}



Given a language L and a word u, the left and right quotients of L by u are the
languages

u−1L = {x ∈ A∗ | ux ∈ L}

Lu−1 = {x ∈ A∗ | xu ∈ L}

A morphism between two free monoids A∗ and B∗ is a map ϕ : A∗ → B∗ such
that, for all u, v ∈ A∗, ϕ(uv) = ϕ(u)ϕ(v). This condition implies in particular
that ϕ(1) = 1. The morphism ϕ is length preserving if, for all u ∈ A∗, the
condition |ϕ(u)| = |u| is satisfied. This is equivalent to requiring that, for all
a ∈ A, ϕ(a) ∈ B.

The languages of A∗ form a monoid for the concatenation product, called the
monoid of languages of A∗. A substitution from A∗ into B∗ is a monoid morphism
σ from A∗ into the monoid of languages on B∗. In particular, σ(1) = {1}, the
language reduced to the empty word and if u = a1 · · · an, σ(u) = σ(a1) · · ·σ(an).
Thus a substitution is completely determined by the languages σ(a), for a ∈ A.

The inverse substitution σ−1 maps a language K of B∗ onto the language
σ−1(K) of A∗, defined by

σ−1(K) = {u ∈ A∗ | σ(u) ∩ K 6= ∅}

1.3 Classes of languages and varieties of languages

A class of languages is a correspondence C which associates with each alphabet A
a set C(A∗) of regular languages of A∗. It is closed under inverse of morphisms
[substitutions] if, for any morphism [substitution] ϕ : A∗ → B∗ and for any
language L ∈ C(B∗), the language ϕ−1(L) belongs to C(A∗). Similarly, it is
closed under length-preserving morphism if, for any length-preserving morphism
ϕ : A∗ → B∗ and for any language L ∈ C(A∗), the language ϕ(L) belongs
to C(B∗). Finally, it is closed under union [intersection, complement, residuals,
product, shuffle, etc.] if, for each alphabet A, the set C(A∗) is closed under union
[intersection, complement, residuals, product, shuffle, etc.]

A class of regular languages is said to be proper if it is not the class of all
regular languages.

A positive variety of languages is a class of regular languages closed under
union, intersection, residuals and inverses of morphisms. A variety of languages
is a positive variety closed under complement.

2 A bit of algebra

In this section, we gather the algebraic notions used in this paper: semigroups,
monoids, ordered monoids, power monoids, profinite monoids and varieties.



2.1 Semigroups and monoids

A semigroup is a set equipped with an associative operation, usually denoted
multiplicatively. A monoid is a semigroup with an identity element, usually
denoted by 1.

An element e of a monoid is idempotent if e2 = e. Given an element s of a
finite semigroup S, sω denotes the unique idempotent of the subsemigroup of
S generated by s. Two elements s and t of a semigroup are mutually inverse if
sts = s and tst = t.

Let M be a finite monoid. The exponent of M is the least integer ω such that
for all x ∈ M , xω is idempotent. Its period is the least integer p such that for all
x ∈ M , xω+p = xω.

An ideal of a monoid M is a subset I of M such that MIM ⊆ I. An ideal
I is called minimal if, for every J of M , the condition J ⊆ I implies J = ∅ or
J = I. Every finite monoid admits a unique minimal ideal. This minimal ideal
I has a very constrained structure: in particular, if e is an idempotent of I and
x is an element of M , then (exe)ω = e.

Let M and N be two monoids. A morphism of monoids from M into N is a
function ϕ : M → N such that ϕ(1) = 1 and for all x, y ∈ M , ϕ(xy) = ϕ(x)ϕ(y).

A transformation on a set Q is a map from Q to Q. We use the notation q · f
to denote the image of an element q ∈ Q by f , instead of the standard f(q). The
product of two transformations f and g is the transformation fg defined, for all
q ∈ Q, by q · (fg) = (q · f)· g. Note that, in traditional notation, the function fg
would be denoted g ◦ f . Equipped with this product, the set of transformations
on Q form a monoid, denoted by T (Q).

Given a deterministic automaton A = (Q,A, · , i, F ), each word u ∈ A∗ de-
fines a transformation on Q, which maps the state q onto the state q ·u. The
set of all these transformations form a submonoid of T (Q), called the transi-
tion monoid of A. One can also attach a finite monoid to a nondeterministic
automaton. See [14, 16] for more details.

The monoid attached to the minimal automaton of a language is called its
syntactic monoid. It can be defined directly as follows. The syntactic congruence
of a language L of A∗ is the congruence ∼L defined on A∗ by setting u ∼L v if
and only if, for every x, y ∈ A∗,

xvy ∈ L ⇔ xuy ∈ L

The syntactic monoid is the quotient of A∗ by ∼L and the natural morphism
from A∗ onto M is called the syntactic morphism of L.

2.2 Ordered monoids

An ordered monoid is a monoid M equipped with a partial order 6 compatible
with the product on M : for all x, y, z ∈ M , if x 6 y then zx 6 zy and xz 6 yz.

Let (M,6) be an ordered monoid. An order ideal of M is a subset I of M
such that if x ∈ I and y 6 x then y ∈ I. A filter of M is a subset F of M such



that if x ∈ F and x 6 y then y ∈ F . Note that a subset of M is a filter if and
only if its complement is an order ideal.

Let M and N be two ordered monoids. A morphism of ordered monoids is an
order-preserving monoid morphism from M into N . We say that N is a quotient
of M if there exists a surjective morphism of ordered monoids from M onto N .
An ordered submonoid of M is a submonoid of M , equipped with the restriction
of the order on M .

The product of a family (Mi)i∈I of ordered monoids is the ordered monoid
defined on the set

∏
i∈I Mi. The multiplication and the order relation are defined

componentwise.

2.3 Monoids and automata

There are two ways to make use of monoids to describe languages.
The first solution bypasses the notion of automata by defining directly lan-

guages recognized by an [ordered] monoid. We just recall this definition in the
ordered case [14, 16]. A language L of A∗ is recognized by an ordered monoid
(M,6) if and only if there exist an order ideal I of M and a monoid morphism
η from A∗ into M such that L = η−1(I).

The second solution relies on the notion of transition monoid. If a determinis-
tic automaton A = (Q,A, · , i, F ) is partially ordered, then its transition monoid
M can be ordered in a natural way. It suffices to set u 6 v if and only if, for
every x ∈ M and q ∈ Q,

q · vx ∈ F ⇒ q ·ux ∈ F

If A is the ordered minimal automaton of a language L, we obtain the syntactic
ordered monoid of L. The syntactic order 6 on M can also be defined directly.
Let η : A∗ → M be the syntactic morphism of L. Then, given u, v ∈ M , one has
u 6 v if and only if, for all x, y ∈ M ,

xvy ∈ η(L) ⇒ xuy ∈ η(L)

Example 2.1. The minimal automaton A of the language (ab)∗ is represented in
Figure 1. The transition monoid of A contains six elements which correspond to
the words 1, a, b, ab, ba and aa.

1 a b aa ab ba

1 2 0 0 1 0

2 0 1 0 0 2

Furthermore aa is a zero of this monoid and thus can be denoted 0. Finally, the
syntactic ordered monoid of (ab)∗ is the ordered monoid

B1−
2 = {1, a, b, ab, ba, 0}

presented by the relations aba = a, bab = b and aa = bb = 0. The syntactic order
is given by 1 6 ab, 1 6 ba and x 6 0 for every x ∈ M . This ordered monoid will
play an important role in this paper.
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2.4 Power monoids

Let M be a monoid and let P(M) be the set of subsets of M . Define the product
of two subsets X and Y of M as the set

XY = {xy | x ∈ X and y ∈ Y }

This operation makes P(M) a monoid, called the power monoid of M .
It is possible to extend this notion to ordered monoids [7, 19]. Let (M,6) be

an ordered monoid. Define the product of two filters F and G of M as the filter
generated by the set FG:

↑FG = {z ∈ M | there exist x ∈ F and y ∈ G such that xy 6 z}

This operation turns the set of filters on M into an ordered monoid, denoted by
P+(M,6), in which the order relation is the reverse inclusion ⊇.

2.5 Profinite monoids

We briefly recall the definition of a free profinite monoid. More details can be
found in [1, 2]. Let A be an alphabet. A monoid M separates two words u and v
of the free monoid A∗ if there exists a morphism ϕ from A∗ onto M such that
ϕ(u) 6= ϕ(v). We set

r(u, v) = min
{
|M | M is a monoid that separates u and v }

and d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
Then d is an ultrametric on A∗, that is, satisfies the following properties, for all
u, v, w ∈ A∗,

(1) d(u, v) = 0 if and only if u = v,

(2) d(u, v) = d(v, u),



(3) d(u,w) 6 max{d(u, v), d(v, w)}.

For the metric d, the closer are two words, the larger is the monoid needed to
separate them.

As a metric space, A∗ admits a completion, denoted by Â∗. As A∗ is dense
in Â∗ and since the product on A∗ is uniformly continuous, it can be extended
by continuity to Â∗. The resulting monoid is called the free profinite monoid on
A. This is a topological compact monoid which admits a unique minimal ideal.
The elements of Â∗ are called profinite words.

It can be shown that, for each profinite word x, the sequence (xn!)n>0 is a

Cauchy sequence. It converges to an idempotent element of Â∗, denoted by xω.

Every monoid morphism from A∗ into a finite monoid M (considered as a

discrete metric space), can be extended by continuity to a morphism from Â∗

into M . In particular, the image of xω under any morphism ϕ : A∗ → M into a
finite monoid M is well defined: it is the unique idempotent of the subsemigroup
of M generated by ϕ(x). This fully justifies the natural formula ϕ(xω) = (ϕ(x))ω,
in which the ω on the right hand side denotes the exponent of M .

2.6 Varieties of finite monoids

A variety of finite monoids is a class of finite monoids closed under taking sub-
monoids, quotients and finite direct products. Varieties of finite ordered monoids
are defined analogously.

Given a variety of finite ordered monoids V, the variety of finite ordered
monoids P+V is generated by the monoids of the form P+(M,6) where (M,6
) ∈ V.

In the same way as varieties in Birkhoff sense, varieties of finite monoids can
be equationally defined, but this description involves profinite equations, which
are formal equalities between two profinite words. More precisely, let u and v
be two profinite words of Â∗. A finite monoid M satisfies the profinite equation
u = v if and only if, for each morphism ϕ : Â∗ → M , ϕ(u) = ϕ(v). Similarly, a
finite ordered monoid M satisfies the profinite equation u 6 v if and only if, for
each morphism ϕ : Â∗ → M , ϕ(u) 6 ϕ(v).

Given a set E of profinite equations, the class of finite [ordered] monoids sat-
isfying all the equations of E form a variety of finite [ordered] monoids, denoted
by JEK. Reiterman’s theorem [20] states that every variety of finite monoids can
be defined by a set of profinite equations of the form u = v. As shown in [17],
this result extends to varieties of finite ordered monoids, using equations of the
form u 6 v.

For instance the variety Com of finite commutative monoids is defined by
the single equation xy = yx. The variety of finite groups is defined by the single
equation xω = 1. The variety of finite ordered monoids P+G is defined by the
single equation xω 6 1 [18].



3 The algebraic approach

The general idea of the algebraic approach is to classify regular languages through
algebraic properties of their syntactic [ordered] monoid. We recall here two ver-
sions of the variety theorem. Extended versions were also obtained in [23, 9] and
a unified version is proposed in [11].

3.1 The variety theorem

Denote by V → V the correspondence which associates to a variety of finite
[ordered] monoids the class V of all languages of A∗ whose syntactic [ordered]
monoid belongs to V. One can show that V is a [positive] variety of languages.

Similarly, we denote by V → V the correspondence which associates to a
[positive] variety of languages V the smallest variety of finite [ordered] monoids
V containing the syntactic [ordered] monoids of the languages of V.

The original variety theorem is due to Eilenberg [8]. Its ordered version was
proved by the second author in [15].

Theorem 3.1 (Variety theorem). The correspondences V → V and V → V
are mutually inverse one to one correspondences between the varieties of finite
[ordered] monoids and the [positive] varieties of languages.

For instance, the variety of languages corresponding to Com is the variety
Com of all commutative languages. Recall that a language L is commutative
if a1a2 · · · an ∈ L implies aσ(1)aσ(2) · · · aσ(n) ∈ L for each permutation σ of
{1, 2, . . . , n}. Other descriptions of Com can be found in [8, 13].

The variety of languages corresponding to G is the variety of group languages.
Recall that a group language is a regular language whose syntactic monoid is
a group, or, equivalently, is recognized by a finite deterministic automaton in
which each letter defines a permutation of the set of states.

The languages of the positive variety corresponding to P+G are the poly-
nomials of group languages. Recall that, given a class C of regular languages,
the polynomial languages of L are the finite unions of languages of the form
L0a1L1 · · · akLk where a1, . . . , ak are letters and L0, . . . , Lk are languages of C.

3.2 Length preserving morphisms and inverse of substitutions

Power monoids are the appropriate tool to study length preserving morphisms
[12, 21, 22]. We recall here the ordered version of these results [7, 19].

Given a positive variety of languages V, the positive variety of languages Λ+V
is defined as follows. For each alphabet A, Λ+V(A∗) is the lattice of languages
generated by the languages of the form ϕ(L), where L ∈ V(B∗) for some alphabet
B and ϕ is a length preserving morphism from B∗ into A∗.

Proposition 3.2. Let V be a positive variety of languages and let V be the
corresponding variety of finite ordered monoids. Then Λ+V is a positive variety
of languages and the corresponding variety of finite ordered monoids is P+V.



There is a similar result for inverse of substitutions. Given a positive variety
of languages V, the positive variety of languages Σ+V is defined as follows.
For every alphabet A, Σ+V(A∗) is the lattice of languages generated by the
languages of the form σ−1(L), where L ∈ V(B∗) for some alphabet B and σ is
a substitution from A∗ into B∗.

Proposition 3.3. Let V be a variety of finite ordered monoids and V the cor-
responding positive variety of languages. Then Σ+V is a positive variety of lan-
guages that corresponds to P+V. In particular, Σ+V = Λ+V.

3.3 The shuffle operation

Power monoids also make an important tool to study the shuffle product, due
to the following result.

Proposition 3.4. Let L1 and L2 be two languages of A∗, recognized respectively
by the ordered monoids M1 and M2. Then L1 X L2 is recognized by the ordered
monoid P+(M1 × M2).

A [positive] variety of languages V is closed under shuffle if the shuffle product
of two languages of V is also in V. It is closed under length preserving morphisms
if Λ+V = V and it is closed under inverse of substitutions if Σ+V = V. As a
consequence of Propositions 3.2, 3.3 and 3.4, we get the following result.

Proposition 3.5.

(1) If a positive variety of languages is closed under length preserving mor-
phisms, then it is closed under inverse of substitutions and under shuffle.

(2) If a positive variety of languages is closed under inverse of substitutions,
then it is closed under length preserving morphisms and under shuffle.

One may wonder whether a positive variety of languages is closed under
length preserving morphisms if and only if it is closed under shuffle. This result
holds for varieties of languages but depends on the classification of varieties
closed under shuffle. It is still an open problem for positive varieties of languages.

It is easy to see that the variety of all commutative languages is closed under
shuffle. Actually, the commutative varieties of languages closed under shuffle were
characterised by Perrot [12]: they correspond to the varieties of commutative
monoids whose groups belong to a given variety of commutative groups. Perrot
also conjectured that the only non commutative variety of languages closed under
shuffle was the variety of all regular languages, a result that was finally proved
in 1998 by Esik and Simon [10]. Therefore the variety of commutative languages
is the largest proper variety of languages closed under shuffle. This completes
the classification of the varieties of languages closed under shuffle.

Classifying the positive varieties closed under shuffle seems to be a really
challenging problem on which only partial results are known [4, 7]. A first ques-
tion is to know whether the result of Esik and Simon also holds for positive
varieties: in other words, is there a largest proper positive variety closed under
shuffle? This question was solved positively by the authors in [7].



Theorem 3.6. There is a largest proper positive variety of languages closed
under shuffle.

This positive variety, denoted by W in the sequel, enjoys a number of inter-
esting properties which are detailed in the next section.

4 A robust class of languages

We start with a characterization of W in terms of languages, also given in [7]. The
difficult part is to prove the existence of a largest positive variety of languages
satisfying the condition of the theorem.

Theorem 4.1. The positive variety W is the largest positive variety of lan-
guages such that, for A = {a, b}, the language (ab)∗ does not belong to W(A∗).

Let us denote by W the variety of finite ordered monoids corresponding to
W. Theorem 4.1 can be translated immediately as follows:

Theorem 4.2. The variety of finite ordered monoids W is the largest variety
of finite ordered monoids not containing the ordered monoid B1−

2 .

These characterizations are useful to prove that a language is not in W. For
instance, let A = {a, b}. We claim that the language L = (aab)∗ ∪A∗b(aa)∗abA∗

is not in W(A∗). Assume the contrary and let ϕ : A∗ → A∗ be the morphism
defined by ϕ(a) = aa and ϕ(b) = b. Then since a positive variety of languages
is closed under inverse of morphisms, the language ϕ−1(L) = (ab)∗ belongs to
W(A∗), a contradiction with Theorem 4.1.

Theorems 4.1 and 4.2 are simple to state but they do not provide any algo-
rithm to decide whether a given regular language belongs to W or, equivalently,
whether a given finite ordered monoid belongs to W. A solution to this problem
was given in [7].

Theorem 4.3. A finite ordered monoid M belongs to W if and only if, for any
pair (s, t) of mutually inverse elements of M , and any element z of the minimal
ideal of the submonoid of M generated by s and t, (stzst)ω 6 st.

Other equational descriptions are given in [7]. We now give a new formulation
of Theorem 4.3 that is closer to automata theory. Before stating this result
precisely, let us introduce some terminology.

Consider a deterministic automaton A = (Q,A, · , i, F ), a state p of Q and
two words u and v of A∗. Let us say that u and v are mutually inverse in A if, for
every state p, p·uvu = p·u and p· vuv = p· v. This is clearly equivalent to saying
that u and v define two mutually inverse transformations in the transformation
monoid of A.

We are interested in the graph G(p, u, v) whose vertices are the states of the
form p· z, where z ∈ {u, v}∗ and the edges are of the form q → q ·u and q → q · v.
As in any directed graph, the states of G(p, u, v) are partially ordered by the



reachability relation. To avoid any confusion with the syntactic order on Q, we
will say that a state q2 is deeper that a state q1 if there is path from q1 to q2.
Our new result can now be formulated as follows.

Theorem 4.4. Let L be a regular language of A∗, let A = (Q,A, · , i, F ) be its
minimal ordered automaton. Then L does not belong to W(A∗) if and only if
there exist two states p and q of Q, two words u and v of A∗, mutually inverse
in A such that p·u = q, q · v = p, a deepest state p′ of the graph G(p, u, v) and a
word r ∈ {u, v}∗ such that p· r = p′ · r = p′ ·uv = p′ and p′ 66 p in the syntactic
order on Q.

Proof. Note that one may have q = p, but the condition p′ 66 p implies that p′

is different from p. Let us denote by (M,6) the syntactic ordered monoid of L
and by η : A∗ → M its syntactic morphism. Let ω be the exponent of M .

First assume that L does not belong to W(A∗). According to Theorem 4.3,
there is a pair (s, t) of mutually inverse elements of M , generating a submonoid
N of M and an element z of the minimal ideal of N such that (stzst)ω 66 st.
Let us fix two words u, v ∈ A∗ such that η(u) = s and η(v) = t. Then u and v
are by construction mutually inverse in A. Since z belongs to N , there is also a
word w ∈ {u, v}∗ such that η(w) = z. The condition (stzst)ω 66 st implies that
there exist two words x, y ∈ A∗ such that

xuvy ∈ L and x(uvwuv)ωy /∈ L (1)

Let us set r = (uvwuv)ω, q = i·xu, p = q · v and p′ = p· r. Since s and t are
mutually inverse, the words u and uvu define the same transformation on Q and
in particular, p·u = i·xuvu = i·xu = q. Further p′ · r = p· rr = p· r = p′ and
p′ ·uv = p· (uvwuv)ωuv = p· (uvwuv)ω = p′ since r and uv define idempotent
transformations on Q.

i p q

p′

u

v

x

r

r uv

We claim that p′ is a deepest state of the graph G(p, u, v). Indeed, consider
a state reachable from p′, say q′ = p′ · f for some f ∈ {u, v}∗. Since η(r) is an
idempotent of the minimal ideal of N , one has η((rfr)ω) = η(r). Since p′ · r = p′,
it follows that p′ = p′ · r = p′ · (rfr)ω = q′ · r(rfr)ω−1 and thus p′ is reachable
from q′, which proves the claim.

Finally, it follows from (1) that i·xuvy ∈ F and i·x(uvwuv)ωy /∈ F , whence
p· y ∈ F and p′ · y /∈ F . Therefore p′ 66 p and the condition on A is satisfied.

Suppose now that the condition on A is satisfied. Since A is minimal, each
state of Q is accessible and there exists a word x such that i·x = p. Set s = η(u)



and t = η(v). Then s and t are two mutually inverse elements of M which
generate a submonoid N of M . Let I be the minimal ideal of N and let f be a
word of {u, v}∗ such that η(f) belongs to I. Since p′ is a deepest state of G(u, v),
the state p′ can be reached from p′ · f and hence there is a word g ∈ {u, v}∗ such
that p′ · fg = p′. Setting w = rfg, we get p′ ·w = p′ · rfg = p′ · fg = p′. Therefore
p′ = p′ · r = p′ · fg = p′ ·uv and thus we obtain

i·xuv = p and i·x(uvwuv)ω = i·x(uvrfguv)ω = p′ (2)

Now, since p′ 66 p, there exists a word y such that p· y ∈ F but p′ · y /∈ F .
Consequently, it follows from (2) that i·xuvy ∈ F but i·x(uvwuv)ωy /∈ F , that
is, xuvy ∈ L but x(uvwuv)ωy /∈ L. Setting z = η(w), we get (uvzuv)ω 66 uv.
Further, since η(f) ∈ I and z = η(r)η(f)η(g), z also belongs to I. Thus by
Theorem 4.3, L does not belong to W(A∗).

For instance, let us come back to Examples 1.1 and 1.2. If A is the minimal
automaton of (ab)∗ represented in Figure 1, one can take p = 1, q = 2, p′ = 0,
u = a, v = b and r = a to verify that A satisfies the conditions of Theorem 4.4.
Thus (ab)∗ is not in W(A∗).

On the other hand, one can verify that the minimal automaton of (ab)∗ ∪
A∗aaA∗ represented in Figure 2 does not satisfy the conditions of Theorem 4.4.
Thus (ab)∗ ∪ A∗aaA∗ belongs to W(A∗).

Note that the condition that u and v are mutually inverse in A is mandatory.
Consider for instance the minimal automaton of the language (ab)∗∪ (ab)∗bA∗∪
(ab)∗aabA∗ on the alphabet {a, b}, represented in Figure 4. The order on the set
of states is 3 < 1 < 4 < 0 and 3 < 2 < 0.

1 2

3 4

0

a

b

b

a, b

a, b

b a

a

Figure 4. The minimal automaton of (ab)∗ ∪ (ab)∗bA∗

∪ (ab)∗aabA∗.

Setting p = 1, q = 2, p′ = 0 and r = a3, one has p· a = q, q · b = p, p· r = p′ · r =
p′ ·uv = p′ and p′ 66 p. Further, r ∈ {a, b}∗ and p′ is a deepest state in the graph
G(a, b). However, a and b are not mutually inverse and one can actually verify
that A does not satisfy the conditions of Theorem 4.4. In particular, taking
u = aba and v = b does not work, since there is no word r ∈ {u, v}∗ such that
p· r′ = p′. Thus L belongs to W(A∗).



A key property of W, also proved in [7], is stated in the next theorem

Theorem 4.5. The equality W = P+W holds.

Propositions 3.2, 3.3 and 3.5 now give immediately:

Corollary 4.6. The positive variety W is closed under length preserving mor-
phisms, inverse of substitutions and shuffle.

In fact, a stronger property holds [7].

Theorem 4.7.

(1) The positive variety W is the largest proper positive variety of languages
closed under length preserving morphisms.

(2) The positive variety W is the largest proper positive variety of languages
closed under inverse of substitutions.

(3) The positive variety W is the largest proper positive variety of languages
closed under shuffle.

Let us mention another important closure property of W.

Proposition 4.8. The positive variety W is closed under product.

Proof. It suffices to use a standard trick to simulate a concatenation product by
a shuffle product. Let L1 and L2 be two languages of W(A∗). Let Ā = {ā | a ∈ A}
be a copy of A and let πA and πĀ be the morphisms from (A ∪ Ā)∗ onto A∗

defined by πA(a) = πĀ(ā) = a and πA(ā) = πĀ(a) = 1 for all ā ∈ A. Consider
the two languages of (A ∪ Ā)∗

K1 = π−1
A (L1) ∩ A∗ K2 = π−1

Ā
(L2) ∩ Ā∗

Thus K1 is just the same language as L1, but on a larger alphabet, and K2 is a
copy of L2. Finally, let

K = (K1 X K2) ∩ A∗Ā∗

Since W is closed under intersection, inverse of morphisms and shuffle and since
A∗, Ā∗ and A∗Ā∗ are languages of W((A ∪ Ā)∗), one gets K ∈ W((A ∪ Ā)∗).
Finally let π : (A ∪ Ā)∗ → A∗ be the morphism defined by π(ā) = π(a) = a.
Now π(K) = L1L2 and since W is closed under length preserving morphisms,
L1L2 ∈ W(A∗).

Note, however, that W is not the largest proper positive variety of languages
closed under product. Indeed the variety of star-free languages is closed under
product, but contains (ab)∗.



5 Closure under commutation and partial commutation

The class W also occurs in the study of commutation relations.
Let A be an alphabet and let I be a symmetric and irreflexive relation on

A (often called the independence relation). We denote by ∼I the congruence on
A∗ generated by the set {ab = ba | (a, b) ∈ I}. If L is a language on A∗, we
also denote by [L]I the closure of L under ∼I . When I is the relation {(a, b) ∈
A × A | a 6= b}, we simplify the notation to ∼ and [L], respectively. Thus ∼ is
the commutation relation and [L] is the commutative closure of L. A class C of
languages is closed under I-commutation if L ∈ C implies [L]I ∈ C. It is closed
under commutation if L ∈ C implies [L] ∈ C.

Since the commutative closure of the language (ab)∗ is nonregular, a class of
regular languages closed under commutation cannot contain (ab)∗. What hap-
pens for varieties and positive varieties of languages? One can show that there
is a largest variety of languages V such that, for A = {a, b}, the language (ab)∗

does not belong to V(A∗). It is denoted by DS since the corresponding vari-
ety of finite monoids is the variety DS. Recall that a finite monoid belongs to
DS are if each of its regular D-classes form a semigroup. In fact, one can show
that DS is also the largest variety of languages closed under commutation. The
corresponding result for positive varieties states that W is the largest positive
variety of languages closed under commutation. Actually, a stronger result holds
[5]. Define the period (respectively exponent) of a regular language as the period
(respectively exponent) of its syntactic monoid.

Theorem 5.1. Let L be a language of W(A∗). Then [L] is regular and commu-
tative (and hence belongs to W(A∗)) and its period divides that of L.

For partial commutations, a weaker result holds if I is transitive [5]. Recall
that in this case, A∗/∼I is a free product of free commutative monoids.

Theorem 5.2. Let L be a language of W(A∗) and let I be a transitive indepen-
dence relation. Then [L]I is a regular language.

Although we know that [L]I is regular in this case, we don’t know whether [L]I
necessarily belongs to W(A∗).

6 Conclusion and open questions

We have seen that the class W is closed under the following operations: union,
intersection, product, shuffle, left and right quotients, inverse of morphisms,
length preserving morphisms and commutative closure. It is a decidable variety
and the corresponding variety of finite ordered monoids W is precisely known.
The positive variety W can be defined alternatively as the largest proper positive
variety of languages satisfying (1) [(2), (3), (4)]:

(1) not containing the language (ab)∗;

(2) closed under shuffle;



(3) closed under length preserving morphisms;

(4) closed under inverse of substitutions.

Despite these numerous closure properties, we don’t know of any constructive
description of W, similar to the definition of the star-free languages. For instance,
the least positive variety of languages satisfying Conditions (1)-(4) is the variety
of polynomials of group languages, which is strictly contained in W. Is it possible
to find more powerful operators to generate the languages of W? We let this
question as a research problem for the reader.

Another research problem is to find a logical description for W. The fact that
W contains all finite groups and even DS might be a problem, since no logical
description is available for the corresponding subvarieties of W.

Finally, it would be nice to have an evocative name for W and the authors
would appreciate any motivated suggestion. . .
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