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Abstract

This article is a contribution to the algebraic theory of automata,
but it also contains an application to Büchi’s sequential calculus. The
polynomial closure of a class of languages C is the set of languages that
are finite unions of languages of the form L0a1L1 · · · anLn, where the
ai’s are letters and the Li’s are elements of C. Our main result is an
algebraic characterization, via the syntactic monoid, of the polynomial
closure of a variety of languages. We show that the algebraic operation
corresponding to the polynomial closure is a certain Mal’cev product
of varieties. This result has several consequences. We first study the
concatenation hierarchies similar to the dot-depth hierarchy, obtained
by counting the number of alternations between boolean operations
and concatenation, For instance, we show that level 3/2 of the Straub-
ing hierarchy is decidable and we give a simplified proof of the partial
result of Cowan on level 2. We propose a general conjecture for these
hierarchies. We also show that if a language and its complement are
in the polynomial closure of a variety of languages, then this language
can be written as a disjoint union of marked unambiguous products
of languages of the variety. This allows us to extend the results of
Thomas on quantifier hierarchies of first-order logic.

1 Introduction

This paper is a contribution to the algebraic theory of recognizable lan-
guages, in the spirit of the work of Eilenberg and Schützenberger. Eilen-
berg’s variety theorem gives a bijective correspondence between varieties of
languages and varieties of finite semigroups or finite monoids. Varieties of
languages are classes of recognizable languages closed under finite boolean
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operations, inverse morphisms and left and right quotients. Much effort has
been devoted in recent years to extend this correspondence to operations.
That is, given an operation on languages, find the associated operation on
the semigroup level, or conversely, given an operation on (finite) semigroups,
find the associated operation on the languages level. The most important
operations on languages are the boolean operations (union, intersection and
complement), the concatenation product and Kleene’s star operation [26].
Most classification schemes on recognizable languages proposed in the six-
ties, like the star-height or the dot-depth are based on these three basic
operations.

The main topic of this paper is the concatenation product, an operation
already widely studied in the literature: Arfi [5, 6], Blanchet-Sadri [10, 11,
13, 14, 12, 15], Brzozowski [17, 18, 19], Cowan [20], Eilenberg [22], Knast
[27, 28], Schützenberger[57, 58], Simon [59, 62], Straubing [48, 49, 64, 66,
68, 69, 70], Thérien [49, 69], Thomas [72] and the authors [35, 36, 39, 48,
49, 70, 74, 77].

These former works have shown that, instead of the pure concatena-
tion product, the real fundamental operation is the polynomial closure,
an operation that mixes together the operations of union and concatena-
tion. Formally, the polynomial closure of a class of languages L of A∗ is
the set of languages that are finite unions of marked products of the form
L0a1L1 · · · anLn, where the ai’s are letters and the Li’s are elements of L.
The introduction of the letters ai’s is a bit surprising and can only be jus-
tified by subsequent developments. However, it suffices to say that this
operation is more natural in the algebraic perspective we want to stress. It
is also much more suitable for the connections with formal logic (see our
Section 10). We also consider the unambiguous polynomial closure, that is
the closure under disjoint union and unambiguous marked product, and the
boolean closure of the polynomial closure. One can also define, with a slight
modification (see Section 5) similar operators for languages of A+.

The main result of this paper is an algebraic characterization of the
polynomial closure. There are several technical difficulties to achieve this
result. First, even if V is a variety of languages, its polynomial closure
is not, in general, a variety of languages. The solution to this problem
was given in a recent paper of the first author [44]. If the definition of a
variety of languages is slightly modified (instead of all boolean operations,
only closure under intersection and union are required in the definition),
one still has an Eilenberg type theorem. The new classes of languages are
called positive varieties, but of course, the algebraic counterpart has to be
modified too: they are the varieties of finite ordered semigroups or finite
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ordered monoids. It turns out that the polynomial closure of a variety of
languages is always a positive variety. Now, the next question can be asked:
given a variety of monoids V corresponding to a variety of languages V,
describe the variety of ordered monoids corresponding to the polynomial
closure of V. The solution involves algebraic results on ordered monoids
that generalize known results on monoids. For instance, most results about
identities defining varieties of monoids carry over for varieties of ordered
monoids [51]. The Mal’cev product, one of the most powerful operations on
varieties of monoids can also be extended to varieties of ordered monoids [50].
The variety of ordered monoids corresponding to the polynomial closure of
V is precisely a Mal’cev product of the form W M©V, where W is the variety
of finite ordered semigroups (S,6) in which ese 6 e, for each idempotent e
and each element s in S. The formulation of this result is very close to the
algebraic characterization of the unambiguous polynomial closure obtained
in [49]: the variety of ordered monoids corresponding to the unambiguous
polynomial closure of V is the Mal’cev product LI M©V, where LI is the
variety of semigroups S in which ese = e, for each idempotent e and each s
in S.

The proof of our main result is non-trivial and relies on a deep theorem
of Simon [60] on factorization forests. Its importance can probably be bet-
ter understood on its consequences. First, the polynomial closure leads to
natural hierarchies among recognizable languages. Define a boolean algebra
as a set of languages of A∗ (resp. A+) closed under finite union and comple-
ment. Now, start with a given boolean algebra of recognizable languages,
and call it level 0. Then define recursively the higher levels as follows: the
level n + 1/2 is the polynomial closure of the level n and the level n + 1
is the boolean closure of the level n + 1/2. Note that a set of level m is
also a set of level n for every n > m. The main problems concerning these
hierarchies is to know whether they are infinite and whether each level is
decidable. At least three different hierarchies of this type were proposed in
the literature and all three were proved to be infinite: the Straubing hierar-
chy, whose level 0 are the empty language and A∗, the dot-depth hierarchy,
whose level 0 consists of the finite or cofinite languages1, and the group hi-
erarchy, whose level 0 consists of the group languages. A group language is
simply a recognizable language accepted by a permutation automaton, that
is, a complete deterministic finite automaton in which each letter induces a
permutation on the set of states.

1in this particular case, languages must be considered as subsets of A
+. This is a

subtle, but important detail.
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Levels 0, 1/2 and 1 of the Straubing hierarchy were known to be de-
cidable. Level 3/2 was also known to be decidable but the proof was quite
involved and no practical algorithm was known. We give a simple proof
of this last result and show that, given a deterministic automaton A with
n states on the alphabet A, one can decide in time polynomial in 2|A|n
whether the language accepted by A is of level 3/2 in the Straubing hier-
archy. Decidability of the level 2 is still an open question, but we make
some progress on this problem. First we give a short proof of a result of
Cowan [20] characterizing the languages of level 2 whose syntactic monoid
is inverse. Second, we formulate a conjecture for the identities of the variety
of monoids corresponding to languages of level 2. Several conjectures have
been proposed before, but this one is the first that gives explicitly a set
of identities for this variety. Actually, our conjecture is a particular case
of a more general conjecture on the boolean closure of the polynomial clo-
sure. We conjecture that the algebraic counterpart of this operation is also
a Mal’cev product. More precisely, we conjecture that the variety of ordered
monoids corresponding to the boolean closure of the polynomial closure of V
is the Mal’cev product B1 M©V, where B1 is the variety of finite semigroups
corresponding to languages of dot-depth one. We also present an equivalent
formulation of this conjecture in terms of ordered monoids (Conjecture 9.1).
This last conjecture leads to a promising track. Indeed, the simplest case of
our conjecture, obtained by taking for V the trivial variety, is a nice result
of Straubing and Thérien [69] stating that every finite J -trivial monoid is
a quotient of an ordered monoid satisfying the identity x 6 1. The hope
would be to adjust the artful proof of this latter result to some other cases.

For the dot-depth hierarchy, only levels 0 and 1 were known to be decid-
able. We show that level 1/2 is also decidable. There is some evidence that
level 3/2 is also decidable, but the proof of this result would require some
auxiliary algebraic results that will be studied in a future paper.

Our results on the group hierarchy were announced in [41] in a slightly
different form. It is easy to see that level 0 is decidable, but the decidability
of level 1 follows from a series of non trivial results in semigroup theory
[25, 24]. The languages of level 1/2 were also widely studied. In particular,
they are exactly the recognizable open sets of the progroup (or Hall) topology
on the free monoid. One of the non-trivial consequences of our main result
is that level 1/2 in the group hierarchy is also decidable. Furthermore, our
algorithm to decide whether a recognizable language is of level 1/2 gives as
a byproduct an algebraic and effective characterization of the recognizable
open sets in the progroup topology, a result conjectured in [40].

Our new approach is also related to the Schützenberger product, an
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algebraic tool studied by several authors [36, 39, 48, 53, 57, 65]. We first
observe that the Schützenberger product can be naturally equipped with
an order. Thus, given a variety of finite monoids V, the Schützenberger
products of members of V generate a variety of ordered monoids. We show
that this variety is precisely the Mal’cev productW M©V of our main result.
This proves the equivalence of the two constructions in the case of monoids.
However, our construction still corresponds to the polynomial closure in the
case of languages of A+. This is not the case of the Schützenberger product,
contrary to a claim of the first author in [36].

Another important consequence of our result is the fact that a language
L belongs to the unambiguous polynomial closure of a variety of languages
V if and only if both L and its complement belong to the polynomial closure
of V. This result has an interesting consequence in logic. Indeed, it has
been known for some time that there are some nice connections between the
Straubing hierarchy and formal logic [72, 34, 45]. More precisely, Thomas
[72] (see also [34]) showed that Straubing’s hierarchy is in one-to-one corre-
spondence with a well known hierarchy of first order logic, the Σn hierarchy,
obtained by counting the alternative use of existential and universal quan-
tifiers in formulas in prenex normal form. We present analogous results for
the ∆n hierarchy of first order logic. We first show that each level of this
logical hierarchy defines a variety of languages. Next we give an effective de-
scription of the first levels. For the levels 0 and 1, the corresponding variety
is trivial. The variety corresponding to level 2 is the smallest variety of lan-
guages closed under non-ambiguous product, introduced by Schützenberger
[58].

Our paper is organized as follows. Sections 2, 3 and 4 introduce the
necessary background. Section 5 contains our main result. The connections
with the Schützenberger product are analyzed in Section 6. The results on
the unambiguous polynomial closure are discussed in Section 7. Section 8
is devoted to concatenation hierarchies and our conjecture is discussed in
Section 9. Section 10 contains the applications to formal logic.

2 Varieties

Our approach in this paper is purely algebraic and relies mainly on the con-
cept of variety. Some very recent developments of the theory of varieties
are used in this paper, and thus it seems appropriate to recall these re-
sults to keep the paper self-contained. We will review, in order, varieties of
semigroups and of ordered semigroups, description by identities in the free
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profinite semigroup, relational morphisms and the Mal’cev product. If S is
a semigroup, S1 denotes the monoid equal to S if S has an identity and to
S ∪ {1} otherwise.

2.1 Varieties of semigroups and ordered semigroups

An ordered semigroup (S,6) is a semigroup S equipped with an order re-
lation 6 on S such that, for every u, v, x ∈ S, u 6 v implies ux 6 vx and
xu 6 xv. The ordered semigroup (S,>) is called the dual of (S,6). An
order ideal of (S,6) is a subset I of S such that, if x 6 y and y ∈ I, then
x ∈ I. A morphism of ordered semigroups ϕ : (S,6) → (T,6) is a semi-
group morphism from S into T such that, for every x, y ∈ S, x 6 y implies
xϕ 6 yϕ. A semigroup S can be considered as an ordered semigroup by
taking the equality as order relation.

An ordered semigroup (S,6) is an ordered subsemigroup of (T,6) if S is
a subsemigroup of T and the order on S is the restriction to S of the order
on T . An ordered semigroup (T,6) is an ordered quotient of (S,6) if there
exists a surjective morphism of ordered semigroups ϕ : (S,6) → (T,6).
For instance, any ordered semigroup (S,6) is a quotient of (S,=). Given
a family (Si,6)i∈I of ordered semigroups, the product

∏

i∈I(Si,6) is the
ordered semigroup

∏

i∈I Si equipped with the product order.
Let A be a set and let A+ be the free semigroup on A. Then (A+,=) is

an ordered semigroup, which is in fact the free ordered semigroup on A.
Recall that a variety of finite semigroups (or pseudovariety) is a class of

finite semigroups closed under the taking of subsemigroups, quotients and
finite products. Similarly, a variety of finite ordered semigroups is a class of
finite ordered semigroups closed under the taking of ordered subsemigroups,
ordered quotients and finite products. Varieties of finite monoids and vari-
eties of finite ordered monoids are defined in the same way. If V is a variety
of finite semigroups, the class of all ordered semigroups of the form (S,6),
where S ∈ V, is a variety of ordered semigroups, called the variety of or-
dered semigroups generated by V, also denoted V. The context will make
clear whether V is considered as a variety of semigroups or as a variety of
ordered semigroups.

Given a variety of finite ordered semigroups, the class of all duals of
members of V form a variety of finite ordered semigroups, called the dual
of V and denoted V̆. The join of two varieties of finite ordered semigroups
V1 and V2 is the smallest variety of finite ordered semigroups containing
V1 and V2. The join of a variety and its dual will be of special interest in
the sequel.
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It is a well known fact that varieties of semigroups (in the Birkhoff sense)
can be defined by identities. Similarly, a result of Bloom [16] shows that
varieties of ordered semigroups can be defined by identities of the form
u 6 v. Analogous results hold for varieties of finite (ordered) semigroups
[1, 4, 52, 75], but their statements require some topological preliminaries.

2.2 Profinite completions and identities

Let A be a finite alphabet and let u, v be two words of A∗. A finite monoid
M separates u and v if there exists a monoid morphism ϕ : A∗ → M such
that uϕ 6= vϕ. One defines a distance on A∗ as follows: if u and v are
elements of A∗, let

r(u, v) = min
{

|M | M separates u and v
}

and d(u, v) = 2−r(u,v). By convention, min ∅ = ∞ and 2−∞ = 0. Thus
r(u, v) measures the size of the smallest monoid which separates u and v. It
is not difficult to verify the following, for all u, v, w ∈ A∗:

(1) d(u, v) = 0 if and only if u = v,

(2) d(u, v) = d(v, u),

(3) d(u, v) 6 max
(

d(u,w), d(v,w)
)

,

(4) d(uw, vw) 6 d(u, v) and d(wu,wv) 6 d(u, v).

That is, d is an ultrametric distance function. For this metric, multiplication
in A∗ is uniformly continuous, so that A∗ is a topological monoid. The
completion of the metric space (A∗, d) is a monoid, denoted Â∗ and called
the free profinite monoid on A.

We consider each finite monoid M as being equipped with a discrete
distance, defined, for every x, y ∈M by

d(x, y) =

{

0 if x = y

1 if x 6= y

Then every monoid morphism from A∗ onto M is uniformly continuous and
can be extended in a unique way into a continuous morphism from Â∗ onto
M . Since Â∗ is a completion of A∗, its elements are limits of sequences of
words. An important such limit is the ω-power, which traditionally desig-
nates the idempotent power of an element of a finite monoid [22, 38].

Proposition 2.1 Let A be a finite alphabet and let x ∈ Â∗. The sequence
(xn!)n>0 converges in Â∗ to an idempotent denoted xω.
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Note that if µ : Â∗ →M is a continuous morphism into a finite monoid,
then xωµ is equal to (xµ)ω, the unique idempotent power of xµ.

Another useful example is the following. The set 2A of subsets of A is a
semigroup under union and the function c : A∗ → 2A defined by c(a) = {a}
is a semigroup morphism. Thus c(u) is the set of letters occurring in u. Now
c extends into a continuous morphism from Â∗ onto 2A, also denoted c and
called the content mapping.

Let x, y be elements of Â∗. A finite monoidM satisfies the identity x = y
if, for every continuous morphism ϕ : Â∗ →M , xϕ = yϕ. Similarly, a finite
ordered monoid (M,6) satisfies the identity x 6 y if, for every continuous
morphism ϕ : Â∗ → M , xϕ 6 yϕ. The context will make clear the sense in
which we use the word “identity”.

Reiterman’s theorem [52] shows that every variety of finite monoids can
be defined by a set of identities. The authors have extended this result
to varieties of finite ordered monoids [51]. Given a set E of identities, we
denote by [[E]] the class of all finite ordered monoids which satisfy all the
identities of E.

Proposition 2.2 Let E be a set of identities. Then the class [[E]] forms
a variety of finite ordered monoids. Conversely, for each variety of finite
ordered monoids, there exists a set E of identities such that V = [[E]].

For instance, the following descriptions of varieties will be used in the
sequel. These descriptions make use of the notation ω defined above. The
variety G = [[xω = 1]] is the variety of all finite groups, A = [[xω = xω+1]] is
the variety of aperiodic monoids, J1 = [[x2 = x, xy = yx]] is the variety of
idempotent and commutative monoids and DA = [[xω = xω+1 and (xy)ω =
(xy)ω(yx)ω(xy)ω]] is the variety of monoids whose regular D-classes are idem-
potent semigroups. See Almeida [3] or Pin [38].

If E is a set of identities, we denote by Ĕ the set of identities of the form
v 6 u such that the identity u 6 v belongs to E. The set Ĕ is called the dual
of E. It is intuitively obvious that if E is a set of identities and if V = [[E]],
then V̆ = [[Ĕ]]. In other words, if a variety of finite ordered semigroups is
defined by a set E of identities, its dual is defined by the dual of E.

The above section dealt with varieties of finite monoids. A similar theory
can be developed for varieties of finite semigroups, using a distance on the
free semigroup A+ instead of the free monoid A∗. Of particular importance
for us is the variety LI of locally trivial semigroups. Recall that a finite
semigroup S is locally trivial if, for all idempotent e of S and for every
s ∈ S, ese = e. The variety LI is defined by the identity [[xωyxω = xω]].
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2.3 Relational morphisms and Mal’cev products

In this section, we extend the standard notions of relational morphism and
Mal’cev product to ordered monoids. One comes across the usual definition
when the order relation on the monoids is equality. A relational morphism
between semigroups S and T is a relation τ : S → T such that:

(1) (sτ)(tτ) ⊆ (st)τ for all s, t ∈ S,

(2) (sτ) is non-empty for all s ∈ S,
For a relational morphism between two monoids S and T , a third
condition is required

(3) 1 ∈ 1τ

Equivalently, τ is a relation whose graph

graph(τ) = { (s, t) | t ∈ sτ }

is a subsemigroup (resp. submonoid if S and T are monoids) of S × T that
projects onto S.

Let V be a variety of monoids (resp. semigroups) and let W be a variety
of semigroups. TheMal’cev product W M©V is the class of all monoids (resp.
semigroups)M such that there exists a relational morphism τ :M → V with
V ∈ V and eτ−1 ∈ W for each idempotent e of V . It is easily verified that
W M©V is a variety of monoids (resp. semigroups).

More generally, if V be a variety of monoids and W be a variety of
ordered semigroups, the Mal’cev product W M©V is the class of all ordered
monoids (M,6) such that there exists a relational morphism τ : M → V
with V ∈ V and eτ−1 ∈ W for each idempotent e of V . One verifies that
W M©V is a variety of ordered monoids. The following theorem, obtained
by the authors [50], describes a set of identities defining W M©V.

Theorem 2.3 Let V be a variety of monoids and let W be a variety of
ordered semigroups. Let E be a set of identities such that W = [[E]]. Then
W M©V is defined by the identities of the form xσ 6 yσ, where x 6 y is an
identity of E with x, y ∈ B̂∗ for some finite alphabet B and σ : B̂∗ → Â∗ is a
continuous morphism such that, for all b, b′ ∈ B, V satisfies bσ = b′σ = b2σ.

We will use in particular the following applications of our result.

Corollary 2.4 Let V be a variety of monoids. Then LI M©V is defined by
the identities of the form xωyxω = xω, where x, y ∈ Â∗ for some finite set
A and V satisfies x = y = x2.
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Corollary 2.5 Let V be a variety of monoids. Then [[xωyxω 6 xω]] M©V is
defined by the identities of the form xωyxω 6 xω, where x, y ∈ Â∗ for some
finite set A and V satisfies x = y = x2.

In the case where V = G, the variety of all finite groups, one can give
a much simpler set of identities, but the proof makes use of an important
result of Ash [9] (see also the survey [24] for the relevant background). First
recall that a submonoid D of a monoid M is closed under weak conjugacy
if the conditions sts = s and u ∈ D imply sut ∈ D and tus ∈ D. Given
a monoid M , denote by D(M) the smallest submonoid of M closed under
weak conjugacy. The following consequence of Ash’s theorem is proved in
[50] .

Theorem 2.6 If an element x of Â∗ satisfies x = 1 in G, then for each
finite monoid M and for each morphism ϕ : A∗ →M , xϕ belongs to D(M).

We are now ready to give the identities of the variety [[xωyxω 6 xω]] M©G.

Theorem 2.7 The variety of ordered monoids [[xωyxω 6 xω]] M©G is de-
fined by the identity xω 6 1.

Proof First, by Corollary 2.5, (M,6) belongs to [[xωyxω 6 xω]] M©G if and
only if it satisfies the identities xωyxω 6 xω, for all x, y ∈ Â∗ such that A is
finite and G satisfies x = y = 1 (because x = x2 implies x = 1 in a group).
This shows in particular, by taking x = 1 and y = uω, that (M,6) satisfies
the identity uω 6 1.

Conversely, assume that (M,6) satisfies the identity uω 6 1. We claim
that for every d ∈ D(M), d 6 1. Let D′(M) be the set of all x ∈M such that
x 6 1. Clearly, D′(M) is a submonoid of M . Furthermore, D′(M) is closed
under weak conjugacy: indeed, if sts = s and x 6 1, then sxt 6 st 6 1
(since st is idempotent) and similarly, txs 6 1. Therefore D′(M) contains
D(M), proving the claim. It follows, by Theorem 2.6, that for every y ∈ Â∗

such thatG satisfies y = 1,M satisfies y 6 1. This implies in particular that
M satisfies xωyxω 6 xωxω = xω for every x, y ∈ Â∗ such that G satisfies
x = y = 1.

3 Recognizable languages

In this section we briefly review the main definitions and results about rec-
ognizable languages needed in this paper. In particular, we present the point
of view of ordered semigroups recently introduced in [44].
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Let (S,6) be an ordered semigroup and let η : (S,6) → (T,6) be a
surjective morphism of ordered semigroups. An order ideal Q of S is said to
be recognized by η if there exists an order ideal P of T such that Q = Pη−1.
Notice that this condition implies Qη = Pη−1η = P . This definition can
be applied in particular to languages. A language L of A+ is recognized
by an ordered semigroup (T,6) if there exists a surjective morphism of
ordered semigroups η : (A+,=) → (T,6) and an order ideal P of T such
that L = Pη−1. A language is recognizable if it is recognized by a finite
ordered semigroup. This definition is equivalent to the standard definition
of a recognizable language: a language L of A+ is recognizable if and only if
there exists a surjective morphism from A+ onto a finite semigroup T and
a subset P of T such that L = Pη−1. Indeed, one may consider simply η
as a morphism of ordered semigroups from (A+,=) onto (T,=), since the
condition on orders is trivially satisfied in this case (x = y implies xη = yη)
and any subset of (T,=) is an order ideal.

3.1 Syntactic semigroup and syntactic ordered semigroup

Let (T,6) be an ordered semigroup and let P be an order ideal of T . The
syntactic quasiordering of P is the relation �P defined by setting

u �P v if and only if, for every x, y ∈ T 1, xvy ∈ P implies xuy ∈ P

One can show that �P is a stable quasiorder on T and that the associated
equivalence relation ∼P , defined by

u ∼P v if and only if u �P v and v �P u

is a semigroup congruence, called the syntactic congruence of P . The quo-
tient semigroup S(P ) = T/∼P is called the syntactic semigroup of P . The
quasiorder �P on T induces a stable order 6P on S(P ). The ordered semi-
group (S(P ),6P ) is called the syntactic ordered semigroup of P and the
natural morphism ηP : (T,=) → (S(P ),6P ) is called the syntactic mor-
phism of P . The universal property of this morphism is given in the next
proposition [44].

Proposition 3.1 Let ϕ : (R,6) → (S,6) be a surjective morphism of or-
dered semigroups and let P be an order ideal of (R,6). Then ϕ recognizes
P if and only if ηP factorizes through ϕ.

The previous definitions apply in particular when T is a free semigroup
and P is a language. Indeed, if A is a finite alphabet, then (A+,=) is an
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ordered semigroup and every subset of A+ is an order ideal. Furthermore,
if (S,6) is an ordered semigroup, every surjective semigroup morphism η :
A+ → S induces a surjective morphism of ordered semigroups from (A+,=)
onto (S,6). Therefore, a language L ⊆ A+ is said to be recognized by a
semigroup morphism η : A+ → (S,6) if there exists an order ideal P of S
such that L = Pη−1. By extension, given an ordered semigroup (S,6) and
an order ideal P of S, we say that (S,P ) recognizes L ⊆ A+ if there exists
a surjective semigroup morphism η : A+ → S such that L = Pη−1.

The syntactic ordered semigroup of the complement of an order ideal is
obtained by reversing the order.

Proposition 3.2 Let P be an order ideal of (T,6). Then T \P is an order
ideal of (T,>) and the syntactic ordered semigroup of T \ P is the dual of
the syntactic ordered semigroup of P .

Proof By definition, u �S\P v if and only if, for all x, y ∈ T 1, xvy ∈ S \ P
implies xuy ∈ S \ P , which is equivalent to saying that xuy ∈ P implies
xvy ∈ P . Thus u �S\P v if and only if v �P u.

Corollary 3.3 Let L be a language of A+ and let (S(L),6L) be its syntac-
tic ordered semigroup. Then the syntactic ordered semigroup of A+ \ L is
(S(L),>L).

We have already defined the notion of variety of finite ordered semigroups
generated by a variety of finite semigroups. Conversely, we would like to
define the variety of semigroups generated by a variety of ordered semigroups
V. To be symmetrical, our definition has to give the same result for V
and for its dual. Therefore, it is natural to define the variety of semigroups
generated by V to be the class of all semigroups S such that (S,6) ∈ V ∨ V̆
for some order 6 on S. The following result shows that this class is really a
variety of semigroups.

Proposition 3.4 Let S be a finite semigroup and let V be a variety of
ordered semigroups. Then (S,6) ∈ V ∨ V̆ for some order 6 on S if and
only if (S,=) ∈ V ∨ V̆.

Proof If (S,6) ∈ V ∨ V̆, then (S,>) ∈ V ∨ V̆ by duality. Now, the
diagonal embedding shows that (S,=) is an ordered subsemigroup of (S,6
) × (S,>) and thus (S,=) ∈ V ∨ V̆. Furthermore, (S,6) is a quotient
of (S,=). Therefore, if (S,=) ∈ V ∨ V̆, then (S,6) ∈ V ∨ V̆.

12



Here is an equivalent definition.

Proposition 3.5 Let V be a variety of finite ordered semigroups. A semi-
group belongs to the variety of finite semigroups generated by V if and only
if it is a quotient of an ordered semigroup of V.

Proof Let W be the variety of semigroups generated by V. If T is a
quotient of a semigroup S such that (S,6) ∈ V for some order 6 on S,
then S ∈ W by definition and thus T ∈ W. Conversely, if T ∈ W, then
(T,=) ∈ V ∨ V̆ by Proposition 3.4 and thus there exist two ordered semi-
groups (S1,61) ∈ V and (S2,62) ∈ V̆ such that (T,=) is a quotient of an
ordered subsemigroup (S,6) of (S1,61) × (S2,62). It follows that S is a
subsemigroup of S1 × S2. Now (S1,61) × (S2,>2) ∈ V and the order 6′

induced by 61 × >2 on S defines an ordered semigroup (S,6′) of V. But
T is a quotient of S, concluding the proof.

3.2 Varieties of languages

A +-class of recognizable languages is a correspondence C which associates
with each finite alphabet A a set A+C of recognizable languages of A+.
A +-variety is a +-class of recognizable languages V such that

(1) for every alphabet A, A+V is closed under finite union, finite intersec-
tion and complement2,

(2) for every semigroup morphism ϕ : A+ → B+, L ∈ B+V implies
Lϕ−1 ∈ A+V,

(3) If X ∈ A+V and a ∈ A, then a−1L and La−1 are in A+V.

Semigroup varieties and +-varieties are closely related. To each variety of
semigroups V, we associate the +-class V such that, for each alphabet A,
A+V is the set of recognizable languages of A+ whose syntactic semigroup
belongs to V. One can show that V is a +-variety.

Theorem 3.6 (Eilenberg [22]) The correspondence V → V defines a bijec-
tive correspondence between the varieties of finite semigroups and the +-
varieties.

2This includes union and intersection of an empty family of languages. Therefore ∅

and A
+ are always elements of A+V.
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The variety of finite semigroups corresponding to a given +-variety is
the variety of semigroups generated by the syntactic semigroups of all the
languages L ∈ A+V, for every finite alphabet A.

There is a similar statement for varieties of ordered semigroups. A pos-
itive +-variety is a +-class of recognizable languages V such that

(1) for every alphabet A, A+V is closed under finite union and finite in-
tersection3,

(2) for every semigroup morphism ϕ : A+ → B+, L ∈ B+V implies
Lϕ−1 ∈ A+V,

(3) if L ∈ A+V and if a ∈ A, then a−1L and La−1 are in A+V.

Thus, contrary to a variety, a positive variety need not be closed under
complement. To each variety of ordered semigroups V, we associate the
+-class V such that, for each alphabet A, A+V is the set of recognizable
languages of A+ whose ordered syntactic semigroup belongs to V. One can
show that V is a positive +-variety.

Theorem 3.7 [44] The correspondence V → V defines a bijective corre-
spondence between the varieties of finite ordered semigroups and the positive
+-varieties.

Taking the dual of a variety of finite ordered semigroups V corresponds
to complementation at the language level. More precisely, let V (resp. V̆)
be the positive +-variety corresponding to V (resp. to V̆).

Theorem 3.8 For each alphabet A, A+V̆ is the class of all complements in
A+ of the languages of A+V.

Proof This follows immediately from Corollary 3.3.

The join of two positive +-varieties V1 and V2 is the smallest positive
+-variety V such that, for every alphabet A, A+V contains A+V1 and A

+V2.
Let V be a positive +-variety and let V be the corresponding variety of finite
ordered semigroups. For each alphabet A, denote by A+BV the boolean
algebra generated by A+V.

Proposition 3.9 For every positive +-variety, V ∨ V̆ = BV. Furthermore,
BV is a +-variety and the corresponding variety of semigroups is the variety
of finite semigroups generated by V ∨ V̆.

3See the previous footnote.
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Proof Let W be the join of V and V̆ and let A be an alphabet. Then all the
languages of A+V and their complements are in A+W. It follows that every
language of A+BV is a union of intersections of languages of A+W and thus
A+BV is contained in A+W. On the other hand, for each alphabet A, A+BV
is a boolean algebra. Furthermore, since boolean operations commute with
inverse morphisms and with left and right quotients, BV is closed under these
operations. Therefore BV is a +-variety. Since W is the smallest positive +-
variety containing V and V̆ , W is contained in BV and thus W = BV.

Again, there are similar statements for the varieties of finite monoids. In
this case, the definitions of a class of languages and of varieties of languages
have to be modified by replacing “semigroup” by “monoid” and + by ∗.

A finite semigroup S is aperiodic if and only if it satisfies the identity
xω = xω+1. The connection between aperiodic semigroups and star-free sets
was established by Schützenberger [57] (see also [29, 33, 38]. Recall that the
star-free languages of A∗ (resp. A+) form the smallest class of languages
containing the finite languages and closed under the boolean operations and
the concatenation product.

Theorem 3.10 A recognizable subset of A∗ (resp. A+) is star-free if and
only if its syntactic monoid (resp. semigroup) is aperiodic.

4 Factorization forests

We review in this section an important combinatorial result of I. Simon on
finite semigroups which is a key argument in the proofs of the results of
Section 5 below (see in particular Proposition 5.5). A factorization forest
is a function d that associates to every word x of A2A∗ a factorization
d(x) = (x1, . . . , xn) of x such that n > 2 and x1, . . . , xn ∈ A+. The integer
n is the degree of the factorization d(x). Thus a factorization forest is just a
description of a recursive process to factorize words up to products of letters.
To each word x such that d(x) = (x1, . . . , xn) is associated a labeled tree
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t(x) defined by t(x) = (x, (t(x1), . . . , t(xn))). For instance, if

d(x) = (x1, a12, x4) d(x1) = (x2, a7, a8, a9, a10, a11)

d(x2) = (a1, x3) d(x3) = (a2, a3, a4, a5, a6)

d(x4) = (x5, x6, x9, x10) d(x5) = (a13, a14)

d(x6) = (a15, x7, a18, a19, x8, a22) d(x7) = (a16, a17)

d(x8) = (a20, a21) d(x9) = (a23, a24)

d(x10) = (a25, a26)

then the tree of x is represented in the figure below.
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Figure 4.1: The tree t(x).

Given a factorization forest d, the height function of d is the function h :
A+ → N defined by

h(x) =

{

0 if x is a letter

1 + max {h(xi) | 1 6 i 6 n} if d(x) = (x1, . . . , xn)

Thus h(x) is equal to the length of the longest path with origin in x in the
tree of x. Finally, the height of d is

h = sup { h(x) | x ∈ A+ }

Let S be a finite semigroup and let ϕ : A+ → S be a morphism. A fac-
torization forest d is Ramseyan modulo ϕ if, for every word x of A2A∗,
d(x) is either of degree 2 or there exists an idempotent e of S such that
d(x) = (x1, . . . , xn) and x1ϕ = x2ϕ = . . . = xnϕ = e for 1 6 i 6 n. The
following result is proved in [60, 61].
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Theorem 4.1 Let S be a finite semigroup and let ϕ : A+ → S be a mor-
phism. Then there exists a factorization forest of height 6 9|S| which is
Ramseyan modulo ϕ.

5 Polynomial closure

We now arrive to the main topic of this paper. We describe the counter-
part, on varieties of finite ordered monoids, of the operation of polynomial
closure on varieties of languages. The terminology polynomial closure, first
introduced by Schützenberger, comes from the fact that rational languages
form a semiring under union as addition and concatenation as multiplica-
tion. There are in fact two slightly different notions of polynomial closure,
one for +-classes and one for ∗-classes.

The polynomial closure of a class of languages L of A+ is the set of lan-
guages of A+ that are finite unions of languages of the form u0L1u1 · · ·Lnun,
where n > 0, the ui’s are words of A∗ and the Li’s are elements of L. If
n = 0, one requires of course that u0 is not the empty word.

The polynomial closure of a class of languages L of A∗ is the set of
languages that are finite unions of languages of the form L0a1L1 · · · anLn,
where the ai’s are letters and the Li’s are elements of L.

By extension, if V is a +-variety (resp. ∗-variety), we denote by Pol V the
class of languages such that, for every alphabet A, A+Pol V (resp. A∗Pol V)
is the polynomial closure of A+V (resp. A∗V). We also denote by Co-Pol V
the class of languages such that, for every alphabet A, A+Co-Pol V (resp.
A∗Co-Pol V) is the set of languages L whose complement is in A+Pol V
(resp. A∗Pol V). Finally, we denote by BPol V the class of languages such
that, for every alphabet A, A+BPol V (resp. A∗BPol V) is the closure of
A+Pol V (resp. A∗Pol V) under finite boolean operations (finite union and
complement).

We first establish a simple syntactic property of the concatenation prod-
uct. For 1 6 i 6 n, let Li be a recognizable language of A+, let ηi : A

+ →
S(Li) be its syntactic morphism and let η : A+ → S(L1)×S(L2)×· · ·×S(Ln)
be the morphism defined by uη = (uη1, uη2, . . . , uηn). Let u0, u1, . . . , un
be words of A∗ and let L = u0L1u1 · · ·Lnun. Let µ : A+ → S(L) be
the syntactic morphism of L. The properties of the relational morphism
τ = µ−1η : S(L) → S(L1) × S(L2) × · · · × S(Ln) were first studied by
Straubing [66] and later by the first author [39]. The next proposition is a
more precise version of these results.
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Proposition 5.1 For every idempotent e of S(L1) × S(L2)× · · · × S(Ln),
eτ−1 is an ordered semigroup that satisfies the inequality xωyxω 6 xω.

Proof Let e = (e1, e2, . . . , en) be an idempotent of S(L1) × S(L2) × · · · ×
S(Ln), and let x and y be words in A+ such that xη = yη = e. Let k be an
integer greater than n+ |u0u1 · · · un| such that xkµ is idempotent. It suffices
to show that for every u, v ∈ A∗, uxkv ∈ L implies uxkyxkv ∈ L. Since
uxkv ∈ L, there exists a factorization of the form uxkv = u0w1u1 · · ·wnun,
where wi ∈ Li for 0 6 i 6 n. By the choice of k, there exist 1 6 h 6 n
and 0 6 j 6 k − 1 such that wh = w′

hxw
′′
h for some w′

h, w
′′
h ∈ A∗, uxj =

u0w1 · · · uh−1w
′
h and xk−j−1v = w′′

huh · · ·wnun. Now since xηh = yηh =
x2ηh, the condition w′

hxw
′′
h ∈ Lh implies w′

hx
k−jyxj+1w′′

h ∈ Lh. It follows
uxkyxkv ∈ L, which concludes the proof.

There is a similar result for syntactic monoids. Let, for 0 6 i 6 n, Li

be recognizable languages of A∗, let ηi : A∗ → M(Li) be their syntactic
morphism and let η : A∗ →M(L0)×M(L1)×· · ·×M(Ln) be the morphism
defined by uη = (uη0, uη1, . . . , uηn). Let a1, a2, . . . , an be letters of A and
let L = L0a1L1 · · · anLn. Let µ : A∗ →M(L) be the syntactic morphism of
L. Finally, consider the relational morphism τ = µ−1η : M(L) → M(L0)×
M(L1)× · · · ×M(Ln).

Proposition 5.2 For every idempotent e of M(L1)×M(L2)×· · ·×M(Ln),
eτ−1 is an ordered semigroup that satisfies the inequality xωyxω 6 xω.

Proof Let e = (e1, e2, . . . , en) be an idempotent of M(L1)×M(L2)× · · · ×
M(Ln), and let x and y be words in A∗ such that xη = yη = e. Let k be a
integer greater that n such that xkµ is idempotent. It suffices to show that
for every u, v ∈ A∗, uxkv ∈ L implies uxkyxkv ∈ L. Since uxkv ∈ L, there
exists a factorization of the form uxkv = w0a1w1 · · · anwn, where wi ∈ Li

for 0 6 i 6 n. By the choice of k, there exist 0 6 h 6 n and 0 6 j 6 k − 1
such that wh = w′

hxw
′′
h for some w′

h, w
′′
h ∈ A∗, uxj = w0a1 · · ·wh−1ahw

′
h and

xk−j−1v = w′′
hah+1 · · · anwn. Now since xηh = yηh = x2ηh, the condition

w′
hxw

′′
h ∈ Lh implies w′

hx
k−jyxj+1w′′

h ∈ Lh. It follows uxkyxkv ∈ L, which
concludes the proof.

There is a subtle difference between the proofs of Propositions 5.1 and
5.2 and that is the reason why Proposition 5.2 is not stated for products of
the form u0L1u1 · · ·Lnun. The difference occurs when x is the empty word in
the proof of Proposition 5.2. In this case, if L was equal to u0L1u1 · · ·Lnun,
an occurrence of xk would not define an occurrence of x in one of the wi,
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since x could well occur in the middle of some ui. But if the ui’s are letters,
they do not contain the empty word as a proper factor.

Proposition 5.1 leads to the following result in terms of varieties.

Corollary 5.3 Let V be a variety of finite semigroups and let V be the
corresponding +-variety. If L ∈ A+Pol V, then S(L) belongs to the variety
of finite ordered semigroups [[xωyxω 6 xω]] M©V.

Proof Let W = [[xωyxω 6 xω]] M©V and let W be the positive variety
corresponding to W. By Theorem 3.7, it suffices to show that L belongs
to A+W. Since A+W is closed under finite union, it suffices to prove the
result when L is equal to a marked product of the form u0L1u1 · · ·Lnun,
where n > 0 and, for 0 6 h 6 n, uh ∈ A∗ and the Lh are languages
in A+V. But in this case, Proposition 5.1 shows that S(L) ∈ W.

Proposition 5.2 leads to an analogous result for ∗-varieties, whose proof
is omitted.

Corollary 5.4 Let V be a variety of finite monoids and let V be the cor-
responding ∗-variety. If L ∈ A∗Pol V, then M(L) belongs to the variety of
finite ordered monoids [[xωyxω 6 xω]] M©V.

We now establish the converse of Corollary 5.3.

Proposition 5.5 Let V be a variety of finite semigroups and let V be the
corresponding +-variety. Let L be a language of A+ and let S(L) be its syn-
tactic ordered semigroup. If S(L) ∈ [[xωyxω 6 xω]] M©V, then L ∈ A+Pol V.

Proof Let S = S(L) and let η : A+ → S be the syntactic morphism of L. If
S(L) ∈ [[xωyxω 6 xω]] M©V, there exists a semigroup V ∈ V and a relational
morphism τ : S → V such that, for every idempotent e of V , eτ−1 satisfies
the identity xωyxω 6 xω. Let R be the graph of τ and let α : R → S and
β : R → V be the natural projections. Then α is onto and τ = α−1β. By
the universal property of A+, there exists a morphism δ : A+ → R such that
η = δα. Let µ = δβ. Then η−1µ = α−1δ−1δβ = α−1β = τ .
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S V

R

A+

τ

α β

η µ

δ

Let K = 29|S||V |. We claim that

L =
⋃

u0(e1µ
−1)u1(e2µ

−1)u2 · · · (ekµ
−1)uk (1)

where the union is taken over the sequences (e1, e2, . . . , ek) of idempotents
of V such that k 6 K, |u0u1u2 · · · uk| 6 K and

u0(e1µ
−1)u1(e2µ

−1)u2 · · · (ekµ
−1)uk ⊆ L.

The right hand side of (1) is by construction a subset of L. We now establish
the opposite inclusion. By Theorem 4.1, there exists a factorization forest
d of height 6 9|S||V | which is Ramseyan modulo δ. We need the following
technical lemma.

Lemma 5.6 Let x ∈ A+ such that d(x) = (x1, . . . , xn) with n > 3 and let
(f, e) be an idempotent of S × V such that x1δ = . . . = xnδ = (f, e). Then,
for all u, v ∈ A∗ such that uxv ∈ L, the language ux1(eµ

−1)xnv is contained
in L.

Proof Since x = x1x2 . . . xn, it follows xµ = x1µ · · · xnµ = e and thus the
ordered semigroup xη is contained in eτ−1 and satisfies the identity xωyxω 6

xω. By hypothesis, x1, xn ∈ eµ−1 and hence x1η = xnη = f ∈ eτ−1. Let
now y ∈ eµ−1. Then yη ∈ eτ−1 and hence (x1yxn)η = f(yη)f 6 f = xη.
Therefore, if u, v ∈ A∗, one has

(ux1yxnv)η = uη(x1yxn)ηvη 6 (uxv)η

Thus, uxv ∈ L implies ux1yxnv ∈ L since η is the syntactic morphism of L.
Therefore ux1(eµ

−1)xnv is contained in L.
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Now, we associate with every word x ∈ A+ a language L(x) defined recur-
sively as follows

L(x) =























{x} if x is a letter

L(x1)L(x2) if d(x) = (x1, x2)

L(x1)eµ
−1L(xn) if d(x) = (x1, . . . , xn) with n > 3 and

x1δ = . . . = xnδ = (f, e)

By induction, x ∈ L(x) for all x and Lemma 5.6 shows that if x ∈ L, then
L(x) is contained in L. Finally, L(x) is of the form

u0(e1µ
−1)u1(e2µ

−1)u2 · · · uk(ekµ
−1)uk+1 (2)

for some idempotents e1, . . . , ek of V , k > 0, u0, uk+1 ∈ A∗ and u1, u2,
. . . , uk in A+. Furthermore, one can give an upper bound to the length
of u0u1u2 · · · ukuk+1. Indeed, this word can be obtained by reading the
labels of the leaves of the subtree t′(x) of t(x) (see Section 4) obtained by
considering the “external” branches only. The tree t′(x) can be defined
formally as follows.

t′(x) =

{

x if x is a letter

(x, (t′(x1), t(x
′
n))) if d(x) = (x1, . . . , xn)

Now t(x) and t′(x) have the same height, but t′(x) is a binary tree. There-
fore the number of leaves of t′(x) is bounded by 29|S||V |. It follows that
|u0u1u2 · · · ukuk+1| 6 K and k 6 K, since u1, u2, . . . , uk ∈ A+. This
proves formula 1. It follows that L ∈ A+Pol V since every language eiµ

−1 ∈
A+V.

In the case of ∗-varieties, the previous result also holds with the appro-
priate definition of polynomial closure.

Proposition 5.7 Let V be a variety of finite monoids and let V be the cor-
responding ∗-variety. Let L be a language of A∗ and letM(L) be its syntactic
ordered monoid. If M(L) ∈ [[xωyxω 6 xω]] M©V, then L ∈ A∗Pol V.

Proof The beginning of the proof of Proposition 5.5 carries over with the
modifications indicated below. Let M = M(L) and let η : A∗ → M be
the syntactic morphism of L. One obtains as before the following diagram,
where V ∈ V.
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Let K = 29|M ||V |. We claim that

L =
⋃

(e0µ
−1)a1(e1µ

−1)a2 · · · ak(ekµ
−1) (3)

where the union is taken over the sequences (e0, e1, . . . , ek) of idempotents of
V such that k 6 K and (e0µ

−1)a1(e1µ
−1)a2 · · · ak(ekµ

−1) ⊆ L. Let L′ be
the right hand side of (3). Then L′ ⊆ L by construction. We now establish
the opposite inclusion. The proof of Proposition 5.5 shows that, for every
x ∈ L, there exists a language L(x), containing x and contained in L, of the
form

u0(e1µ
−1)u1(e2µ

−1)u2 · · · uk(ekµ
−1)uk+1 (4)

where e1, . . . , ek are idempotents of V , k > 0, u0, uk+1 ∈ A∗, u1, u2, . . . , uk ∈
A+ and |u0u1u2 · · · ukuk+1| 6 K. Finally, one can pass from the decompo-
sition given by Formula (4) to a decomposition of the form (3) by inserting
languages of the form 1µ−1 between the letters of u0, u1, . . . , uk+1. In-
deed, 1τ−1 is a monoid that satisfies xωyxω 6 xω, and hence y 6 1 for each
y ∈ 1τ−1. It follows that, for all u, v ∈ A∗, uv ∈ L implies u(1µ−1)v ⊆ L.
Therefore L is contained in L′, concluding the proof.

By combining Corollary 5.4 and Proposition 5.7, we obtain our main
result.

Theorem 5.8 Let V be a variety of finite semigroups and let V be the corre-
sponding +-variety. Then Pol V is a positive +-variety and the correspond-
ing variety of finite semigroups is the Mal’cev product [[xωyxω 6 xω]] M©V.
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Theorem 5.9 Let V be a variety of finite monoids and let V be the corre-
sponding ∗-variety. Then Pol V is a positive ∗-variety and the corresponding
variety of finite monoids is the Mal’cev product [[xωyxω 6 xω]] M©V.

Theorems 5.8 and 5.9 lead to a new proof of the following result of Arfi
[5, 6].

Corollary 5.10 For each variety of languages V, Pol V and Co-Pol V are
positive varieties of languages. In particular, for each alphabet A, A+Pol V
and A+Co-Pol V (resp. A∗Pol V and A∗ Co-Pol V in the case of a ∗-variety)
are closed under finite union and intersection.

6 Schützenberger product

One of the most useful tools for studying the concatenation product is
the Schützenberger product of n monoids, which was originally defined by
Schützenberger for two monoids [57], and extended by Straubing [65] for
any number of monoids.

Given a monoid M , denote by P(M) the monoid of subsets of M un-
der the multiplication of subsets, defined, for all X,Y ⊆ M by XY =
{xy | x ∈ X and y ∈ Y }. Then P(M) is not only a monoid but also
a semiring under union as addition and the product of subsets as multi-
plication. Let M1, . . . ,Mn be monoids. Denote M the product monoid
M1×· · ·×Mn and Mn the semiring of square matrices of size n with entries
in the semiring P(M). The Schützenberger product of M1, . . . ,Mn, denoted
♦n(M1, . . . ,Mn) is the submonoid of the multiplicative monoid Mn com-
posed of all the matrices P satisfying the three following conditions:

(1) If i > j, Pi,j = 0

(2) If 1 6 i 6 n, Pi,i = {(1, . . . , 1, si, 1, . . . , 1)} for some si ∈Mi

(3) If 1 6 i 6 j 6 n, Pi,j ⊆ 1× · · · × 1×Mi × · · · ×Mj × 1 · · · × 1.

Condition (1) shows that the matrices of the Schützenberger product are
upper triangular, condition (2) enables us to identify the diagonal coefficient
Pi,i with an element si of Mi and condition (3) shows that if i < j, Pi,j can
be identified with a subset of Mi×· · ·×Mj. With this convention, a matrix
of ♦3(M1,M2,M3) will have the form





s1 P1,2 P1,3

0 s2 P2,3

0 0 s3
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with si ∈Mi, P1,2 ⊆M1 ×M2, P1,3 ⊆M1 ×M2 ×M3 and P2,3 ⊆M2 ×M3.
The Schützenberger product ♦n(M1, . . . ,Mn) is naturally equipped of

an order 6 defined by

P 6 P ′ if and only if, for 1 6 i, j 6 n, P ′
i,j ⊆ Pi,j

One could also take the dual order (defined by Pi,j ⊆ P ′
i,j), but this one

is directly related to the polynomial closure, as we will see below. We
first need to verify that this order is stable. Indeed, if P 6 P ′ and if
Q,R ∈ ♦n(M1, . . . ,Mn), then, for 1 6 i, j 6 n,

(QP ′R)i,j =
∑

r,s

Qi,rP
′
r,sRs,j ⊆

∑

r,s

Qi,rPr,sRs,j = (QPR)i,j

and thus, QPR 6 QP ′R.
The Schützenberger product is closely related to the polynomial closure.

We first give a slightly more precise version of Straubing’s original result
[65].

Proposition 6.1 Let L0, . . . , Ln be languages of A∗ recognized by the
monoids M0, . . . , Mn, respectively, and let a1, . . . , an be letters of A. Then
the language L0a1L1 · · · anLn is recognized by the ordered monoid

(♦n+1(M0, . . . ,Mn),6).

Proof Let, for 0 6 i 6 n, ηi : A
∗ →Mi be a monoid morphism recognizing

Li. Then there exist subsets Ri of Mi such that Li = Riη
−1
i . We let the

reader verify that the map η : A∗ → ♦n+1(M0, . . . ,Mn) defined, for each
u ∈ A∗, by

(uη)i,j = {(1, . . . , 1, uiηi, ui+1ηi+1, . . . , ujηj , 1, . . . , 1) |

uiai+1ui+1 · · · ajuj = u}

is a monoid morphism. Let N = A∗η. Let Q be the subset of N formed
by all matrices P ∈ N such that for P0,n ∩ R0 × · · · × Rn 6= ∅. Then Q is
an order ideal of N . Indeed, if P ∈ Q and P ′ 6 P , then P0,n ⊆ P ′

0,n and
thus P ′

0,n ∩ R0 × · · · × Rn 6= ∅. Let L = L0a1L1 · · · anLn. We claim that

L = Qη−1. Let u be a word of A∗ such that uη ∈ Q. Then by definition,
there exists (s0, s1, . . . , sn) ∈ (uη)0,n∩R0×· · ·×Rn. Let u0, . . . , un be words
such that (u0η, u1η, . . . , unη) ∈ (uη)0,n ∩R0 × · · · ×Rn. Then u0 ∈ L0, . . . ,
un ∈ Ln and u0a1u1 · · · anun = u. Thus u ∈ L. Conversely, if u ∈ L,
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then u = u0a1u1 · · · anun for some words u0 ∈ L0, . . . , un ∈ Ln and thus
(u0η, u1η, . . . , unη) ∈ (uη)0,n ∩R0 × · · · ×Rn, proving the claim.

This result was extended to varieties by Reutenauer [53] for n = 1 and
by the author [36] in the general case (see also [76] and Simon [62] for a
simpler proof). Here we propose a slightly more precise version of this result.
Given a variety of monoids V, ♦V denotes the variety of ordered monoids
generated by all Schützenberger products of the form ♦n(M1, . . . ,Mn) with
n > 0 and M1, . . . ,Mn ∈ V.

Theorem 6.2 Let V be the ∗-variety corresponding to V. Then the positive
∗-variety corresponding to ♦V is Pol V.

Proof The proof relies on the following stronger version of the main result
of [39].

Lemma 6.3 Let V be a variety of finite monoids and let M1, . . . ,Mn be
monoids of V. Then, for each finite alphabet A, the ordered monoid

(♦n(M1, . . . ,Mn),6)

satisfies the identity xωyxω 6 xω, for each x, y ∈ Â∗ such that V satisfies
x = y = x2.

Proof Let η : A∗ → ♦n(M1, . . . ,Mn) be a monoid morphism and let P = xη
and Q = yη. Since x = y = x2 in V, Pi,i = P 2

i,i = Qi,i. Let ω be the
exponent of ♦n(M1, . . . ,Mn). We may assume that ω > n. We claim that
Pω = Pω+1. Indeed,

Pω
i,j =

∑

Pi0,i1Pi1,i2 · · ·Piω−1,iω

where the sum runs over all increasing sequences i = i0 6 i1 6 . . . 6

iω = j. Now, since ω > n, there exists in each such sequence an index

j such that ij = ij+1. Thus Pij ,ij+1
is a diagonal entry and is equal to

its square. Therefore one can replace Pij ,ij+1
by P 2

ij ,ij+1
in the product

Pi0,i1Pi1,i2 · · ·Piω−1,iω . It follows that

Pω
i,j =

∑

Pi0,i1Pi1,i2 · · ·Piω−1,iω ⊆
∑

Pi0,i1Pi1,i2 · · ·Piω ,iω+1
= Pω+1

i,j

Thus Pω > Pω+1 and by induction

Pω
> Pω+1

> Pω+2
> . . . > P 2ω = Pω
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which proves the claim. Now,

(PωQPω)i,j =
∑

Pi0,i1Pi1,i2 · · ·Piω−1,iωQiω ,j0Pj0,j1Pj1,j2 · · ·Pjω−1,jω

where the sum runs over all increasing sequences i = i0 6 i1 6 . . . 6 iω 6

j0 6 . . . 6 jω = j. It follows that

(PωQPω)i,j ⊇
∑

iω=j0

Pi0,i1Pi1,i2 · · ·Piω−1,iωQiω,j0Pj0,j1Pj1,j2 · · ·Pjω−1,jω

=
∑

iω=j0

Pi0,i1Pi1,i2 · · ·Piω−1,iωPiω ,j0Pj0,j1Pj1,j2 · · ·Pjω−1,jω

=
∑

k

Pω
i,kPk,kP

ω
k,j

We claim that this latter product is equal to Pω
i,j. Indeed, for every increasing

sequence of 3ω + 1 indices i = i0 6 i1 6 . . . 6 i3ω = j, there exists an index
r such that ω 6 r < 2ω and ir = ir+1 = k. It follows that

(Pω)i,j = (P 3ω)i,j

⊆
∑

k

(

(Pω)i,k + . . . + (P 2ω−1)i,k
)

Pk,k

(

(Pω)k,j + . . .+ (P 2ω−1)k,j
)

=
∑

k

(Pω)i,kPk,k(P
ω)k,j (since Pω = Pω+1)

⊆ (P 2ω+1)i,j = (Pω)i,j

proving the claim. Thus PωQPω 6 Pω.

One can now complete the proof of Theorem 6.2. Proposition 6.1 shows
that all the languages of Pol V are recognized by ordered monoids of ♦V.
Conversely, Lemma 6.3 shows that ♦V is contained in [[xωyxω 6 xω]] M©V.
Therefore, by Theorem 5.9, the positive ∗-variety corresponding to ♦V con-
tains Pol V.

Corollary 6.4 For any variety of finite monoids V, ♦V = [[xωyxω 6

xω]] M©V.

Proof This follows from Theorems 3.7, 5.9 and 6.2.

Note that the results of this section only hold for positive ∗-varieties and
varieties of finite monoids.
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7 Unambiguous polynomial closure

The marked product L = u0L1u1 · · ·Lnun of n languages L1, . . . , Ln of A+

is unambiguous if every word u of L admits a unique factorization of the
form u0v1u1 · · · vnun with v1 ∈ L1, . . . , vn ∈ Ln.

The unambiguous polynomial closure of a class of languages L of A+ is
the set of languages that are finite disjoint unions of unambiguous prod-
ucts of the form u0L1u1 · · ·Lnun, where the ui’s are words and the Li’s are
elements of L.

The marked product L = L0a1L1 · · · anLn of n languages L0, L1, . . . ,
Ln of A∗ is unambiguous if every word u of L admits a unique factorization
of the form u0a1u1 · · · anun with u0 ∈ L0, u1 ∈ L1, . . . , un ∈ Ln.

The unambiguous polynomial closure of a class of languages L of A∗ is
the set of languages that are finite disjoint unions of unambiguous products
of the form L0a1L1 · · · anLn, where the ai’s are letters and the Li’s are
elements of L.

By extension, if V is a variety of languages, we denote by UPol V the class
of languages such that, for every alphabet A, A+UPol V (resp. A∗UPol V)
is the unambiguous polynomial closure of A+V (resp. A∗V). The following
result was established in [35, 49] as a generalization of an earlier result of
Schützenberger [58].

Theorem 7.1 Let V be a variety of finite monoids and let V be the corre-
sponding ∗-variety. Then UPol V is a variety of languages, and the associ-
ated variety of monoids is LI M©V.

A similar result holds for varieties of finite semigroups, although this
result is not explicitely stated in [49].

Theorem 7.2 Let V be a variety of finite semigroups and let V be the
corresponding +-variety. Then UPol V is a variety of languages, and the
associated variety of semigroups is LI M©V.

Here is another important characterization of UPol V, which holds for
∗-varieties as well as for +-varieties.

Theorem 7.3 Let V be a variety of languages. Then Pol V ∩ Co-Pol V =
UPol V.

Proof We give the proof for ∗-varieties, but the proof would be similar for
+-varieties. By definition, A∗UPol V is contained in A∗Pol V. Moreover, by
Theorem 7.1, A∗UPol V is a variety of languages, and hence is closed under
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complementation. Therefore A∗UPol V is also contained in A∗Co-Pol V,
which proves the inclusion

A∗UPol V ⊆ A∗Pol V ∩A∗Co-Pol V

Conversely, let L be a language of A∗Pol V ∩ A∗Co-Pol V. By Corollary
5.4, the ordered syntactic monoid M(L) of L belongs to the variety of finite
ordered monoids [[xωyxω 6 xω]] M©V. The identities defining this variety are
given in Corollary 2.5. Let B be a finite alphabet, and let x, y be elements of
B̂∗ such that V satisfies x = y = xω. ThenM(L) satisfies xωyxω 6 xω. Now
since L ∈ A∗Co-Pol V, the complement of L belongs to A∗Pol V and thus
by Proposition 3.3 and Theorem 3.8, M(L) satisfies xω 6 xωyxω. It follows
that M(L) satisfies xω = xωyxω. Thus, by Corollary 2.4, M(L) ∈ LI M©V
and, by Theorem 7.1, L ∈ UPol V, which concludes the proof.

Corollary 7.4 If V is a variety of languages, then so is Pol V ∩Co-Pol V.

8 Concatenation hierarchies

By alternating the use of the polynomial closure and of the boolean closure
one can obtain hierarchies of recognizable languages. Let V be a variety of
languages. The concatenation hierarchy of basis V is the hierarchy of classes
of languages defined as follows.

(1) level 0 is V

(2) for every integer n > 0, level n+1/2 is the polynomial closure of level
n

(3) for every integer n > 0, level n + 1 is the boolean closure of level
n+ 1/2.

Theorems 5.8 and 5.9 show that the polynomial closure of a variety of lan-
guages is a positive variety of languages and Proposition 3.9 shows that the
boolean closure of a positive variety of languages is a varietyof languages.
That is, one defines a sequence of varieties Vn and of positive varieties Vn+1/2,
where n is an integer, as follows:

(1) V0 = V

(2) for every integer n > 0, Vn+1/2 = Pol Vn,

(3) for every integer n > 0, Vn+1 = BPol Vn.

The corresponding varieties of semigroups and ordered semigroups (resp.
monoids and ordered monoids) are denoted Vn and Vn+1/2. Theorems 5.8
and 5.9 give an explicit relation between Vn and Vn+1/2.
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Proposition 8.1 For every n > 0, Vn+1/2 = [[xωyxω 6 xω]] M©Vn.

Three concatenation hierarchies have been considered so far in the liter-
ature. The simplest one is the hierarchy of positive ∗-varieties whose basis
is the trivial variety. It was first considered by Thérien (implicitly in [71])
and Straubing (explicitly in [67]) and it is called the Straubing hierarchy.
The hierarchy of positive +-varieties whose basis is the trivial variety is the
dot-depth hierarchy, introduced by Brzozowksi, and it was the first to be
studied [17].4 The third hierarchy to be considered [31] is the hierarchy of
positive ∗-varieties whose basis is the variety of group-languages. For the
sake of simplicity, we will call it the group hierarchy.

The original work of Brzozowski and Knast [18] shows that these three
hierarchies are strict: ifA contains at least two letters, then for every n, there
exist languages of level n + 1 which are not of level n + 1/2 and languages
of level n+ 1/2 which are not of level n.

The main question is the decidability of each level: given a level n (resp.
n+1/2) and a recognizable language L, decide whether or not L has level n
(resp. n+ 1/2). The language can be given either by a finite automaton, a
finite semigroup or a rational expression since there are standard algorithms
to pass from one representation to the other. We now describe in more
details the first levels of each of these hierarchies. We consider the Straubing
hierarchy, the dot-depth hierarchy and the group hierarchy in this order.

8.1 Straubing’s hierarchy

The level 0 is the trivial ∗-variety. Therefore a language of A∗ is of level 0 if
and only if it is empty or equal to A∗. This condition is easily characterized.

Proposition 8.2 A language is of level 0 if and only if its syntactic monoid
is trivial.

It is also well known that one can decide in polynomial time whether the
language of A∗ accepted by a deterministic n-state automaton is empty or
equal to A∗ (that is, of level 0).

By definition, the sets of level 1/2 are the finite unions of languages
of the form A∗a1A

∗a2 · · · akA
∗, where the ai’s are letters. An alternative

description can be given in terms of another operation on languages, the
shuffle. Recall that the shuffle of two words u and v is the set u X v of all
words w such that w = u1v1u2v2 · · · unvn with u1, v1, u2, v2, . . . , un, vn ∈ A∗,

4Actually, the basis of the original dot-depth hierarchy was the variety of finite or
cofinite languages. But this modification does not change the other levels.
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u1u2 · · · un = u and v1v2 · · · vn = v. Now a language is a shuffle ideal if and
only if for every u ∈ L and v ∈ A∗, u X v is contained in L.

Proposition 8.3 A language is of level 1/2 if and only if it is a shuffle
ideal.

Proof By a well known theorem of Higman (cf [30], chapter 6), every shuffle
ideal is a finite union of languages of the form A∗a1A

∗a2 · · · akA
∗, where the

ai’s are letters. Conversely, the languages of this form are clearly shuffle
ideals.

It follows in particular that if a language of A∗ and its complement are
shuffle ideals, then L = A∗ or L = ∅. It is easy to see directly that level
1/2 is decidable (see Arfi [5, 6]). One can also derive this result from our
syntactic characterization.

Proposition 8.4 A language is of level 1/2 if and only if its ordered syn-
tactic monoid satisfies the identity x 6 1.

We shall derive from this result a polynomial algorithm to decide whether
the language accepted by a complete deterministic n-state automaton is of
level 1/2. This algorithm, as well as the other algorithms presented in this
section, rely on the notion of graph. Recall that a graph is a pair G = (E,V ),
where E is the set of edges and V ⊆ E×E is the set of vertices. A subgraph
of G is a graph G′ = (E′, V ′) such that E′ ⊆ E.

Let A = (Q,A, ·, i, F ) be an n-state complete deterministic automaton
and let C = A×A. Thus C = (Q ×Q,A, ·, (i, i), F × F ) and the transition
function is defined by (q, q′) ·a = (q ·a, q′ ·a). Let G2(A) be the graph whose
vertices are the states of C and the edges are the pairs ((q1, q2), (q

′
1, q

′
2)) such

that there is a word u ∈ A∗ such that q1 · u = q′1 and q2 · u = q′2 in A. In
other words, G2(A) is the reflexive and transitive closure of the graph of C.

Theorem 8.5 Let A = (Q,A,E, i, F ) be a complete deterministic automa-
ton recognizing a language L. Then L is of level 1/2 if for every subgraph
of G2(A) of the form

q2
q3

q1
q2

q4
q5

where the qi’s are states of A, the condition q4 ∈ F implies q5 ∈ F . If A is
minimal, this condition is also sufficient.
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Proof Let ω be the exponent of the transition monoid of A. Suppose that
A satisfies the condition stated in the theorem. Let x, y, u and v be words
such that uxωv ∈ L. Set q1 = i · uxω, q2 = q1 · yx

ω, q3 = q2 · yx
ω, q4 = q1 · v

and q5 = q2 · v. Then q1 · x
ω = q1 and q2 · x

ω = q2. It follows that, in C,

(q1, q2) · x
ω = (q1, q2)

(q1, q2) · yx
ω = (q2, q3)

(q1, q2) · v = (q4, q5)

Thus we have found a subgraph of the required type. Now q4 = i · uxωv
and hence q4 ∈ F . Therefore q5 ∈ F and since q5 = q2 · v = i · uxωyxωv, it
follows uxωyxωv ∈ L. Thus the syntactic ordered monoid of L satisfies the
identity xωyxω 6 xω.

Conversely, suppose A is minimal and that the syntactic ordered monoid
(M,6) of L satisfies the identity xωyxω 6 xω. If one has a subgraph of the
type above, there exist three words x, y and u such that q1 ·x = q1, q2 ·x = q2,
q1 · y = q2, q2 · y = q3, q1 · v = q4 and q2 · v = q5. Let u be a word such that
i · u = q1.

i q1 q2

q4 q5

u y

v v

x x

Then i · uxωv = q4. Therefore, if q4 ∈ F , uxωv ∈ L and thus uxωyxωv ∈ L.
But i · uxωyxωv = q5 and thus q5 ∈ F .

Corollary 8.6 One can decide in polynomial time whether the language
accepted by a deterministic n-state automaton is of level 1/2.

Proof First, one can minimize a given deterministic automaton in poly-
nomial time and thus we may assume that A is minimal. Now C has n2

states and therefore G2(A) can be computed in polynomial time. The con-
dition of Theorem 8.5 can then be tested in polynomial time also.
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The sets of level 1 are the finite boolean combinations of languages of
level 1/2. In particular, all finite sets are of level 1. The sets of level 1
have a nice algebraic characterization [59], which yields a polynomial time
algorithm to decide whether the language accepted by a deterministic n-
state automaton is of level 1 [63]. See also [2, 59, 69, 63, 45, 42] for more
details on these results.

It is shown in Arfi [5, 6] that the sets of level 3/2 of A∗ are the finite
unions of sets of the form A∗

0a1A
∗
1a2 · · · akA

∗
k, where the ai’s are letters and

the Ai’s are subsets of A.
We derive the following syntactic characterization. Denote by J1 and

DA, respectively, the variety of languages corresponding to the variety of
monoids J1 (idempotent and commutative monoids) and DA. Recall that
A∗J1 is the boolean algebra generated by the languages of the form B∗,
whereB ⊆ A ([38], page 40) and that A∗DA is the smallest class of languages
of A∗ containing languages of the form B∗, with B ⊆ A, and closed under
disjoint union and unambiguous product ([38], page 110).

Theorem 8.7 A language is of level 3/2 if and only if its ordered syntactic
monoid satisfies the identity xωyxω 6 xω for every x, y such that c(x) =
c(y).

Proof From the obvious inclusions J1 ⊂ J ⊂ DA, it follows, for each
alphabet A, the inclusions

Pol {B∗ | B ⊆ A} ⊆ Pol A∗J1 ⊆ Pol A∗J ⊆ Pol A∗DA

Now since A∗J is the set of languages of level 1, Pol A∗J is the set of
languages of level 3/2. On the other hand the description of A∗DA recalled
above shows that Pol A∗DA = Pol {B∗ | B ⊆ A}. It follows that Pol J1 =
Pol J and thus, by Theorem 5.9 the variety corresponding to the languages
of level 3/2 is [[xωyxω 6 xω]] M©J1. Now, by Theorem 2.3, the identities
of this variety are precisely xωyxω 6 xω for every x, y such that c(x) =
c(y).

Relying on a difficult result of Hashiguchi, Arfi [5, 6] proved that level
3/2 is also decidable.

Theorem 8.8 (Arfi [5, 6]) One can effectively decide whether a given recog-
nizable set of A∗ is of level 3/2.
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The complexity of this algorithm was never explicitly evaluated but was
certainly exponential, due to the huge bounds occurring in the proof of
Hashiguchi’s result. We give below a much more reasonable algorithm, which
is a modification of the algorithm presented for the level 1/2.

Let A = (Q,A, ·, i, F ) be a complete deterministic n-state automaton.
Let B be the automaton that computes the content of a word. Formally,
B = (2A, A, ·, ∅, 2A) where the transition function is defined, for every subset
B of A and every letter a ∈ A, by B · a = B ∪ {a}. Consider the product
automaton C = B × A × A and let G′(A) be the reflexive and transitive
closure of the graph of C

Theorem 8.9 Let A = (Q,A,E, i, F ) be a complete automaton recognizing
a language L. Then L is of level 3/2 if, for every subgraph of G′(A) of the
form

B
q2
q3

∅
q1
q2

B
q1
q2

B′

q4
q5

where B and B′ are subsets of A and the qi’s are states of A, the condition
q4 ∈ F implies q5 ∈ F . This condition is also necessary if A is minimal.

Proof Let ω be the exponent of the transition monoid of A. Suppose that
A satisfies the condition stated in the theorem. Let x and y be words with
the same content B and let u, v ∈ A∗ be such that uxωv ∈ L. Set q1 = i·uxω,
q2 = q1 · yx

ω, q3 = q2 · yx
ω, q4 = q1v, q5 = q2 · v and B′ = B ∪ c(v). Then

q1 · x
ω = q1 and q2 · x

ω = q2. It follows that, in C,

(∅, q1, q2) · x
ω = (B, q1, q2)

(∅, q1, q2) · yx
ω = (B, q2, q3)

(B, q1, q2) · v = (B′, q4, q5)

Consequently, we have found a subgraph of the required type. Now q4 =
i·uxωv and thus q4 ∈ F . Therefore q5 ∈ F and since q5 = q2 ·v = i·uxωyxωv,
it follows uxωyxωv ∈ L. It follows that the syntactic ordered monoid of L
satisfies the identity xωyxω 6 xω for all words such that c(x) = c(y). Thus,
by Theorem 8.7, L is of level 3/2.

Conversely, assume that A is minimal, and let (M,6) be the syntactic
ordered monoid of L. Suppose that M satisfies the identity xωyxω 6 xω for
c(x) = c(y). If one has a subgraph of the type above, there exist words x,
y and v such that c(x) = c(y) = B, q1 · x = q1, q2 · x = q2, q1 · y = q2,
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q1 · v = q4 and q2 · v = q5. Let u be a word such that i · u = q1. Then
i · uxωv = q4. Therefore, if q4 ∈ F , uxωv ∈ L and thus uxωyxωv ∈ L. Now
i · uxωyxωv = q1 · yx

ωv = q2 · x
ωv = q2 · v = q5. Therefore q5 ∈ F .

Corollary 8.10 There is a algorithm, in time polynomial in 2|A|n, for test-
ing whether the language of A∗ accepted by a deterministic n-state automa-
ton is of level 3/2.

Proof First, one can minimize a given deterministic automaton in polyno-
mial time and thus we may assume that A is minimal. Now C has 2|A|n2

states and thus G′(A) can be computed in time polynomial in 2|A|n. The
condition of Theorem 8.9 can then be tested in polynomial time also.

We arrive now to the level 2. It is shown in [48] that the languages
of level 2 of A∗ are the finite boolean combinations of the languages of the
form A∗

0a1A
∗
1a2 · · · akA

∗
k, where the ai’s are letters and the Ai’s are subsets of

A. Let V2 be the variety of finite monoids corresponding to the languages
of level 2. A non-trivial (although non effective) characterization of V2

was also given in [48]. Given a variety of monoids V, denote by PV the
variety generated by all monoids of the form P(M), where M ∈ V. Then
V2 = PJ. Unfortunately, no algorithm is known to decide whether a finite
monoid divides the power monoid of a J -trivial monoid. In other words,
the decidability problem for level 2 is still open, although much progress has
been made in recent years [11, 14, 20, 48, 68, 70, 74, 77]. This problem is
actually a particular case of a more general question discussed in Section 9.

In the case of languages whose syntactic monoid is an inverse monoid,
a complete characterization was given by Cowan [20], completing partial
results of Straubing and the second author [70, 73, 74, 77]. We give here
a much shorter proof of Cowan’s result. It is shown in [74] (Section 3)
and [77] (Proposition 5.2) that the membership problem in V2 for inverse
monoids reduces to deciding whether the transition monoid of a so-called
inverse automaton lies in V2. An inverse automaton is an automaton A =
(Q,A ∪ Ā, i, F ) over a symmetrized alphabet A ∪ Ā, which is deterministic
and co-deterministic and which satisfies, for all a ∈ A, q, q′ ∈ Q

q · a = q′ if and only if q′ · ā = q

Note however that this automaton is not required to be complete. In other
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words, in an inverse automaton, each letter defines a partial injective map
from Q to Q and the letters a and ā define mutually reciprocal transitions.

Theorem 8.11 (Cowan) The language recognized by an inverse automaton
A = (Q,A∪ Ā, i, F ) is of level 2 in the Straubing hierarchy if and only if, for
all q, q′ ∈ Q, u, v ∈ (A ∪ Ā)∗, such that q · u and q′ · u are defined, q · v = q′

and c(v) ⊆ c(u) imply q = q′.

Proof The necessary condition satisfied by the inverse automata recogniz-
ing a language of level 2 is proved in [74]. We now prove that this condition
is sufficient. Let L be the language recognized by A. First assume that A
is complete. Then in view of the hypothesis, A has only one state, and L is
either the empty set or equal to (A∪ Ā)∗, which are both languages of level
0. We now assume that A is not complete. The completion A′ of A is the
automaton A′ = (Q ∪ {0}, A ∪ Ā, i, F ) obtained from A by adding a new
state 0 (0 /∈ Q) and by completing the transitions by setting q · a = 0 if q · a
was not defined in A. The automaton A′ recognizes L.

Let A1 (resp. A2) be the automaton obtained from A′ by choosing
F1 = F ∪ {0} (resp. F2 = {0}) as set of final states. Let L1 and L2 be
the languages recognized by A1 and A2, respectively. Then L = L1 \ L2 by
construction. We claim that L1 and L2 are of level 3/2. Using the notation
of Theorem 8.9, we consider a subgraph of G′(A′) of the form

B
q2
q3

∅
q1
q2

B
q1
q2

B′

q4
q5

with q4 ∈ F1 (resp. q4 ∈ F2). There exist words x, y, t ∈ (A ∪ Ā)∗ such
that c(x) = c(y) = B, q1 · x = q1, q2 · x = q2, q1 · y = q2, q1 · t = q4 and
q2 · t = q5. First suppose that q2 6= 0. Then the paths q1

x
−→ q1, q2

x
−→ q2

and q1
y

−→ q2 never visit state 0 in A′. It follows from the hypothesis on
A that q1 = q2 and hence q5 = q4 ∈ F1 (resp. F2).

Now if q2 = 0, q5 = q2 · t = 0 ∈ F1 ∩ F2. In both cases, the condition
of Theorem 8.9 are fulfilled, proving the claim. It follows that L is of level
2.

Example 8.1 Let A = {a, b} and L = (ab)∗. Its minimal automaton is
represented below:
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1 2

a

b

Figure 8.2: The minimal automaton of (ab)∗.

It satisfies the conditions of Theorem 8.11. In fact, by observing that ∅∗ =
{1}, L can be written in the form

(∅∗∪aA∗∪A∗b∪A∗a∅∗bA∗∪A∗b∅∗aA∗)\(bA∗∪A∗a∪A∗a∅∗aA∗∪A∗b∅∗bA∗)

It is interesting to remark that we have actually proved a little more than
Cowan’s theorem: each language recognized by an inverse automaton A is
the difference of two languages of level 3/2 recognized by the completion of
A. It is proved in [74, 77] that Theorem 8.11 yields the following important
corollary.

Corollary 8.12 It is decidable whether an inverse monoid belongs to V2.

Little is known beyond level 2: a semigroup theoretic description of each
level of the hierarchy is known [36], but it is not an effective one. In other
words, each level admits a description by identities, but these identities are
not known for n > 2. Furthermore, even if these identities were known,
this would not necessarily lead to a decision process for the corresponding
variety. See also the conjecture discussed in Section 9.

8.2 Dot-depth hierarchy

The level 0 is the trivial +-variety. Therefore a language of A+ is of level 0
if and only if it is empty or equal to A+. As in the case of the Straubing
hierarchy, one has the following easy characterization.

Proposition 8.13 A language is of level 0 if and only if its syntactic semi-
group is trivial.

Therefore, one can decide in polynomial time whether the language of
A+ accepted by a deterministic n-state automaton is of level 0.

The languages of level 1/2 are by definition finite unions of languages of
the form u0A

+u1A
+ · · · uk−1A

+uk, where k > 0 and u0, . . . , uk ∈ A∗. But
since A∗ = A+ ∪ {1}, these languages can also be expressed as finite unions
of languages of the form

u0A
∗u1A

∗ · · · uk−1A
∗uk
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The syntactic characterization is a simple application of our main result.

Proposition 8.14 A language of A+ is of dot-depth 1/2 if and only if its
ordered syntactic semigroup satisfies the identity xωyxω 6 xω.

We can now mimic the algorithm given in the case of the Straubing hi-
erarchy to decide whether the language accepted by a deterministic n-state
automaton is of level 1/2. The only difference is that empty paths are not
allowed. In other words, instead of considering the reflexive and transi-
tive closure of the graph of C, one considers its transitive closure G′

2(A).
Nevertheless, the conclusion is the same.

Theorem 8.15 Let A = (Q,A,E, {i}, F ) be a complete automaton recog-
nizing a language L. Then L is of dot-depth 1/2 if for every subgraph of
G′

2(A) of the form

q2
q3

q1
q2

q4
q5

where the qi’s are states of A, the condition q4 ∈ F implies q5 ∈ F . The
condition is also necessary if A is minimal.

Corollary 8.16 One can decide in polynomial time whether the language
accepted by a deterministic n-state automaton is of dot-depth 1/2.

The sets of dot-depth 1 are the finite boolean combinations of languages
of dot-depth 1/2. The syntactic characterization of these languages was
settled by Knast and relies on the notion of graph of a finite semigroup.
Given a semigroup S, form a graph G(S) as follows: the vertices are the
idempotents of S and the edges from e to f are the elements of the form
esf .

Theorem 8.17 (Knast [27, 28]) A language of A+ is of dot-depth 1 if
and only if the graph of its syntactic semigroup satisfies the following con-
dition : if e and f are two vertices, p and r edges from e to f , and q and s
edges from f to e, then (pq)ωps(rs)ω = (pq)ω(rs)ω.

e f

p, r

q, s
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The variety of finite semigroups satisfying Knast’s condition is usually de-
noted B1 (B refers to Brzozowski and 1 to level 1). Thus B1 is defined by
the identities

(xωpyωqxω)ωxωpyωsxω(xωryωsxω)ω = (xωpyωqxω)ω(xωryωsxω)ω

The corresponding algorithm was analyzed by Stern [63]. One can decide in
polynomial time whether the language accepted by a deterministic n-state
automaton is of dot-depth 1.

It is not known yet whether level 3/2 of the dot-depth hierarchy is de-
cidable.

8.3 The group hierarchy

We consider in this section the concatenation hierarchy based on the group
languages, or group hierarchy. A part of the results of this section was
presented in [41] in a slightly different form. By definition, a language of
A∗ is of level 0 in this hierarchy if and only if its syntactic monoid is a
finite group. This can be easily checked on any deterministic automaton
recognizing the language.

Proposition 8.18 One can decide in polynomial time whether the language
accepted by a deterministic n-state automaton is a group language.

Proof It suffices to check whether the minimal automaton of the given
language is a permutation automaton.

Level 1/2 is studied in detail in [41, 46]. By definition, the languages
of level 1/2 are finite union of languages of the form L0a1L1 · · · akLk where
the ai’s are letters and the Li’s are group languages. By Theorem 5.9, a
language is of level 1/2 if and only if its ordered syntactic monoid belongs
to the variety [[xωyxω 6 xω]] M©G, which can be defined by the identity
xω 6 1. This yields a polynomial time algorithm to check whether the
language accepted by a deterministic n-state automaton is of level 1/2 in
the group hierarchy.

The study of the languages of level 1 in the group hierarchy started in
1985 [31] and was completed in [25] (see also [24]). A few more definitions
are in order to state the algebraic characterization of this class of languages.
A block group is a monoid such that every R-class (resp. L-class) contains at
most one idempotent. Block groups form a variety of monoids, denoted BG,
and defined by the identity (xωyω)ω = (yωxω)ω. Thus BG is a decidable
variety.
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Theorem 8.19 A language is of level 1 in the group hierarchy if and only
if its syntactic monoid belongs to BG.

In terms of automata, one gets the following result.

Proposition 8.20 Let A = (Q,A,E, i, F ) be a complete deterministic au-
tomaton recognizing a language L. Then L is of level 1 in the group hierarchy
if there exist no subgraph of A of one of the following forms

q4 q2 q0 q1 q3
u y x u

x, y x, y

q4 q2 q1 q3
u

y

x
u

y x

with x, y, u ∈ A∗, q3 /∈ F and q4 ∈ F . This condition is also necessary if A
is minimal.

Proof Suppose that A has no subgraphs of the form above. We show that
the syntactic monoidM of L contains no pair of R-related idempotents. Let
ω be the exponent of M and let f , g be words such that fω R gω in M .
Set x = fω and y = gω. Then, by a standard argument (see, for instance,
Proposition 1.4 of [38]) xy = y and yx = x in M . We claim that x and y
are syntactically equivalent. Let t and u be words such that txu ∈ L. Let
q0 = i · t, q1 = q0 · x and q2 = q0 · y. The relations x = x2, y = y2, xy = y
and yx = x show that q1 · x = q1, q1 · y = q2, q2 · x = q1 and q2 · y = q2. Set
q1 ·u = q3 and q2 · u = q4. Since txu ∈ L, i · txu = q3 ∈ F . Therefore q4 ∈ F
otherwise A would contain a subgraph of the second type. It follows that
tyu ∈ L since i ·tyu = q4. A dual argument would show that tyu ∈ L implies
txu ∈ L, proving the claim. Thus x = y in M . We let the reader verify, by
using the first subgraph, that M contains no pair of L-related idempotents.
Thus M ∈ BG.

Assume now that A is minimal. Suppose that M ∈ BG, and suppose
that A contains the first subgraph. Since A is minimal, every state of A is
accessible and in particular, there exists a word t ∈ A∗ such that i · t = q0.
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On the one hand, i · t(yωxω)ωu = q4 ∈ F and thus t(yωxω)ωu ∈ L. On
the other hand, i · t(xωyω)ωu = q3 /∈ F . It follows that t(xωyω)ωu /∈ L and
thus the identity (xωyω)ω = (yωxω)ω doesn’t hold in M , a contradiction. A
similar argument would work for the second subgraph.

The previous result yields a polynomial time algorithm to check whether
the language accepted by a deterministic n-state automaton is of level 1 in
the group hierarchy. The proof is similar to the proof of Corollary 8.10 and
it is left to the reader.

Corollary 8.21 There is a polynomial time algorithm for testing whether
the language accepted by a deterministic n-state automaton is of level 1 in
the group hierarchy.

Several other descriptions of BG are known. One of them describes BG
as the variety generated by all Schützenberger products of groups. Another
relates BG to the variety generated by all power monoids of groups. A
third one gives a decomposition of BG as a Mal’cev product. The reader is
referred to the survey article [43] for a more detailed discussion.

9 Boolean-polynomial closure

Let V be a variety of finite semigroups and let V be the corresponding +-
variety. We have shown that the algebraic counterpart of the operation V →
Pol V on varieties of languages is the operation V → [[xωyxω 6 xω]] M©V.
Similarly, the algebraic counterpart of the operation V → Co-Pol V is the op-
eration V → [[xω 6 xωyxω]] M©V. It is tempting to guess that the algebraic
counterpart of the operation V → BPol V is also of the form V → W M©V
for some variety W. In this section, we give a precise statement of this
conjecture and we discuss its consequences. Theorem 5.8 and Proposition
3.9 lead to a first characterization of the variety of finite semigroups corre-
sponding to BPol V.

Corollary 9.1 Let V be a variety of finite semigroups (resp. monoids) and
let V be the corresponding +-variety(resp. ∗-variety). Then the variety of
finite semigroups (resp. monoids) corresponding to BPol V is the join of the
two varieties [[xωyxω 6 xω]] M©V and [[xω 6 xωyxω]] M©V.

Now, if we assume that the variety of finite ordered monoids correspond-
ing to BPol V can be written as W M©V for some variety of finite ordered
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semigroups W independent of V, it is easy to calculate W by taking V
equal to the variety I of trivial semigroups. One gets

W = W M© I

=
(

[[xωyxω 6 xω]] M© I
)

∨
(

[[xω 6 xωyxω]] M© I
)

= [[xωyxω 6 xω]] ∨ [[xω 6 xωyxω]]

It turns out that this variety of ordered semigroups is the variety of or-
dered semigroups generated by the variety of finite semigroups B1 defined
in section 8.2.

Theorem 9.2 The variety [[xωyxω 6 xω]] ∨ [[xω 6 xωyxω]] is the variety of
all ordered semigroups (S,6) such that S ∈ B1.

Proof By Proposition 8.14, the languages corresponding to the variety
[[xωyxω 6 xω]] are the languages of dot-depth 1/2. It follows from Corollary
9.1 that the positive variety of languages corresponding to [[xωyxω 6 xω]] ∨
[[xω 6 xωyxω]] is the positive variety of languages of dot-depth 1. The result
now follows from Knast’s Theorem 8.17.

We can thus reformulate our conjecture as follows:

Conjecture 9.1 Let V be a variety of languages and let V be the corre-
sponding variety of semigroups (resp. monoids). Then the variety of semi-
groups (resp. monoids) corresponding to BPol V is B1 M©V.

One inclusion in the conjecture is certainly true.

Proposition 9.3 The variety of semigroups (resp. monoids) corresponding
to BPol V is contained in B1 M©V.

Proof By Corollary 9.1, the variety of finite ordered monoids correspond-
ing to BPol V is the join of the varieties [[xωyxω 6 xω]] M©V and [[xω 6

xωyxω]] M©V. Now each of these two varieties of ordered semigroups is con-
tained in the variety of ordered semigroup generated byB1 M©V. The propo-
sition follows.

Now, by Theorem 2.3, the identities of B1 M©V are

(xωpyωqxω)ωxωpyωsxω(xωryωsxω)ω = (xωpyωqxω)ω(xωryωsxω)ω (5)

for all x, y, p, q, r, s ∈ Â∗ for some finite alphabet A such that V satisfies
x2 = x = y = p = q = r = s. These identities lead to another equivalent
statement for our conjecture.
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Proposition 9.4 The conjecture is true if and only if every finite semi-
group (resp. monoid) satisfying the identities (5) is a quotient of an ordered
semigroup (resp. ordered monoid) of the variety [[xωyxω 6 xω]] M©V.

Proof This follows immediately from Propositions 3.5 and 3.9, Theorem
5.8 and the fact that BPol V is the variety generated by Pol V.

Conjecture 9.1 was proved to be true in a few particular cases. First,
if V is the trivial variety of monoids, then B1 M© I = J. In this case, the
second form of the conjecture was also proved directly by Straubing and
Thérien [69].

Theorem 9.5 Every finite J -trivial monoid is a quotient of an ordered
monoid satisfying the identity x 6 1.

Second, if V is the trivial variety of semigroups, then B1 M© I = B1 is,
by Knast’s Theorem 8.17, the variety of finite semigroups corresponding to
the languages of dot-depth 1. Therefore, the conjecture is true in this case,
leading to the following corollary.

Corollary 9.6 Every semigroup of B1 is a quotient of an ordered semigroup
satisfying the identity xωyxω 6 xω.

Third, if V = G, the variety of monoids consisting of all finite groups,
B1 M©G = J M©G = PG = ♦G = BG is the variety corresponding to the
level 1 of the group hierarchy. Therefore, the conjecture is also true in this
case.

Corollary 9.7 Every semigroup of BG is a quotient of an ordered semi-
group satisfying the identity xω 6 1.

It is amusing to prove directly this result for powergroups. Given a
group G, denote by P ′(G) the monoid of all non-empty subsets of G under
multiplication. Then P ′(G) is naturally ordered by the relation 6 defined
by

X 6 Y if and only if Y ⊆ X

Proposition 9.8 Let G be a group. Then (P ′(G),6) satisfies the identity
xω 6 1.

Proof The idempotents of P ′(G) are the subgroups of G. They all contain
the trivial subgroup, which is the identity of P ′(G). Therefore the identity
xω 6 1 is satisfied.
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The level 2 of the Straubing hierarchy corresponds to the case V = J1.
Therefore, one can formulate the following conjecture for this level

Conjecture 9.2 A recognizable language is of level 2 in the Straubing hi-
erarchy if and only if its syntactic semigroup satisfies the identities
(

(xωpyωqxω)ωxωpyωsxω(xωryωsxω)ω
)

=
(

(xωpyωqxω)ω(xωryωsxω)ω
)

(6)

for all x, y, p, q, r, s ∈ Â∗ for some finite alphabet A such that c(x) = c(y) =
c(p) = c(q) = c(r) = c(s).

If this conjecture was true, it would imply the decidability of the levels
2 of the Straubing hierarchy and of the dot-depth. It was shown [70, 74,
77] that Corollary 8.12 implies that Conjecture 9.2 is true for languages
recognized by an inverse monoid.

More generally, the conjecture Vn+1 = B1 M©Vn would reduce the de-
cidability of the Straubing hierarchy to a problem on the Mal’cev products
of the form B1 M©V. However, except for a few exceptions (including G, J
and the finitely generated varieties, like the trivial variety or J1), it is not
known whether the decidability of V implies that of B1 M©V.

10 The sequential calculus

This section is devoted to the consequences of our results in finite model
theory, and more precisely, to Büchi’s sequential calculus. We assume that
the reader is familiar with the standard notations of formal logic.

Büchi’s sequential calculus is built up from a binary relation symbol
< and, for each letter a ∈ A, a unary predicate Ra. To each word u is
associated a finite structure

Mu =
(

{1, . . . , |u|}, (Ra)a∈A, <
)

where Ra = {i ∈ {1, . . . , |u|} | u(i) = a} is the set of positions of the letter
a in u and < is the usual order on {1, . . . , |u|}. For instance, if u = abbaab,
then Ra = {1, 4, 5} and Rb = {2, 3, 6}. Terms, atomic formulæ and first
order formulæ are defined in the usual way. A word u satisfies a sentence
ϕ if ϕ is true when interpreted on the structure Mu. There is a special
convention for the empty word: it satisfies all universal sentences (sentences
of the form ∀xϕ(x)) and no existential sentences. To each sentence ϕ, one
associates the sets of words that satisfy ϕ:

L(ϕ) = {u ∈ A∗ | u satisfies ϕ}
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For instance, if ϕ = ∃i Rai, then L(ϕ) = A∗aA∗. The reader is referred to
the survey article [45] for more detail on this logic. The first order definable
languages were first characterized by McNaughton and Papert [32].

Theorem 10.1 A recognizable subset of A∗ is first-order definable if and
only if it is star-free.

This, combined with Schützenberger theorem, gives a syntactic charac-
terization of first-order definable languages.

Corollary 10.2 Let X be a recognizable subset of A∗. Then the following
conditions are equivalent:

(1) X is first-order definable,

(2) X is star-free,

(3) the syntactic monoid of X is aperiodic.

The correspondence between star-free languages is even tighter than in-
dicated in Corollary 10.2. Indeed the Straubing hierarchy coincides with the
quantifier alternation hierarchy of first order formulæ, defined as follows.

A formula ϕ is said to be a Σn-formula if it is equivalent to a formula
of the form ϕ = Q(x1, . . . , xk)ψ where ψ is quantifier free and Q(x1, . . . , xk)
is a sequence of n blocks of quantifiers such that the first block contains
only existential quantifiers (note that this first block may be empty), the
second block universal quantifiers, etc.. Similarly, if Q(x1, . . . , xk) is formed
of n alternating blocks of quantifiers beginning with a block of universal
quantifiers (which again might be empty), we say that ϕ is a Πn-formula.

Denote by Σn (resp. Πn) the class of languages which can be defined by
a Σn-formula (resp. a Πn-formula) and by BΣn the set of boolean combi-
nations of Σn-formulæ. Finally, set, for every n > 0, ∆n = Σn ∩ Πn. The
connection with Straubing’s hierarchy can be stated as follows. Denote by
Vn the class of languages of level n. In particular, Vn+1/2 is equal to Pol Vn.

Theorem 10.3 (Thomas [72], Perrin and Pin [34])

(1) A language is in BΣn if and only if it is in Vn
(2) A language is in Σn+1 if and only if it is in Pol Vn
(3) A language is in Πn+1 if and only if it is in Co-Pol Vn

We now complete this result by giving a characterization of the ∆n classes.

Theorem 10.4 A language of A∗ is in ∆n+1 if and only if it is in UPol Vn.
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Proof This follows immediately from Theorems 7.3 and 10.3.

This result reminds us of a result of Arnold [7] in a different context.
A set of infinite words is Σ1

1 (analytic) if and only if it is accepted by a
countable Büchi automaton and it is a Borel set if and only if it is accepted
by a countable unambiguous Büchi automaton. Now, by Suslin’s theorem,
Σ1
1 ∩ Π1

1 = ∆1
1 is the class of Borel sets. Thus a set of words is ∆1

1 if and
only if it is accepted by a countable unambiguous Büchi automaton.

One can summarize our results in the following diagrams

Σ1 Σ2 Σ3
. . .

∆0 = Σ0 = Π0 = ∆1 = BΣ0 BΣ1 ∆2 BΣ2 ∆3

Π1 Π2 Π3
. . .

Figure 10.3: The logical hierarchy

Pol V1 Pol V2 Pol V3
. . .

V0 V1 UPol V2 V2 UPol V3

Co-Pol V1 Co-Pol V2 Co-Pol V3
. . .

Figure 10.4: The Straubing-Thérien hierarchy
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Notes in Computer Science, Vol. 67, Springer-Verlag, Berlin, 1979, 260–
265.

[54] Ch. Reutenauer, Une topologie du monöıde libre, Semigroup Forum 18,
(1979), 33–49.

49



[55] Ch. Reutenauer, Sur mon article “Une topologie du monöıde libre”,
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[69] H. Straubing and D. Thérien, Partially ordered finite monoids and a
theorem of I. Simon, J. Algebra 119, (1985), 393–399.

[70] H. Straubing and P. Weil, On a conjecture concerning dot-depth two
languages, Theoret. Comp. Sci. 104, (1992), 161–183.
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