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The aim of the article is to present two algebraic tools (the representable
transductions and the relational morphisms) that have been used in the past
decade to study operations on recognizable languages. This study reserves a
few surprises. Indeed, both concepts were originally introduced for other pur-
poses : representable transductions are a formalization of automata with out-
put and have been mainly studied in connection with the theory of context-free
languages, while relational morphisms were introduced by Tilson to solve some
problems related to the wreath product decomposition of finite semigroups. But
it turns out that relational morphisms are a very powerful tool in the study of
recognizable languages and that transductions lead to some very nice problems
on finite semigroups.

Eilenberg’s variety theorem gives a one-to-one correspondence between va-
rieties of semigroups and varieties of languages. Part of the results reviewed in
this article show that, in certain cases, this correspondence can be extended to
operations. That is, an operation on languages (such as concatenation, length-
preserving morphism, etc.) is in correspondence with an operation on semi-
groups. It is therefore tempting to ask whether the most natural operations on
languages (respectively semigroups) have a natural counterpart in terms of semi-
groups (respectively languages). This leads to a number of difficult problems,
some of which are still unsolved.

1 Preliminaries.

The notions of recognizable and rational subsets are not limited to free semi-
groups. The rational subsets of a semigroup (monoid) S form the smallest class
Rat(S) of subsets of S such that

(a) the empty set and every singleton {s} belong to Rat(S),

(b) if X and Y are in Rat(S), then so are XY and X ∪ Y ,

(c) if X is in Rat(S), then so is X+ (respectively X∗), the subsemigroup
(submonoid) of S generated by X .

∗This work was supported by “Programme de Recherches Coordonnées - Mathématique et

Informatique”.
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A subset P of S is said to be recognizable if there exists a finite semigroup F , a
semigroup morphism ϕ : S → F and a subset Q of F such that P = Qϕ−1. We
shall denote by Rec(S) the class of recognizable subsets of S. It is well known
that, if A is a finite alphabet, then Rec(A+) = Rat(A+), where A+ denotes the
free semigroup over A.

Let S be a semigroup. Then P(S), the set of subsets of S, is a semiring under
union as addition and under the multiplication defined, for every X,Y ∈ P(S),
by

XY = {xy | x ∈ X and y ∈ Y }.

Note that Rat(S), the set of all the rational subsets of S is a subsemiring of P(S).
This structure of semiring will be useful in the study of representable transduc-
tions. Given a positive integer n, the set P(S)nxn of n by n matrices with entries
in P(S) is also a semiring, under the usual addition and multiplication of matri-
ces over a semiring. Furthermore, every semigroup morphism ϕ : S → T extends
into semiring morphisms ϕ : P(S) → P(T ) and ϕ : P(S)n×n → P(T )n×n.

Let S and T be two semigroups (or monoids). A relation τ : S → T is a
function from S into P(T ). The graph of the relation τ is the subset of S × T

graph(τ) = {(s, t) | t ∈ sτ}.

The inverse of τ is the relation τ−1 : T → S defined by tτ−1 = {s ∈ S | t ∈ sτ}.
The relations τ and τ−1 can be extended to functions from P(S) into P(T )
(respectively from P(T ) into P(S)) by setting

Xτ =
⋃

x∈X

xτ and Xτ−1 = {s ∈ S | sτ ∩X 6= ∅}.

A relation τ : S → T is injective if, for every s1, s2 ∈ S, the condition s1τ∩s2τ 6=
∅ implies s1 = s2.

Relations are too general for our purpose — the semigroup structure is ir-
relevant so far — so we shall only consider two useful cases : the relational
morphisms and the representable transductions.

2 Relational morphisms.

A relational morphism τ : S → T is a relation satisfying the following properties:

(1) for every s ∈ S, sτ is non-empty,

(2) for every s, t ∈ S, (sτ)(tτ) ⊂ (st)τ .

If S and T are monoids, then we require a third condition :

(3) 1 ∈ 1τ .

Example 2.1 Let BA2 be the semigroup with zero presented over the alphabet
{a, b} by the relations a2 = b2 = 0, aba = a and bab = b. Then BA2 =
{a, b, ab, ba, 0}, and the idempotents are ab, ba and 0. This semigroup is called
the Brandt Aperiodic semigroup of size 2 × 2 (this explains the notation BA2)
and is also the transformation semigroup of the automaton represented below.
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Figure 2:

Let τ : BA2 → Z/2Z = {−1, 1} be the relation defined by aτ = {−1}, bτ =
{−1}, (ab)τ = {1}, (ba)τ = {1} and 0τ = {1,−1}. Then τ is a relational
morphism.

Of course, any morphism (in the usual sense) is also a relational morphism.
Furthermore, if ϕ : S → T is a surjective morphism, then the relation τ = ϕ−1 :
T → S is a relational morphism. Some of the basic properties of morphisms
still hold for relational morphisms.

Proposition 2.1

(1) The composition of two relational morphisms is a relational morphism.

(2) Let τ : S → T be a relational morphism. If S′ is a subsemigroup of S,
then S′τ is a subsemigroup of T . If T ′ is a subsemigroup of T , then T ′τ−1

is a subsemigroup of S.

A detailed proof of this proposition (and of Propositions 2.2 to 2.5) can be
found in [9, p.67] and are not reproduced in this survey.

It is not too difficult to see that if τ is a relational morphism from S into T ,
then its graph R ⊂ S × T is a subsemigroup (resp. submonoid) of S × T , and
the projections S × T → S and S × T → T induce morphisms α : R → S and
β : R→ T such that

(i) α is a surjective morphism

(ii) τ = α−1β.
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The factorization represented in Figure 3 is called the canonical factorization of
τ . Therefore

Proposition 2.2 A relation τ is a relational morphism if and only if there exist
two morphisms α and β such that τ = α−1β.

Thus, if one has trouble to think in terms of relational morphisms, one can
always go back to usual morphisms. In fact, if τ = α−1β is the canonical
factorization of τ , a number of properties of b are inherited by τ , and it is
usually a good idea to prove a given result on b, and then try to generalize the
proof for τ . For instance,

Proposition 2.3 Let S
α−1

−→ R
β

−→ T be the canonical factorization of a re-
lational morphism τ : S → T . Then

(1) τ is injective if and only if β is injective,

(2) τ is surjective if and only if β is surjective.

We arrive to an essential definition about relational morphisms, which is similar
in its form to the definition of a continuous function. Given a variety of finite
semigroups V, we say that a morphism (respectively a relational morphism) is a
V-morphism (respectively a relational V-morphism) if, for every subsemigroup
T ′ of T , T ′ ∈ V implies T ′τ−1 ∈ V. If V is the variety A of aperiodic semi-
groups, a (relational) V-morphism is simply called an aperiodic (relational)
morphism. Similarly, if V is the variety LI of locally trivial semigroups, a
(relational) V-morphism is called a locally trivial (relational) morphism. The
following proposition was to be expected :

Proposition 2.4 Let S
α−1

−→ R
β

−→ T be the canonical factorization of a re-
lational morphism τ : S → T . Then τ is a V-morphism if and only if β is a
V-morphism.

For certain varieties of semigroups V (but not for all of them!) there is a
simple characterization of the V-morphisms. This is the case in particular for
the varieties of aperiodic (respectively locally trivial) semigroups.

Proposition 2.5 Let τ : S → T be a relational morphism. Then τ is an aperi-
odic (respectively locally trivial) morphism if and only if, for every idempotent
e ∈ T , the semigroup eτ−1 is aperiodic (respectively locally trivial).

Examples of relational morphisms abound in semigroup theory, but we have
selected here some examples that come from language theory. Let L1 and L2 be
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two rational languages ofA∗, and let L = L1L2. We say that the product L1L2 is
unambiguous if every word u of L has a unique factorization as u = u1u2, where
u1 ∈ L1 and u2 ∈ L2. Let η : A∗ →M , η1 : A∗ →M1 and η2 : A∗ →M2 be the
syntactic morphisms of L, L1 and L2 respectively. Let η1 × η2 : A∗ →M1 ×M2

be the monoid morphism defined by u(η1 × η2) = (uη1, uη2). Finally, we put
τ = η−1(η1 × η2). Thus τ is a relational morphism, represented in the following
diagram.

M M1 ×M2

A∗

η

τ

η1 × η2

Figure 4:

Theorem 2.6 [17] The relational morphism τ : M → M1 ×M2 is aperiodic.
Furthermore, if the product L1L2 is unambiguous, then τ is locally trivial.

Proof. We only give the proof of the first part of the theorem. Denote by ∼L,
∼L1

and ∼L2
the syntactic congruences of L, L1 and L2 respectively. Let e be

an idempotent of M1 ×M2. Then e = (e1, e2) where e1 and e2 are idempotent
in M1 and M2, respectively. Let s ∈ eτ−1. Then there exists a word u such that
uη = s, uη1 = e1 and uη2 = e2. Then by definition, u ∼L1

u2 and u ∼L2
u2.

We claim that u3 ∼L u4. Indeed, suppose that xu3y ∈ L, for some x, y ∈ A∗.
Then xu3y = v1v2 for some v1 ∈ L1 and v2 ∈ L2, and either xu is a prefix of
v1, or uy is a suffix of v2.

x u u u y

s

v1 v2

Suppose, for instance, that v1 = xus, for some s ∈ A∗ such that sv2 = u2y (the
other case is dual). Then since u ∼L1

u2, we have xu2s ∈ L1 and xu2sv2 =
xu4y ∈ L. Conversely, if xu4y ∈ L, then xu4y = v1v2 for some v1 ∈ L1 and
v2 ∈ L2. Then either v1 or v2 contains an occurrence of u2, and the argument
above shows that xu3y ∈ L. Thus xu3y ∈ L if and only if xu4y ∈ L, proving
the claim. It follows that s3 = u3η = u4η = s4. Therefore, eτ−1 is an aperiodic
semigroup, and τ is aperiodic.

In particular, if M1 and M2 are aperiodic, M is also aperiodic. This theorem
motivates the following definition. Given two varieties of finite monoids V and
W, we denote by V−1W the class of all monoids M such that there exists a
V-relational morphism from M into a monoid N of W. This class V−1W is in
fact a variety, called the Malcev product of V and W. Now, Theorem 2.6 can
be reformulated as follows: if M1 and M2 belong to a variety of finite monoids
V, then M belongs to the variety A−1W. Furthermore, if the product L1L2 is

5



unambiguous, then M belongs to LI−1W. The converse of this result is true,
and can be informally summarized by saying that “concatenation corresponds
to aperiodic morphisms” and that “non-ambiguous concatenation corresponds
to locally trivial morphisms”. More precisely, let V be a variety of monoids and
let V be the corresponding variety of languages. Let V ′ (respectively V ′′) be the
smallest variety of languages such that, for every alphabet A,

(a) A∗V ′ (respectively A∗V ′′) contains A∗V ,

(b) A∗V ′ (respectively A∗V ′′) is closed under concatenation (respectively non-
ambiguous concatenation).

Then we have the following theorem.

Theorem 2.7 [16, 11] The variety of monoids corresponding to V ′ (respectively
V”) is A−1V (respectively LI−1V).

We say that a variety of languages V is closed under (unambiguous) con-
catenation product if, for every alphabet A, the conditions L1, L2 ∈ A∗V imply
L1L2 ∈ A∗V (if the product is unambiguous).

Corollary 2.8

(1) A variety of languages V is closed under concatenation product if and only
if A−1V = V.

(2) A variety of languages V is closed under non-ambiguous concatenation
product if and only if LI−1V = V.

The star operation gives another example of relational morphisms in lan-
guage theory. Let L be a recognizable language of A∗. A submonoid L∗ of A∗

is pure if, for every n > 0, and every u ∈ A∗, un ∈ L implies u ∈ L. Let
η : A∗ → M and ϕ : A∗ → N be the syntactic morphisms of L and L∗ respec-
tively. Then τ = ϕ−1η is a relational morphism from N into M , represented in
the following diagram.

M N

A∗

η

τ

ϕ

Figure 5:

Theorem 2.9 [17] If L∗ is a pure submonoid of A∗, then τ is an aperiodic
relational morphism.

Proof. Denote by ∼L and ∼L∗ the syntactic congruences of L and L∗ respec-
tively. Let e be an idempotent of M and let s ∈ eτ−1. Then there exists a word
u ∈ A∗ such that uϕ = s and uη = e. In particular, u2 ∼L u. We claim that,
for every n > |u|, and every x, y ∈ A∗, xuny ∈ L∗ implies xun+1y ∈ L∗. In-
deed, suppose that xuny = v1v2 · · · vk where k ≥ 0, and v1, v2, · · · , vk ∈ L. The
integers |v1v2 · · · vi|, for 1 ≤ i ≤ k, are called the scansions of the factorization
v1v2 · · · vk. We consider two cases.
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(a) There exists an index i such that vi contains an occurrence of u (as v2
in the diagram below).

x u u u u y

v1 v2 v3 v4 v5 v6

Then vi = siuti, and since u2 ∼L u, siuti ∈ L. Therefore xun+1y ∈ L∗.
(b) Every occurrence of u contains a scansion of the factorization v1v2 · · · vk.

Therefore, there exists a sequence j0 < j1 < · · · < jn−1 such that, for 0 ≤ i ≤
n− 1, we have xuipi = v1v2 · · · vji

for some prefix pi of u (different from u, but
possibly empty). Now since n > |u|, there exist two indices i < i′ such that
pi = pi′ . Let u = pisi. This yields

x1 = v1v2 · · · vji
= xuipi,

x2 = vi+1 · · · vi′ = siu
i′−i−1pi = (sipi)

i′−i ∈ L∗,

x3 = vi′ · · · vk = siu
n−i′−1y,

and since L∗ is pure, sipi ∈ L∗. Therefore (sipi)
i′−i+1 ∈ L∗, and thus xun+1y =

x1(sipi)
i′−i+1x3 ∈ L∗.

This proves the claim. But since L∗ is recognizable, there exist two inte-
gers m ≥ 0 and p > 0 such that, for every n ≥ m, un ∼L∗ un+p. If we take
n > max(m, |u|), then xuny ∈ L∗ implies xun+1y ∈ L∗ by the claim. Conversely,
xun+1y ∈ L∗ implies xun+py ∈ L∗ by the claim, and since un ∼L∗ un+p, xun+py ∈
L∗ implies xuny ∈ L∗. Therefore un ∼L∗ un+1 and hence sn = unϕ = un+1ϕ =
sn+1. Thus eτ−1 is aperiodic, and τ is an aperiodic relational morphism.

Corollary 2.10 [17]. If L is star-free, and if L∗ is a pure submonoid of A∗,
then L∗ is star-free.

Proof. We keep the previous notations. If L is star-free, then M is aperiodic
by Schützenberger’s theorem. Now, since L∗ is pure, τ is an aperiodic rela-
tional morphism, so that N = Mτ−1 is aperiodic. Therefore, L∗ is star-free by
Schützenberger’s theorem.

Corollary 2.11 Let V be a variety closed under concatenation product. Then
V is closed under the operation L→ L∗ when L∗ is pure.

Proof. Let V be the variety of monoids corresponding to V . Then, by Theorem
2.8, A−1V = V. Therefore, by Theorem 2.9, V is closed under the operation
L→ L∗ when L∗ is pure.

H. Straubing asked whether the converse of Corollary 2.11 was true, but this
problem is still open. The next result is a very special case of this problem.

Theorem 2.12 [8]. The star-free languages form the smallest variety closed
under the operation L→ L∗ when L∗ is pure.
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To conclude this section, we shall give an application of relational morphisms
to sets recognized by finite groups. Rational sets are preserved under monoid
morphisms, but recognizable sets are not in general. However, we have

Theorem 2.13 Let π : M → H be a surjective monoid morphism from a
monoid M onto a group H. If L is a subset of M recognized by a finite group
G, then Lπ is a recognizable subset of H recognized by a quotient of G.

We need the following result on relational morphisms.

Lemma 2.14 Let G be a finite group, H an arbitrary group, and τ : G → H
be a surjective relational morphism. Then G′ = 1τ−1 is a normal subgroup of
G, H ′ = 1τ is a normal subgroup of H, and G/G′ = H/H ′. Furthermore, for
every g ∈ G, gτ is a coset of H ′.

Proof. We first claim that for every g ∈ G, h ∈ gτ implies h−1 ∈ g−1τ . Indeed,
since τ is surjective, there exists x ∈ G such that h−1 ∈ xτ . Let n be the order
of G. Then h−1 = (h−1)nhn−1 ∈ (xτ)n(gτ)n−1 ⊂ (xngn−1)τ = g−1τ since
xn = gn = 1.

In particular, H ′ = 1τ is a subgroup of H . Furthermore, if h ∈ gτ and
x ∈ 1τ , then by the claim, hxh−1 ∈ (gτ)(1τ)(g−1τ) ⊂ (gg−1)τ = 1τ .Thus H ′ is
normal in H . Furthermore, the following property holds :

(1) for every h ∈ gτ , gτ = H ′h.

Indeed, H ′h ⊂ (1τ)(gτ) ⊂ gτ and, on the other hand, (gτ)h−1 ⊂ (gτ)(g−1τ) ⊂
1τ . Thus τ induces a group morphism from G onto H/H ′, the kernel of which
is the group

N = {g ∈ G | gτ = 1τ}.

We claim that N = G′ = {g ∈ G | 1 ∈ gτ}. Indeed, since 1 ∈ 1τ , N is contained
in G′. Conversely, if g ∈ G′, then 1 ∈ gτ , whence gτ = (1τ).1 = 1τ by (1).
Thus N = G′, G′ is normal in G and G/G′ = H/H ′.

We now prove Theorem 2.13. Let ϕ : M → G be the monoid morphism
recognizing L, and let P ⊂ G be such that Pϕ−1 = L. We may assume that
ϕ is surjective (otherwise it suffices to replace G by Mϕ, since a submonoid of
a finite group is a group). Then τ = ϕ−1π : G → H is a surjective relational
morphism and we may apply Lemma 2.14. In particular Lπ = Pτ is a finite
union of cosets of H ′ = 1τ . Thus L is recognized by H/H ′ = G/G′.

A recognizable language is called a group language if it is recognized by a
finite group.

Corollary 2.15 Let π : A∗ → H be a surjective monoid morphism from A∗

onto a group H, and let S be a subset of H. Then

(a) S is rational if and only if there exists a rational language R ⊂ A∗ such
that S = Rπ,

(b) S is recognizable if and only if there exists a group language L ⊂ A∗ such
that S = Lπ.

8



3 Representable transductions.

Besides relational morphisms, one mainly considers relations of the form τ :
A∗ → M where A∗ is a finitely generated free monoid and M is a monoid.
Relations of this form are called transductions. The definition of a representable
transduction is a little more abstract. Informally, a transduction τ : A∗ → M
admits a representation µ : A∗ → P(M)n×n if

(a) µ is a morphism: for every u1, u2 ∈ A∗, (u1u2)µ = (u1µ)(u2µ),

(b) for every u ∈ A∗, uτ can be expressed from the uµi,j (1 ≤ i, j ≤ n).

The following list of examples should help the reader to understand the meaning
of the expression “expressed from the uµi,j”. Here, A = {a, b} and τ1, · · · , τ4
are transductions from A∗ into A∗:

(1) uτ1 = uµ1,1 + uµ1,2 + uµ2,1,

(2) uτ2 = a∗(uµ1,1)aba+ (uµ1,2)A
∗babA∗ + {a, ba}∗(uµ2,2),

(3) uτ3 = bab∗(uµ1,1)3(a+ ba)(uµ1,2)b+ (uµ2,1){ua|u| | u ∈ A∗},

(4) uτ4 =
∑

n≥0
an(uµ1,2)b

2n(uµ1,1)a
n2

.

In the two first examples, uτ is a fixed linear combination of the uµi,j . We say in
this case that τ admits a linear representation. Formally, a linear representation
of a transduction τ : A∗ → M is a triple (X,µ, Y ), where X,Y ∈ P(M)n, such
that, for every u ∈ A∗,

(∗) uτ =
∑

1≤i,j≤n

Xi(uµi,j)Yj .

This linear representation is rational if µ is a map from A∗ into Rat(M)n×n

and if X,Y ∈ Rat(M)n. The general definition of a representation, as given
in [12, 13], replaces linear expressions by polynomials, as in (3), or even by
power series, as in (4), but we shall not use it in this survey. Representable
transductions cover a great variety of situations, and are related to recognizable
sets by the following proposition.

Proposition 3.1 [12, 13] Let τ : A∗ → M be a representable transduction.
Then for every recognizable subset P of M , the language Pτ−1 is recognizable.

More precisely, suppose that a transduction τ : A∗ →M admits a represen-
tation µ : A∗ → P(M)n×n. Let ϕ : M → N be a monoid morphism, and let
P be a subset of M recognized by ϕ. Then ϕ induces a semigroup morphism
ϕ : P(M)n×n → P(N)n×n, and we have

Proposition 3.2 [12, 13] The language Pτ−1 is recognized by the monoid A∗µϕ.

The precise description of this monoid A∗µϕ is the key to understand several
constructions, that otherwise would seem awkward. Some examples are given
below.

A transduction which admits a linear rational representation is called a ratio-
nal transduction. It is not difficult to see from the definition that every monoid
morphism is a rational transduction. Similarly, for every rational subset R of
A∗, the transduction IdR : A∗ → A∗, defined by

uτ =

{

u if u ∈ R

undefined otherwise
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is rational. Rational transductions have been extensively studied in connection
with the theory of context-free languages [1] and admit various characteriza-
tions.

Theorem 3.3 Let τ : A∗ → M be a transduction. Then the following condi-
tions are equivalent :

(1) τ is a rational transduction,

(2) the graph of τ is a rational subset of A∗ ×M ,

(3) there exist an alphabet C, two morphisms ϕ : C∗ → A∗ and ψ : C∗ →M ,
and a rational set R ⊂ C∗ such that τ = ϕ−1IdRψ.

In particular, if τ : A∗ → B∗ is a rational transduction, then the transduction
τ−1 : B∗ → A∗ is also rational. Every rational transduction is representable,
but the converse is not true (see example (b) below). Condition (3) of Theorem
3.3 is known as Nivat’s theorem, and should be compared with the canonical
factorization of relational morphisms. The transductions considered in the ex-
amples (a), (c), (d), (e), (f) below are rational. Other examples of rational
transductions can be found in [1].

We now give some examples of application of Proposition 3.2.

(a) Inverse morphisms.

Let ϕ : A∗ → M be a morphism. Then µ = ϕ is a linear representation for ϕ,
and the construction above shows that if L is a subset of B∗ recognized by a
monoid N , then Lϕ−1 is also recognized by N — a well-known result.

(b) Inverse substitutions.

Recall that a substitution s from A∗ into M is a monoid morphism σ : A∗ →
P(M). Therefore µ = σ is a linear representation for σ, and the construction
above shows that if L is a subset of B∗ recognized by a monoid N , then Lσ−1

is recognized by P(N).

(c) Length preserving morphisms.

Let ϕ : A∗ → B∗ be a length preserving morphism. Then the transduction
ϕ−1 : B∗ → A∗ is a substitution. Thus, by (b), if L be a subset of B∗ recognized
by a monoid N , then Lϕ is recognized by P(N). This result can be extended
to varieties as follows. Given a variety of monoids V, denote by PV the variety
of monoids generated by all monoids of the form P(M), where M ∈ V. Given
a variety of languages V, let V′ be the smallest variety of languages such that
Lϕ ∈ B∗V′ for every L ∈ A∗V and every length-preserving morphism ϕ : A∗ →
B∗.

Theorem 3.4 [14, 15] Let V be a variety of monoids, and let V be the corre-
sponding variety of languages. Then V′ is the variety of languages corresponding
to PV.

A similar result was obtained for inverse substitutions [14]. Thus, roughly
speaking, power varieties correspond to length preserving morphisms or to in-
verse substitutions. Theorem 3.4 has been the starting point of the study of
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the operation V → PV, and more generally, of the classification of the varieties
of the type PV. Although a number of interesting results have been obtained,
this classification is far from being complete. See the survey [10] and the recent
(or forthcoming) articles by J. Almeida for more information.

(d) Shuffle product.

Recall that the shuffle of two words u and v is the set

u ◦ v = {u1v1u2v2 · · ·unvn | u1u2 · · ·un = u and v1v2 · · · vn = v}.

More generally, the shuffle of two languages L1 and L2 is the language

L1 ◦ L2 =
⋃

u1∈L1,u2∈L2

u1 ◦ u2.

Now, if τ : A∗ → A∗ ×A∗ is the transduction defined by

uτ = {(u1, u2) ∈ A∗ ×A∗ | u ∈ u1 ◦ u2},

then (L1×L2)τ
−1 = L1◦L2, and τ is a substitution, defined, for every a ∈ A, by

aτ = {(a, 1), (1, a)}. Thus, by (b), if the languages L1 and L2 are recognized by
the monoidsM1 andM2, respectively, then L1◦L2 is recognized by P(M1×M2).

However, contrary to the case of length-preserving morphisms or inverse
substitutions, it is not known whether this result can be extended to varieties.
For instance, the following problem is still open.

Conjecture If a variety of languages is closed under shuffle and contains a
non-commutative language1, then it contains all rational languages.

(e) Concatenation product.

Let τ : A∗ → A∗ ×A∗ × · · · ×A∗ be the transduction defined by

uτ = {(u1, u2, · · · , un) ∈ A∗ ×A∗ × · · · ×A∗ | u1u2 · · ·un = u}.

Then, for every L1, . . . , Ln ⊂ A∗, (L1 × · · · ×Ln)τ−1 = L1 · · ·Ln. Furthermore,
τ is a representable transduction since, for every u ∈ A∗, uτ = uµ1,n where
µ : A∗ → P (A∗)n×n is the morphism defined by

uµi,j =

{

0 if i > j

{(1, · · · , 1, ui, ui+1, · · · , uj, 1, · · · , 1) | uiui+1 · · ·uj = u} if i ≤ j.

Now, if the languages L1, . . . , Ln of A∗ are recognized by the morphisms ϕ1 :
A∗ → M1, . . . , ϕn : A∗ → Mn, respectively, the product L1 · · ·Ln is rec-
ognized by the monoid A∗µϕ, where ϕ = ϕ1 × · · · × ϕn. This monoid is
called the Schützenberger product of the monoids M1, · · · ,Mn, and is denoted
♦(M1, · · · ,Mn).

Formally, let K be the semiring P(M1 × · · · ×Mn) and let Mn(K) be the
semiring of matrices of size n by n over K. Then ♦(M1, · · · ,Mn) is the multi-
plicative submonoid of Kn×n consisting of all matrices p satisfying the following
conditions.

1A language L is non-commutative if there exist two words u and v such that uv ∈ L and

vu /∈ L
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(1) For i > j, pi,j = 0,

(2) for i = j, pi,i = {(1, . . . , 1,mi, 1, . . . , 1)} for some mi ∈Mi,

(3) for i < j, pi,j ⊂ {1} × · · · × {1} ×Mi × · · · ×Mj × {1} × · · · × {1}.

Condition (1) says that p is upper-triangular, condition (2) enables us to identify
pi,i with an element of Mi, and condition (3) states that pi,j can be identified
to a subset of Mi × · · · × Mj. Finally, we have the following result, due to
Schützenberger for n = 2 and to Straubing for the general case.

Theorem 3.5 Let L1, . . . , Ln be languages recognized by monoids M1, . . . ,Mn.
Then the language L1 · · ·Ln is recognized by the monoid ♦(M1, · · · ,Mn).

The converse of Theorem 3.5 is not true, but a very similar statement admits
a partial converse (Theorem 3.7 below, due to Reutenauer for n = 1 and to the
author in the general case).

Theorem 3.6 Let L0, . . . , Ln be languages recognized by monoids M0, . . . ,Mn

and a1, a2, · · · , an be letters. Then the language L0a1L1a2 · · ·anLn is recognized
by the monoid ♦(M0, · · · ,Mn).

Theorem 3.7 If a language L of A∗ is recognized by ♦(M0, · · · ,Mn), then L
is a boolean combination of languages of the form Li0a1Li1a2 · · ·arLir

where
0 ≤ i0 < i1 < · · · < ir ≤ n, and, for 1 ≤ k ≤ r, ak ∈ A and Lik

is a language
recognized by Mik

.

We refer the reader to the article of P. Weil in this volume for other appli-
cations of the Schützenberger product.

(f) Sequential functions.

A sequential function σ : A∗ → B∗ is a function from A∗ to B∗ whose be-
haviour is described by a machine called a “sequential transducer”. Formally,
a sequential transducer is a set T = (Q,A,B, q0, ., ∗) where (Q,A, .) is a finite
automaton, q0 is an element of Q called the initial state and ∗ is an output func-
tion, i.e. a function (q, a) → q ∗ a from Q × A into B∗ which can be extended
to a function

Q×A∗ → B∗

by putting q ∗ 1 = 1 and, for u ∈ A∗ and a ∈ A, q ∗ ua = (q ∗ u)((q.u) ∗ a).
A function σ : A∗ → B∗ is called sequential if there exists a sequential

transducer T = (Q,A,B, q0, ., ∗) such that, for every word u ∈ A∗, uσ = q0 ∗
u. A sequential function is a rational transduction, which admits the linear
representation µ : A∗ → P(B∗)Q×Q defined, for every a ∈ A, by

aµq,q′ =

{

q ∗ a if q.a = q′

∅ otherwise.

Indeed, uσ =
∑

q∈Q uµq0,q, and thus, if a language L of B∗ is recognized by

a morphism ϕ : B∗ → M , the language Lσ−1 is recognized by the monoid
A∗µϕ. Now, if M(σ) is the transition monoid of the automaton (Q,A, .), the
monoid A∗µϕ is a submonoid of the “wreath product” M ◦M(σ). We recall the
definition of this important construction.

12



Let M and N be two monoids. We write M additively (although M is not
assumed to be commutative) andN multiplicatively. The wreath productM ◦N
is the monoid defined on the set MN × N by the multiplication given by the
following formula (where f1, f2 are applications from M into N , and n1, n2 are
elements of N)

(f1, n1)(f2, n2) = (f, n1n2)

where f is the application from M into N defined, for all n ∈ N , by nf =
nf1 + (nn1)f2.

Therefore, we can state

Theorem 3.8 Let σ : A∗ → B∗ be a sequential function realized by a sequential
transducer T = (Q,A,B, q0, ., ∗) and let M(σ) be the transition monoid of the
automaton (Q,A, .). If a language L of B∗ is recognized by a monoid M , then
the language Lσ−1 is recognized by the monoid M ◦M(σ).

Again, this statement admits a partial converse, called the “wreath product
principle”, and stated for the first time by Straubing. Let M and N be two
monoids, and let η : A∗ → M ◦ N be a morphism. Denote by π : M ◦N → N
the morphism defined by (f, n)π = n and let ϕ = ηπ : A∗ → N . Let B =
N × A and σ : A∗ → B∗ be the sequential function defined by (a1 · · ·an)σ =
(1, a1)(a1ϕ, a2) · · · ((a1 · · · an−1)ϕ, an). Then we have:

Theorem 3.9 If a language L is recognized by η : A∗ → M ◦ N , then L is a
finite boolean combination of languages of the form X ∩ Y σ−1 where Y ⊂ B∗ is
recognized by M and where X ⊂ A∗ is recognized by N .

Despite its technical appearance, the wreath product principle, with its vari-
ants, is one of the most useful tools of the theory of finite automata.

4 Transductions and decidability problems on

semigroups.

Transductions can lead to some very difficult problems of semigroup theory.
As an example, we would like to mention some decidability problems recently
solved by Hashiguchi. Let L = {L1, · · · , Ln} be a finite set of rational lan-
guages. Denote by Rat(L) the smallest set of languages containing L and closed
under finite union, product and star operation. Similarly, denote by Pol(L)
the polynomial closure of L, that is, the smallest set of languages containing L
and closed under finite union and product. Therefore, a language L belongs to
Pol(L) if and only if it is a finite union of products of the form Li1Li2 · · ·Lik

,
where Li1 , Li2 , · · ·Lik

∈ L. Hashiguchi studied the following decidability prob-
lems.

Problem 1 Given L and a rational language L, is it decidable whether L ∈
Rat(L)?

Problem 2 Given L and a rational language L, is it decidable whether L ∈
Pol(L)?

13



Both problems are decidable, but the first problem is easy to solve, while
the second one is much more difficult. We introduce a second alphabet B =
{1, · · · , n} and the substitution σ : B∗ → A∗ defined, for 1 ≤ i ≤ n, by
iσ = Li. Clearly, L ∈ Rat(L) (respectively Pol(L)) if and only if there exists
a rational (respectively finite) subset R of B∗ such that Rσ = L. We first
examine the language R(L) = {u ∈ B∗ | uσ ⊂ L}. This language can be
computed effectively:

Lemma 4.1 For every rational language L, R(L) = B∗ \ (A∗ \ L)σ−1. In
particular, R(L) is a rational subset of B∗.

Proof. We have, by definition,

(A∗ L)σ−1 = {i1 · · · ik ∈ B∗ | Li1Li2 · · ·Lik
∩ (A∗ \ L) 6= ∅}.

Therefore,

B∗ \ (A∗ \ L)σ−1 = {i1 · · · ik ∈ B∗ | Li1Li2 · · ·Lik
∩ (A∗ \ L) = ∅}

= {i1 · · · ik ∈ B∗ | Li1Li2 · · ·Lik
⊂ L}

= {u ∈ B∗ | uσ ⊂ L} = R(L).

Now L is rational, and so is (A∗ \ L), since the rational sets of A∗ are closed
under complement. It follows that (A∗ \ L)σ−1 is a rational set of B∗ (see
Section 3.b above). Therefore B∗ \ (A∗ \ L)σ−1 is rational.

This gives the solution to the first problem.

Proposition 4.2 A rational language L belongs to Rat(L) if and only if (R(L))σ =
L. Problem 1 is decidable.

Proof. By Lemma 4.1, R(L) is a rational set. Therefore, (R(L))σ ∈ Rat(L).
Thus if (R(L))σ = L, then L ∈ Rat(L). Conversely, if L ∈ Rat(L), then there
exists K ∈ Rat(B∗) such that Kσ = L. Now, if u ∈ K, then uσ ⊂ K, and
therefore u ∈ R(L). It follows that K is contained in R(L), so that L = Kσ ⊂
(R(L))σ ⊂ L. Therefore (R(L))σ = L. This establishes the first sentence of the
proposition.

Given L and L, there exists an algorithm to compute the rational set (R(L))σ
and to test whether L = (R(L))σ. Therefore Problem 1 is decidable.

We now consider Problem 2. To each word v ∈ A∗, associate the minimal
length of all the words u = i1 · · · ik ∈ R(L) such that v ∈ uσ = Li1Li2 · · ·Lik

(if no such word exists, we map v onto ∞). This defines a mapping γ : A∗ →
N ∪ {∞}, and, for every v ∈ A∗,

vγ = min{|u| | u ∈ B∗, uσ ⊂ L and v ∈ uσ}.

Note that vγ < ∞ if and only if there exists u ∈ R(L) such that v ∈ uσ, that
is, if and only if v ∈ R(L)σ. Put S = A∗γ. The next proposition shows that
Problem 2 reduces to deciding whether S is finite.

Proposition 4.3 L belongs to Pol(L) if and only if L ∈ Rat(L) and S is finite.
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Proof. If L ∈ Pol(L), then L ∈ Rat(L) and L = (R(L))σ by Proposition 4.2.
Furthermore, there exists a finite set F ⊂ B∗ such that L = Fσ. Let n be the
maximum length of the words of F . If v ∈ L, then v ∈ uσ for some u ∈ F and
thus vγ ≤ n. On the other hand, vγ = ∞ if v /∈ L, since L = (R(L))σ. Thus S
is contained in {0, 1, · · · , n} ∪ {∞} and is finite.

Conversely, suppose L = (R(L))σ and S finite. Then S is contained in the
set {0, 1, · · · , n} ∪ {∞} for some n. Therefore vγ ≤ n if and only if v ∈ L. It
follows that Fσ = L, where F = {u ∈ R(L) | |u| ≤ n}. Thus L ∈ Pol(L).

It remains to compute the set S. Since R(L) is rational, and since σ is a
rational substitution, the transduction τ : A∗ → B∗ defined by vτ = R(L)∩vσ−1

is rational. By Theorem 3.3, it admits a rational linear representation (X,µ, Y ),
where µ : A∗ → Rat(B∗)n×n is a monoid morphism, and X,Y ∈ Rat(B∗)n.
Furthermore, this linear representation can effectively be computed, given L
and L. Thus, for every v ∈ A∗,

vτ =
∑

1≤i,j≤n

Xi(vµi,j)Yj .

Let K be the semiring (N ∪ {∞},min,+) and let ϕ : Rat(B∗) → K be the
mapping defined by

Xϕ = min{|x| | x ∈ X} and ∅ϕ = ∞.

Then ϕ is a semiring morphism, and it induces a monoid morphism

ϕ : Rat(B∗)n×n → Kn×n.

Now, γ = τϕ, and hence, for every v ∈ A∗,

vγ = min
i,j

{(Xiϕ) + (vµϕi,j) + (Yjϕ)}.

Note that this formula is very close to the relation (∗) defining linear representa-
tions, except that the semiring K is not of the required form. This obstacle can
be overcome by noticing that K is isomorphic to the semiring P(M) where M is
the monoid of all subsets of a∗ of the form ana∗ under concatenation (consider
the application n→ ana∗). Thus γ is in fact a representable transduction from
A∗ into M .

Put T = A∗µϕ: T is a submonoid of Kn×n generated by the finite set
{aµϕ | a ∈ A}. Setting

I = {i | Xi 6= ∅} = {i | Xiϕ <∞} and J = {j | Yj 6= ∅} = {j | Yjϕ <∞},

we obtain

Proposition 4.4 The set S is finite if and only if there exists i ∈ I and j ∈ J
such that the set {mi,j | m ∈ T } is finite.

Therefore, Problem 2 reduces to deciding whether, for a given pair i, j, the
set {mi,j | m ∈ T } is finite or not. This problem is now a problem of pure
semigroup theory, that has been solved positively by Hashiguchi.
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Theorem 4.5 [4] Given i, j, n such that 0 ≤ i, j ≤ n, given a finite set F of
matrices of Kn×n generating a submonoid T , one can effectively decide whether
the set {mi,j | m ∈ T } is finite or not.

The proof is too difficult to be given here, but has motivated some very
interesting developments.

Corollary 4.6 Problem 2 is decidable.

5 Conclusion.

We have seen that, for the most part, natural operations on (varieties of) lan-
guages correspond to natural operations on (varieties of) monoids : concate-
nation corresponds to aperiodic relational morphisms and to Schützenberger
products, non ambiguous concatenation to locally trivial relational morphisms,
length preserving morphisms to power monoids, sequential functions to wreath
products, etc. In some cases, the corresponding operation is still unknown : for
instance, it would be interesting to find an operation on languages corresponding
to nilpotent relational morphisms, and an operation on monoids corresponding
to shuffle. This correspondence between languages and monoids has motivated
numerous research articles, and a number of problems are still open : on the
semigroup side, the complete classification of the varieties of the form PV or the
(many) decidability problems about varieties of the form V−1W or V ∗W; on
the language side, the characterisation of varieties closed under shuffle or under
pure star, and all problems related to the star operation and to the concatena-
tion product (see the articles of P. Weil and K. Hashiguchi in this volume).

References

[1] J. Berstel, Transductions and Context-free Languages, Teubner, Stuttgart,
1979.

[2] S. Eilenberg, Automata, Languages and Machines, Academic Press, New
York, Vol. A, 1974; Vol B, 1976.

[3] K. Hashiguchi, A decision procedure for the order of regular events, Theo-

ret. Comput. Sci. 8, (1979), 69–72.

[4] K. Hashiguchi, Limitedness theorem on finite automata with distance func-
tions, J. Comput. System Sci. 24, (1982), 232–244.

[5] K. Hashiguchi, Representation theorems on regular languages, J. Comput.

System Sci. 27, (1983), 101–115.

[6] K. Hashiguchi, Regular languages of star-height one, Information and Con-

trol 53, (1982), 199–210.

[7] K. Hashiguchi, Improved limitedness theorems on finite automata with
distance functions, Rapport LITP 86-72, (1986).
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