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Abstract. This survey paper presents known results and open problems
on the shuffle product applied to regular languages. We first focus on
varieties and positive varieties closed under shuffle. Next we turn to the
class of intermixed languages, the smallest class of languages containing
the letters and closed under Boolean operations, product and shuffle.
Finally, we study Schnoebelen’s sequential and parallel decompositions
of languages and discuss various open questions around this notion.
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1 Introduction

The shuffle product is a standard tool for modeling concurrency which has long
been studied in formal language theory. A nice survey on this topic was proposed
by Restivo [12] in 2015. Restivo’s article is divided into two parts: the first part is
devoted to language theory and the second part to combinatorics on words. Our
current survey paper focuses on the shuffle product applied to regular languages
and can therefore be seen as an extension of the first part of [12].

The main part of the article, Section 3, is devoted to the study of various
classes of regular languages closed under shuffle. We first examine the varieties
closed under shuffle, for which a complete description is known. We then turn
to positive varieties of languages closed under shuffle, for which the situation is
more contrasted and several questions are still open. Next we turn to the class of
intermixed languages, the smallest class of languages containing the letters and
closed under Boolean operations, product and shuffle. Here again, only partial
results are known.

In the last part of the paper, we study Schnoebelen’s sequential and paral-
lel decompositions of languages and discuss various open questions around this
notion.

2 Shuffle and recognition

2.1 Shuffle product

The shuffle u xxy v of two words u and v is the set of words obtained by shuffling
u and v. Formally, it is the set of words of the form u1v1 · · ·unvn, where the ui’s



2 J.-E. Pin

and vi’s are possibly empty words such that u1 · · ·un = u and v1 · · · vn = v. For
instance,

ab xxy ba = {abba, baab, baba, abab}

This definition extends by linearity to languages: the shuffle of two languages L
and K is the language

L xxy K =
⋃

u∈L,v∈K

u xxy v

The shuffle product is a commutative and associative operation on languages
and it distributes over union.

2.2 Monoids and ordered monoids

The algebraic approach to the study of regular languages is based on the use of
monoids to recognise languages. There are two versions, one using monoids and
the other one using ordered monoids. The ordered version is more suitable for
classes of languages not closed under complementation. Let us briefly recall the
relevant definitions.

An ordered monoid is a monoid M equipped with a partial order 6 com-
patible with the product on M : for all x, y, z ∈ M , if x 6 y then zx 6 zy and
xz 6 yz. Note that the equality relation makes any monoid an ordered monoid.

Let P be a subset of M . It is a lower set if, for all s, t ∈ P , the conditions
s ∈ P and t 6 s imply t ∈ P . It is an upper set if s ∈ P and s 6 t imply t ∈ P .
Finally, the lower set generated by P is the set

↓P = {t ∈ M | there exists s ∈ P such that t 6 s}.

Given two ordered monoids M and N , a morphism of ordered monoids ϕ : M →
N is an order-preserving monoid morphism from M to N . In particular, if (M,6)
is an ordered monoid, the identity on M is a morphism of ordered monoids from
(M,=) to (M,6).

A monoid M recognizes a language L of A∗ if there exist a morphism ϕ : A∗ →
M and a subset U of M such that L = ϕ−1(U). In the ordered version, the
definition is the same, but U is required to be an upper set of the ordered
monoid.

Let L be a language of A∗. The syntactic preorder of L is the preorder 4L

defined on A∗ by u 4L v if and only if, for every x, y ∈ A∗,

xuy ∈ L ⇒ xvy ∈ L. (1)

The syntactic congruence of L is the associated equivalence relation ∼L, defined
by u ∼L v if and only if u 4L v and v 4L u.

The syntactic monoid of L is the quotient monoid Synt(L) of A∗ by ∼L and
the natural homomorphism η : A∗ → Synt(L) is called the syntactic morphism
of L. The syntactic preorder 4L induces a partial order 6L on Synt(L). The
resulting ordered monoid is called the syntactic ordered monoid1 of L. Recall
that a language is regular if and only if its syntactic monoid is finite.
1 The syntactic ordered monoid of a language was first introduced by Schützenberger

in 1956, but he apparently only made use of the syntactic monoid later on. I re-
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2.3 Power monoids and lower set monoids

Let M be a monoid. Then the set P(M) of subsets of M is a monoid, called the
power monoid of M , under the multiplication of subsets defined by

XY = {xy | x ∈ X and y ∈ Y }

The ordered counterpart of this construction works as follows. Let (M,6) be an
ordered monoid and let P↓(M) be the set of all lower sets of M . The product of
two lower sets X and Y is the lower set

XY = {z ∈ M | there exist x ∈ X and y ∈ Y such that z 6 xy}.

This operation makes P↓(M) a monoid. Furthermore, set inclusion is compatible
with this product and thus (P↓(M),⊆) is an ordered monoid, called the lower
set monoid of M .

The connection between the shuffle and the operator P was given in [10].

Proposition 1. Let L1 and L2 be two languages and let M1 and M2 be monoids
recognizing L1 and L2 respectively. Then L1 xxy L2 is recognized by the monoid
P(M1 ×M2).

Since a language is regular if and only if it is recognised by a finite monoid,
Proposition 1 gives an algebraic proof of the well-known fact that regular lan-
guages are closed under shuffle. The following ordered version was given in [4].2

Proposition 2. Let L1 and L2 be two languages and let M1 and M2 be ordered
monoids recognizing L1 and L2 respectively. Then L1 xxy L2 is recognized by the
ordered monoid P↓(M1 ×M2).

3 Classes of languages closed under shuffle

It is a natural question to look for classes of regular languages closed under
shuffle. In this section, we focus successively on varieties of languages and on
positive varieties of languages. The last subsection is devoted to the class of
intermixed languages and its subclasses.

3.1 Varieties of languages closed under shuffle

Following the success of the variety approach to classify regular languages (see
[17] for a recent survey), Perrot proposed in 1977 to find the varieties of languages
closed under shuffle. Let us first recall the definitions.

discovered this notion in 1995 [11], but unfortunately used the opposite order for
several years, in particular in [5, 4, 6, 3], before I switched back to the original order.

2 As explained in the first footnote, the opposite of the syntactic order was used in this
paper, and consequently, upper set monoids were used in place of lower set monoids.
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A class of languages is a correspondence V which associates with each alpha-
bet A a set V(A∗) of languages of A∗. A class of regular languages is a variety
of languages if it is closed under Boolean operations (that is, finite union, fi-
nite intersection, and complementation), left and right quotients and inverses of
morphisms between free monoids.

A variety of finite monoids is a class of finite monoids closed under tak-
ing submonoids, quotients and finite direct products. If V is a variety of finite
monoids, let V(A∗) denote the set of regular languages of A∗ recognized by a
monoid of V. The correspondence V 7→ V associates with each variety of fi-
nite monoids a variety of languages. Conversely, to each variety of languages V,
we associate the variety of finite monoids generated by the syntactic monoids
of the languages of V. Eilenberg’s variety theorem states that these two corre-
spondences define mutually inverse bijective correspondences between varieties
of finite monoids and varieties of languages. For instance, Schützenberger [15]
proved that star-free languages correspond to aperiodic monoids.

To start with, let us describe the smallest nontrivial variety of languages
closed under shuffle. Let [u] denote the commutative closure of a word u, which is
the set of words commutatively equivalent to u. For instance, [aab] = {aab, aba, baa}.
A language L is commutative if, for every word u ∈ L, [u] is contained in L.
Equivalently, a language is commutative if its syntactic monoid is commutative.
A characterisation of the star-free commutative languages related to the shuffle
product is given in [2, Proposition 1.2].

Proposition 3. A language of A∗ is star-free commutative if and only if it is
a finite union of languages of the form [u] xxy B∗ where u is a word and B is a
subset of A.

This leads to the following result of Perrot [10].

Proposition 4. The star-free commutative languages form a variety of lan-
guages, which is the smallest nontrivial variety of languages closed under shuffle.
It is also the smallest class of languages closed under Boolean operations and un-
der shuffle by a letter.

Perrot actually characterised all commutative varieties of languages closed
under shuffle. They correspond, via Eilenberg’s correspondence, to the varieties
of finite commutative monoids whose groups belong to a given variety of finite
commutative groups. Perrot also conjectured that the only non-commutative
variety of languages closed under shuffle was the variety of all regular languages.
This conjecture remained open for twenty years, but was finally solved by Ésik
and Simon [8].

Theorem 1. The unique non-commutative variety of languages closed under
shuffle is the variety of all regular languages.

The story of the proof of Theorem 1 is worth telling. A renaming is a length
preserving morphism ϕ : A∗ → B∗. This means that |ϕ(u)| = |u| for each word
u of A∗, or, equivalently, that each letter of A is mapped by ϕ to a letter of B.
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The characterisation of varieties of languages closed under renaming was known
for a long time. For a variety V of finite monoids, let PV denote the variety of
finite monoids generated by the monoids of the form P(M), where M ∈ V. A
variety of finite monoids V is a fixed point of the operator P if PV = V.

Reuteunauer [13] and Straubing [16] independently proved the following re-
sult:

Proposition 5. A variety of languages is closed under renaming if and only if
the corresponding variety of finite monoids is a fixed point of the operator P.

It was also known that the unique non-commutative variety of languages
satisfying this condition is the variety of all regular languages. Ésik and Simon
managed to find an ingenious way to link renamings and the shuffle operation.

Proposition 6. Let ϕ : A∗ → B∗ be a surjective renaming and let C = A∪{c},
where c is a new letter. Then there exist monoid morphisms π : C∗ → A∗,
γ : C∗ → {a, b}∗ and η : B∗ → C∗ such that

ϕ(L) = η−1
(

(

π−1(L) ∩ γ−1((ab)∗)
)

xxy A∗
)

It follows that if a variety of languages containing the language (ab)∗ is closed
under shuffle, then it is also closed under renaming, a key argument in the proof
of Theorem 1.

3.2 Positive varieties of languages closed under shuffle

A variation of Eilenberg’s variety theorem was proposed by the author in [11]. It
gives two mutually inverse bijective correspondences between varieties of finite
ordered monoids and positive varieties of languages.

The definition of varieties of finite ordered monoids is similar to that of
varieties of finite monoids: they are classes class of finite ordered monoids closed
under taking ordered submonoids, quotients and finite direct products.

A class of regular languages is a positive variety of languages if it is closed
under finite union, finite intersection, left and right quotients and inverses of
morphisms between free monoids. The difference with language varieties is that
positive varieties are not necessarily closed under complementation.

It is now natural to try to describe all positive varieties closed under shuffle.
As in the case of varieties, this study is related to the closure under renaming.
For a variety V of finite ordered monoids, let P

↓
V denote the variety of finite

ordered monoids generated by the ordered monoids of the form P↓(M), where
M ∈ V. A variety of finite ordered monoids V is a fixed point of the operator
P

↓ if P↓
V = V. The following result was proved in [3]:

Proposition 7. A positive variety of languages is closed under renaming if and
only if the corresponding variety of finite ordered monoids is a fixed point of the
operator P

↓.
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Coming back to the shuffle, Proposition 2 leads to the following corollary.

Corollary 1. If a variety of finite ordered monoids is a fixed point of the op-
erator P

↓, then the corresponding positive variety of languages is closed under
shuffle.

Note that, contrary to Proposition 7, Corollary 1 only gives a sufficient condition
for a positive variety of languages to be closed under shuffle.

The results of Section 3.1 show that the unique maximal proper variety of
languages closed under shuffle is the variety of commutative languages. The
counterpart of this result for positive varieties was given in [4].

Theorem 2. There is a largest proper positive variety of languages closed under
shuffle.

Let W denote this positive variety and let W be its corresponding variety of
finite ordered monoids. Their properties are summarized in the next statements,
also proved in [4, 6].

Theorem 3. The positive variety W is the largest positive variety of languages
such that, for A = {a, b}, the language (ab)∗ does not belong to W(A∗).

A key result is that W, and hence W, are decidable. A bit of semigroup theory
is needed to make this statement precise.

Two elements s and t of a monoid are mutually inverse if sts = s and tst = t.
An ideal of a monoid M is a subset I of M such that MIM ⊆ I. It is minimal if,
for every ideal J of M , the condition J ⊆ I implies J = ∅ or J = I. Every finite
monoid admits a unique minimal ideal. Finally, let us recall that every element
s of a finite monoid has a unique idempotent power, traditionally denoted by
sω. In the following, we will also use the notation xω+1 as a shortcut for xxω.

Theorem 4. A finite ordered monoid M belongs to W if and only if, for any
pair (s, t) of mutually inverse elements of M , and any element z of the minimal
ideal of the submonoid of M generated by s and t, (stzst)ω 6 st.

Thus a regular language belongs to W if and only if its ordered syntactic monoid
satisfies the decidable condition stated in Theorem 4. An equivalent characteri-
sation in term of the minimal automaton of the language is given in [6].

The next theorem shows that the positive variety W is very robust.

Theorem 5. The positive variety W is closed under the following operations: fi-
nite union, finite intersection, left and right quotients, product, shuffle, renaming
and inverses of morphisms. It is not closed under complementation.

The positive variety W can be defined alternatively as the largest proper positive
variety of languages satisfying (1) (respectively (2) or (3)):

(1) not containing the language (ab)∗;

(2) closed under shuffle;
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(3) closed under renaming;

Despite its numerous closure properties, no constructive description of W, similar
to the definition of star-free or regular languages, is known. For instance, the
least positive variety of languages satisfying conditions (1)–(3) is the positive
variety of polynomials of group languages, which is strictly contained in W.

Problem 1. Find a constructive description of W, possibly by introducing more
powerful operators on languages of W.

Let us come back to the problem of finding all positive varieties of languages
closed under shuffle. The first question is to know in which case the converse of
Corollary 1 holds. More precisely,

Problem 2. For which positive varieties of languages closed under shuffle is the
corresponding variety of finite ordered monoids a fixed point of the operator P↓?

We know this is the case for W, but the general case is unknown. That said, an
in-depth study of the fixed points of the operator P

↓ can be found in [1]. This
paper actually covers the more general case of lower set semigroups and studies
the fixed points of the operator P↓ on varieties of finite ordered semigroups. An
important property is the following:

Proposition 8. Every intersection and every directed union of fixed points of
P

↓ is also a fixed point for P
↓.

The article [1] gives six independent basic types of such fixed points, from which
many more may be constructed using intersection. Moreover, it is conjectured
that all fixed points of P↓ can be obtained in this way. The presentation of these
basic types would be too technical for this survey article, but one of them is the
variety W.

3.3 Intermixed languages

In the early 2000s, Restivo proposed as a challenge to characterise the smallest
class of languages containing the letters and closed under Boolean operations,
product and shuffle. Let us call intermixed the languages of this class.

Problem 3 (Restivo). Is it decidable to know whether a given regular language
is intermixed?

This problem is still widely open, and only partial results are known. To start
with, the smallest class of languages containing the letters and closed under
Boolean operations and product is by definition the class of star-free languages.
It is not immediate to see that star-free languages are not closed under shuffle,
but an example was given in [10]: the languages (abb)∗ and a∗ are star-free,
but their shuffle product is not star-free. This led Castiglione and Restivo [7] to
propose the following question:
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Problem 4. Determine conditions under which the shuffle of two star-free lan-
guages is star-free.

The following result, which improves on the results of [7], can be seen as a
reasonable answer to this problem.

Theorem 6. The shuffle of two star-free languages of the positive variety W is
star-free.

Proof. This is a consequence of the fact that the intersection of W and the
variety of finite aperiodic monoids is a fixed point of the operator P↓, a particular
instance of [1, Theorem 7.4].

Here are the known closure properties of intermixed languages obtained in
[2]. A morphism ϕ : A∗ → B∗ is said to be length-decreasing if |ϕ(u)| 6 |u| for
every word u of A∗.

Proposition 9. The class of intermixed languages is closed under left and right
quotients, Boolean operations, product and shuffle. It is also closed under inverses
of length-decreasing morphisms, but it is not closed under inverses of morphisms.

We now give an algebraic property of the syntactic morphism of intermixed
languages, which is the main result of [2].

Theorem 7. Let η : A∗ → M be the syntactic morphism of a regular lan-
guage of A∗ and let x, y ∈ η(A) ∪ {1}. If L is intermixed, then xω+1 = xω and
(xωyω)ω+1 = (xωyω)ω.

Theorem 7 shows that intermixed languages form a proper subclass of the class
of regular languages, since the language (aa)∗ does not satisfy the first identity.
Unfortunately, we do not know whether our two identities suffice to characterise
the intermixed languages and hence the decidability of this class remains open.

The reader will find in [2] several partial results on subclasses of the class of
intermixed languages, but only one of these subclasses is known to be decidable.
It is actually a rather small class in which the use of the shuffle is restricted to
shuffling a language with a letter.

It is shown in [2] that the smallest class with these properties is the class of
commutative star-free languages. Let us set aside this case by considering classes
containing at least one noncommutative language. In fact, for technical reasons
which are partly justified by [2, Proposition 4.1], our classes will always contain
the languages of the form {ab} where a and b are two distinct letters of the
alphabet.

In summary, we consider the smallest class of languages C containing the
languages of the form {ab}, where a, b are distinct letters, and which is closed
under Boolean operations and under shuffle by a letter. The following results are
obtained in [2].

Proposition 10. A language L belongs to C if and only if there exists a star-free
commutative language C such that the symmetric difference L△ C is finite.
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In view of this result, it is natural to call almost star-free commutative the
languages of the class C. These languages admit the following algebraic charac-
terisation.

Theorem 8. Let η : A∗ → M be the syntactic morphism of a regular language
of A∗ and let x, y, z ∈ η(A+). Then L is almost star-free commutative if and
only if xω = xω+1, xωy = yxω and xωyz = xωzy.

Corollary 2. It is decidable whether a given regular language is almost star-free
commutative.

4 Sequential and parallel decompositions

We now switch to a different topic, which is still related to the shuffle product.
Sequential and parallel decompositions of languages were introduced by Schnoe-
belen [14] for some model-cheking applications. A reminder of the notions of
rational and recognizable subsets of a monoid is in order to define these decom-
positions properly.

Let M be a monoid. A subset P of M is recognizable if there exist a finite
monoid F and a monoid morphism ϕ : M → F such that P = ϕ−1(ϕ(P )). It is
well known that the class Rec(M) of recognizable subsets of M is closed under
finite union, finite intersection and complement.

The class Rat(M) of rational subsets of M is the smallest set R of subsets
of M satisfying the following properties:

(1) For each m ∈ M , {m} ∈ R

(2) The empty set belongs to R, and if X, Y are in R, then X ∪ Y and XY

are also in R.

(3) If X ∈ R, the submonoid X∗ generated by X is also in R.

Let τ and σ be the transductions from A∗ into A∗ ×A∗ defined as follows:

τ(w) = {(u, v) ∈ A∗ ×A∗ | w = uv}

σ(w) = {(u, v) ∈ A∗ ×A∗ | w ∈ u xxy v}

Observe that σ is a monoid morphism from A∗ into the monoid P(A∗ × A∗),
that is, σ(x1x2) = σ(x1)σ(x2) for all x1, x2 ∈ A∗.

4.1 Definitions and examples

We are now ready to give the definitions of the two types of decomposition. Let
S be a set of languages. A language K admits a sequential decomposition over
S if τ(K) is a finite union of sets of the form L×R, where L,R ∈ S.

A language K admits a parallel decomposition over S if σ(K) is a finite union
of sets of the form L×R, where L,R ∈ S.

A sequential (resp. parallel) system is a finite set S of languages such that
each member of S admits a sequential (resp. parallel) decomposition over S. A
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language is sequentially decomposable if it belongs to some sequential system. It
is decomposable if it belongs to a system which is both sequential and parallel.
Thus, for each decomposable language L, one can find a sequential and parallel
system S(L) containing L.

Example 1. Let K = {abc}. Then

τ(K) = ({1} × {abc}) ∪ ({a} × {bc}) ∪ ({ab} × {c}) ∪ ({abc} × {1})

and

σ(K) = ({1} × {abc}) ∪ ({a} × {bc})

∪ ({b} × {ac}) ∪ ({c} × {ab}) ∪ ({ab} × {c})

∪ ({bc} × {a}) ∪ ({ac} × {b}) ∪ ({abc} × {1})

One can verify that the set S =
{

{1}, {a}, {b}, {c}, {ab}, {ac}, {bc}, {abc}
}

is a
sequential and parallel system, and hence K is a decomposable language.

Here is a more complex example. Recall that a word u = a1a2 · · · an (where
a1, . . . , an are letters) is a subword of a word v if v can be factored as v =
v0a1v1 · · · anvn. For instance, ab is a subword of cacbc. Given two words u and
v, let

(

v
u

)

denote the number of distinct ways to write u as a subword of v.

Example 2. Let L be the set of words of {a, b}∗ having ab as a subword an odd
number of times. Its minimal automaton is represented below:

1

2 3

4

5

67

8

a

a

a

a

a

a

a

a

bb

b

b

bb

b

b

The transition monoid of L is the dihedral group D4, a non-abelian group of
order 8. For i, j, k ∈ {0, 1} and c ∈ A, let

M
i,j
k =

{

x ∈ A∗ | |x|a ≡ i mod 2, |x|b ≡ j mod 2 and

(

x

ab

)

≡ k mod 2
}

M i,j =
{

x ∈ A∗ | |x|a ≡ i mod 2, |x|b ≡ j mod 2
}

M i,j
c = M i,j ∩A∗cA∗

Let F be the set of finite union of languages of the form M
i,j
k , M i,j

c or {1}. A
non-trivial verification [5] shows that F is a sequential and parallel system for
L . Thus L is a decomposable language.
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4.2 Closure properties

The following result is stated in [5], but partly relies on results from [14], where
(3) implies (1) is credited to Arnold and Carton.

Theorem 9. Let K be a language. The following conditions are equivalent:

(1) K is regular,

(2) τ(K) is recognizable,

(3) K is sequentially decomposable.

Consequently, if K is decomposable, then K is regular and σ(K) is recognizable.

As observed by Schnoebelen, it follows that the language (ab)∗ is not decompos-
able, since the set σ((ab)∗) is not recognizable.

The following theorem summarises the closure properties of decomposable
languages obtained in [14] and [5].

Theorem 10. The class of decomposable languages is closed under finite union,
product, shuffle and left and right quotients. It is not closed under intersection,
complementation and star. It is also closed under inverses of length preserving
morphisms, but not under inverses of morphisms.

The negative parts of this theorem are obtained from the following counterex-
amples: the languages (ab)+∪(ab)∗bA∗ and (ab)+∪(ab)∗aaA∗ are decomposable
but their intersection (ab)+ is not. Furthermore, the language L = (aab)∗ ∪
A∗b(aa)∗abA∗ is decomposable, but if ϕ : A∗ → A∗ is the morphism defined by
ϕ(a) = aa and ϕ(b) = b, then ϕ−1(L) = (ab)∗ is not decomposable.

4.3 Schnoebelen’s problem

Schnoebelen [14] asked for a description of the class of decomposable languages,
which implicitly leads to the following problem:

Problem 5. Is it decidable to know whether a regular language is decomposable?

As a first step, Schnoebelen [14] proved the following result.

Proposition 11. Every commutative regular language is decomposable.

Denote by Pol(Com) the polynomial closure of the class of commutative regular
languages, that is, the finite unions of products of commutative regular lan-
guages. Since, by Theorem 10, decomposable languages are closed under finite
union and product, Proposition 11 can be improved as follows:

Theorem 11 (Schnoebelen). Every language of Pol(Com) is decomposable.
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Schnoebelen originally conjectured that a language is decomposable if and only
if it belongs to Pol(Com). However, this conjecture has been refuted in [5], where
it is shown that the decomposable language of Example 2 is not in Pol(Com).

Describing the class of decomposable languages seems to be a difficult ques-
tion and Problem 5 is still widely open. One could hope for an algebraic approach,
but decomposable languages do not form a positive variety of languages for two
reasons. First, they are not closed under inverses of morphisms. This is a minor
issue, since they are closed under inverses of renamings, and one could still hope
to use Straubing’s positive lp-varieties instead (see [17] for more details). How-
ever, they are also not closed under intersection, and hence we may have to rely
on the conjunctive varieties defined by Klíma and Polák [9].

Even if decomposable languages are not closed under intersection, a weaker
closure property still holds.

Proposition 12 (Arnold). The intersection of a decomposable language with
a commutative regular language is decomposable.

This result can be used to give a non-trivial example of indecomposable language.

Proposition 13. Let A = {a, b, c}. The language (ab)∗cA∗ is not decomposable.

Proof. Let L = (ab)∗cA∗. If L is decomposable, the language

Lc−1 = (ab)∗ ∪ (ab)∗cA∗

is decomposable by Theorem 10. The intersection of this language with the
commutative regular language {a, b}∗ is equal to (ab)∗, and thus by Proposition
12, (ab)∗ should also be decomposable. But we have seen this is not the case and
hence L is not decomposable.

Let us conclude this section with a conjecture. A group language is a regular
language recognized by a finite group. Let Pol(G) be the polynomial closure of
the class of group languages, that is, the finite unions of languages of the form
L0a1L1 · · · anLn, where each Li is a group language and the ai’s are letters. The
class Pol(G) is a well studied positive variety, with a simple characterisation:
a regular language belongs to Pol(G) if and only if, in its ordered syntactic
monoid, the relation 1 6 e holds for all idempotents e. We propose the following
conjecture as a generalisation of Example 2:

Conjecture 1. Every language of Pol(G) is decomposable.

Since decomposable languages are closed under finite union and product, it would
suffice to prove that every group language is decomposable. The following result
could potentially help solve the conjecture.

Proposition 14. Let G be a finite group, let π : A∗ → G be a surjective mor-
phism and let L = π−1(1).

(1) If the language L is decomposable, then every language recognized by π is
decomposable.
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(2) The following formula holds

σ(L) =
⋃

r,s6|G|4

(a1···arxxyb1···bs)∩L 6=∅

(La1La2L · · ·LarL)× (Lb1Lb2L · · ·LbsL)

The bound |G|4 is probably not optimal. If it could be improved to |G|, this may
lead to a parallel system containing L.

5 Conclusion

The problems presented in this article give evidence that there is still a lot to
be done in the study of the shuffle product, even for regular languages. We urge
the reader to try to solve them!
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