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Abstract

There is an increasing interest in the shuffle product on formal lan-
guages, mainly because it is a standard tool for modeling process algebras.
It still remains a mysterious operation on regular languages.

Antonio Restivo proposed as a challenge to characterize the smallest
class of languages containing the singletons and closed under Boolean
operations, product and shuffle. This problem is still widely open, but
we present some partial results on it. We also study some other smaller
classes, including the smallest class containing the languages composed of
a single word of length 2 which is closed under Boolean operations and
shuffle by a letter (resp. shuffle by a letter and by the star of a letter).
The proof techniques have both an algebraic and a combinatorial flavour.

Introduction

The study of classes of regular languages closed under shuffle is a difficult prob-
lem, partly motivated by its applications to the modeling of process algebras [2]
and to program verification. Significant progress has been made over the last
decade in the study of the shuffle operation. First, Ésik and Simon [7] have
completed the classification of varieties of languages closed under shuffle. It
was known [9] that the commutative varieties of languages closed under shuffle
correspond to the varieties of commutative monoids whose groups belong to a
given variety of commutative groups. Ésik and Simon proved that, apart from
the variety of all regular languages, no other variety of languages is closed un-
der shuffle. In particular, the variety of commutative languages is the largest
proper variety of languages closed under shuffle. It was also proved that there
is a largest proper positive variety of languages closed under shuffle and that
this variety is decidable [3, 4].
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A few years ago, the fifth author proposed as a challenge to study the small-
est class of languages C containing the singletons and closed under Boolean
operations, product and shuffle. Let us call intermixed the languages of this
class. We show that intermixed languages are closed under quotients, but they
are not closed under inverses of morphisms. Therefore, they do not form a vari-
ety of languages and the result of Ésik and Simon cannot be applied. However,
intermixed languages are closed under inverses of length-decreasing morphisms
and under quotients. Consequently, they form a d-variety, in the sense of [14, 6].
This fact is interesting since, by a result of Kunc [8] (see also [12]), d-varieties
can be characterised by a certain type of identities, called d-identities. The
formal definition of d-identities, as well as all definitions and background used
in this paper, are presented in Section 1.

We give in Section 2 two d-identities satisfied by all intermixed languages,
namely xω+1 = xω and (xωyω)ω+1 = (xωyω)ω. This proves the main result of
this paper: intermixed languages form a proper subclass of the class of regular
languages, since the language (aa)∗ does not satisfy the first identity. Unfor-
tunately, we do not know whether our two identities suffice to characterise the
intermixed languages and hence the decidability of this question remains open.

Our two identities give, in a sense, an upper approximation of the class
of intermixed languages. In order to get lower approximations, we investigate
some subclasses obtained by restricting the use of the shuffle operation. We
briefly study the case of commutative languages. Then we set aside this case by
considering classes containing at least one noncommutative language. In fact,
for technical reasons which are partly justified by Proposition 3.1, our classes
will always contain the languages of the form {ab} where a and b are two distinct
letters of the alphabet.

We first consider in Section 3 the smallest class of languages C0 containing
the languages of the form {ab} and closed under Boolean operations and shuffle
by a letter, a very drastic restriction on the shuffle operation. These languages
are called almost star-free commutative for the following reason: a language L
belongs to C0 if and only if there exists a star-free commutative language C such
that the symmetric difference L△ C is finite. This rather small class is closed
under inverses of length-increasing morphisms and thus forms an i-variety. We
give explicitly a finite set of i-identities which characterizes this class. It follows
in particular that one can decide whether a given regular language is almost
star-free commutative.

Increasing the power of the shuffle operation, we next consider two classes
C1 and C2. The class C1 is defined as the smallest Boolean algebra of languages
containing C0 and closed under the operations L 7→ L xxy a (shuffle by a letter)
and L 7→ L xxy a∗ (shuffle by the star of a letter), where a is a letter. The class
C2 is the closure of C0 under shuffle. We call jumbled the languages of C1 and
shuffled the languages of C2. We prove that all these classes are d-varieties and
that C0 is a proper subclass of C1. These results are synthesized in the tables
below. The first table summarizes the definition of our four classes.

Closed under L xxy a L xxy a, L xxy a∗ L xxy L′ L xxy L′, LL′

Boolean operations C0 C1 C2 C

The second table gathers the known properties of each class.

2



Class Languages Type Known identities Decidable

C0
Almost star-free

i-variety
xω+1 = xω, xωy = yxω

Yes
commutative xωyz = xωzy

C1 Jumbled d-variety ?

C2 Shuffled d-variety ?

C Intermixed d-variety
xω+1 = xω

?
(xωyω)ω+1 = (xωyω)ω

Let us clarify two issues concerning the identities of the fourth column of the
second table. First, the type of these identities depends on the nature of the
corresponding variety. In particular, the given identities for C0 are i-identities,
while those given for C are d-identities. Secondly, the set of i-identities given
for C0 is complete, that is, a language satisfies these i-identities if and only if it
belongs to C0. In contrast, it is an open problem to know whether our given set
of d-identities for C is complete.

We give several partial results on jumbled languages in Section 4. In partic-
ular, we show that every regular language can be written as the inverse image,
under a morphism, of a jumbled language. By contrast, we have almost nothing
to say about the class C2 of shuffled languages, which is the smallest class of
languages containing C0 and closed under Boolean operations and shuffle. We
know very little about this class, apart from the fact that it is a d-variety of
languages (the proof is similar to that of Theorem 2.1). In particular, we failed
to prove our conjectures that C1 is strictly contained in C2 and that C2 is strictly
contained in C. A possible candidate to separate C1 from C is the language
A∗abbaA∗, but we have no proof that this language is not jumbled.

One possible method to find an intermixed language which is not shuffled
would be to find some d-identities satisfied by all shuffled languages. Proposition
1.9, which gives ordered identities which are, in a sense, stable under shuffle
could be a useful tool. Unfortunately, we were not able to derive from these
ordered d-identities a nonordered identity stable under shuffle.

Finally, it is interesting to compare our four classes with the class of star-free
languages, which is the smallest class of languages containing the singletons and
closed under Boolean operations and product. Clearly every almost star-free
commutative language is star-free and every star-free language is intermixed.
Further, it follows from Proposition 4.10 that some jumbled languages are non
star-free and hence some shuffled languages are non star-free. The question
remains whether every star-free language is shuffled or even jumbled. We con-
jecture that the answer to these questions is negative. For instance, the language
A∗abbaA∗, that we believed to be nonjumbled, is star-free.

1 Definitions and background

In this paper, A denotes a finite alphabet and A∗ is the free monoid on A. The
empty word is denoted by 1. We usually identify a singleton language {u} with
the word u itself.
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1.1 Languages

Let L be a language over A and let u be a word. The left quotient of L by u is
the language u−1L = {v ∈ A∗ | uv ∈ L}. The right quotient Lu−1 is defined in
a symmetrical way. Given a language L ⊂ A∗, we write Lc for the complement
A∗ \ L of L.

A morphism between two free monoidsA∗ andB∗ is a map ϕ : A∗ → B∗ such
that, for all u, v ∈ A∗, ϕ(uv) = ϕ(u)ϕ(v). This condition implies in particular
that ϕ(1) = 1. We say that ϕ is length-preserving (p) if, for each u ∈ A∗, the
words u and ϕ(u) have the same length. Equivalently, ϕ is length-preserving
if, for each letter a ∈ A, ϕ(a) ∈ B. Similarly, ϕ is length-decreasing (d) if the
image of each letter is either a letter or the empty word, and length-increasing
(i) if the image of each letter is a nonempty word.

A class of languages is a correspondence V which associates with each alpha-
bet A a set V(A∗) of regular languages over A. A variety of languages is a class
of languages closed under Boolean operations (union, intersection and comple-
ment), left and right quotients and inverses of morphisms. The weaker notions
of p-variety [d-variety, i-variety] are obtained by relaxing the latter condition
[14, 6]: only closure under inverses of p- [d-, i-] morphisms is required.

The shuffle product (or simply shuffle) of two languages L1 and L2 over A
is the language

L1 xxy L2 = {w ∈ A∗ | w = u1v1 · · ·unvn for some words u1, . . . , un

v1, . . . , vn of A∗ such that u1 · · ·un ∈ L1 and v1 · · · vn ∈ L2} .

The shuffle product defines a commutative and associative operation over the
set of languages over A.

Two special cases of shuffle product play an important role in this paper.
These are the operations L 7→ L xxy a and L 7→ L xxy a∗ where a is a letter. The
first will be referred to as shuffle by a letter, and the second as shuffle by the
star of a letter.

Recall that Boolean operations commute with quotients and inverses of mor-
phisms. There are also well known formulas for computing right and left quo-
tients of the product (or the shuffle) of two languages. We shall use freely these
standard commutation rules and two commutation rules which are specific to
inverses of length-decreasing morphisms.

Proposition 1.1 Let L1 and L2 be languages over A and let ϕ : B∗ → A∗ be
a length-decreasing morphism. Then the following formulas hold:

ϕ−1(L1L2) = ϕ−1(L1)ϕ
−1(L2) , (1)

ϕ−1(L1 xxy L2) = ϕ−1(L1) xxy ϕ−1(L2) . (2)

Proof. Formula (1) holds because ϕ is length-decreasing. Let us prove (2).
Since ϕ−1 commutes with union, it suffices to establish the formula

ϕ−1(u1 xxy u2) = ϕ−1(u1) xxy ϕ−1(u2) (3)

when u1 and u2 are words of A∗.
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Let w ∈ ϕ−1(u1 xxy u2). Then there exist x1, . . . , xn, y1, . . . , yn such that
u1 = x1 · · ·xn and u2 = y1 · · · yn and w ∈ ϕ−1(x1y1 · · ·xnyn). In view of
Formula (1), w ∈ ϕ−1(x1)ϕ

−1(y1) · · ·ϕ
−1(xn)ϕ−1(yn). Since

ϕ−1(x1) · · ·ϕ
−1(xn) = ϕ−1(x1 · · ·xn) = ϕ−1(u1)

and

ϕ−1(y1) · · ·ϕ
−1(yn) = ϕ−1(u2) ,

the word w is in ϕ−1(u1) xxy ϕ−1(u2).
Conversely, if w ∈ ϕ−1(u1) xxy ϕ−1(u2), then w ∈ v1 xxy v2 for some v1 ∈

ϕ−1(u1) and v2 ∈ ϕ−1(u2). It follows that ϕ(w) ∈ ϕ(v1) xxy ϕ(v2) = u1 xxy u2.
This proves (3) and the proposition.

1.2 Syntactic monoids and varieties

The syntactic monoid of a language is an algebraic invariant which plays a
crucial role in the study of regular languages. We review its definition and basic
properties in this short section.

The syntactic congruence of a language L over A is the equivalence relation
on A∗ defined by u ∼L v if and only if, for every x, y ∈ A∗,

xvy ∈ L ⇐⇒ xuy ∈ L .

The monoidM = A∗/∼L is the syntactic monoid of L and the natural morphism
η : A∗ → M is called the syntactic morphism of L. The set P = η(L) is called
the syntactic image of L. Note that L is saturated for ∼L, which means that
η−1(P ) = L. It is a well-known fact that a language is regular if and only if its
syntactic monoid is finite.

An ordered monoid is a monoid equipped with a stable partial order relation,
usually denoted by 6. The syntactic preorder of a language L is the relation
6L over A∗ defined by u 6L v if and only if, for every x, y ∈ A∗,

xvy ∈ L =⇒ xuy ∈ L .

It is easy to see that 6L is a partial preorder onA∗, whose associated equivalence
relation is the syntactic congruence of L. Further, the syntactic preorder of L
induces a partial order on M which makes it an ordered monoid as follows.
Given u, v ∈M , one has u 6 v if and only if, for all x, y ∈M ,

xvy ∈ P =⇒ xuy ∈ P .

Here P = η(L) is the syntactic image of L. The ordered monoid (M,6) is called
the syntactic ordered monoid of L. We write 6P instead of 6 when we want to
emphasize the subset P of M .

For each finite semigroup S, there exists an integer n such that, for each
s ∈ S, sn is idempotent. The least integer satisfying this property is called
the exponent of S and is often denoted by ω. By extension, the exponent of
a regular language L of A∗ is the smallest integer n such that, for all u ∈ A∗,
un ∼L u2n. A finite monoid M of exponent ω is aperiodic if, for all x ∈ M ,
xω = xω+1.
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A variety of finite monoids [semigroups] is a class of finite monoids [semi-
groups] closed under taking submonoids [subsemigroups], morphic images and
finite direct products. If V is a variety of finite monoids, denote by V(A∗)
the set of regular languages of A∗ whose syntactic monoid belongs to V. The
correspondence V 7→ V associates with each variety of finite monoids a variety
of languages. Conversely, to each variety of languages V , we associate the va-
riety of finite monoids generated by the syntactic monoids of the languages of
V . Eilenberg’s variety theorem [5] states that these two correspondences define
mutually inverse bijective correspondences between varieties of finite monoids
and varieties of languages. For instance, Schützenberger’s theorem states that
star-free languages correspond to aperiodic monoids.

There is an analogous correspondence between i-varieties of languages and
varieties of finite semigroups, obtained by associating to each language L of A∗

the syntactic semigroup of the language L ∩A+. For instance, finite or cofinite
languages correspond to nilpotent semigroups.

To complete this section, let us describe the smallest nontrivial variety
closed under shuffle. We denote by [u] the commutative closure of a word
u, which is the set of words commutatively equivalent to u. For instance,
[aab] = {aab, aba, baa}. A language L is commutative if, for every word u ∈ L,
[u] is contained in L. Equivalently, a language is commutative if its syntactic
monoid is commutative. A description of the class of star-free commutative
languages is given in [10, Chapter 2, Proposition 3.14]. Let us give a variation
of this result using the shuffle operation.

Proposition 1.2 A language of A∗ is star-free commutative if and only if it is
a finite union of languages of the form [u] xxy B∗ where u is a word and B is a
subset of A.

Proof. In one direction, it suffices to observe that if F is a finite commutative
language and B is a subset of A, then the syntactic monoid of F xxy B∗ is
commutative and aperiodic.

Consider now a commutative star-free language L and let ϕ : A∗ →M be its
syntactic morphism. Our aim is to prove that L can be written as a finite union
of languages of the form [u] xxy B∗. Let P = ϕ(L) and let N be the exponent
of M . Since L =

⋃

m∈P ϕ
−1(m), it suffices establish the result for L = ϕ−1(m),

where m is an element of M . We claim that

L =
⋃

u∈F

[u] xxy B∗

where B = {a ∈ A | mϕ(a) = m} and

F = {u ∈ A∗ | |u| 6 N |A|, ϕ(u) = m and for all subwords v of u, ϕ(v) 6= m} .

If u ∈ F and w ∈ [u] xxy B∗, then w ∈ u′ xxy v for some u′ ∈ [u] and some v ∈ B∗.
Since M is commutative, it follows that ϕ(w) = ϕ(u)ϕ(v) = mϕ(v) = m. Thus
w ∈ L. Conversely, let w ∈ L and let u be a minimal subword of w in L. By
construction, ϕ(u) = m and for all subwords v of u, ϕ(v) 6= m. Further, if
|u| > N |A|, then |u|a > N for some letter a ∈ A. Therefore, u can be written
as u1au2 for some words u1, u2 such that |u1u2|a > N . Since M is commutative
and ϕ(aN ) = ϕ(aN+1), it follows that ϕ(u1u2) = ϕ(u), a contradiction with the
definition of u. Thus |u| 6 N |A| and u ∈ F .
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Let v be a word such that w ∈ u xxy v. Since M is commutative, ϕ(w) =
ϕ(u)ϕ(v), that is m = mϕ(v). Since M is aperiodic and commutative, it is
J -trivial and thus mϕ(a) = m for each letter a of v. In other words, v ∈ B∗

and w ∈ [u] xxy B∗.

Corollary 1.3 The star-free commutative languages form a variety of languages,
which is the smallest variety of languages closed under shuffle. It is also the
smallest class of languages closed under Boolean operations and under shuffle
by a letter.

Proof. The first part of the statement is proved in [9]. Let F be the smallest
class of languages closed under Boolean operations and the operation L 7→ L xxy

a, where a is a letter. It just remains to prove that F contains all star-free
commutative languages.

Since F(A∗) is a Boolean algebra, it contains A∗ and thus, for each letter
a ∈ A, the language A∗aA∗ = A∗ xxy a. Therefore, for each subset B of A, F(A∗)
also contains also the languages A∗BA∗ = ∪a∈BA

∗aA∗ and B∗ = A∗ \A∗BcA∗.
In particular, it contains the language {1} = ∅∗. Now observe that if u =
a1 · · · an, then [u] = {1} xxy a1 xxy · · · xxy an. Thus F contains the languages
of the form [u] and by Proposition 1.2, it contains all star-free commutative
languages.

1.3 Equations and identities

The formal approach to identities requires the introduction of profinite words.
The definition of those and appropriate references can be found in [1, 11]. How-
ever, the weaker notion of ω-term will suffice to state and prove the results of
this paper. For the sake of completeness, let us just mention that Propositions
1.6 and 1.7 below can be readily extended to profinite words.

An ω-term on an alphabet A is built from the letters of A using the usual
concatenation product and the unary operator x → xω . For instance, if A =
{a, b, c}, abc, aω and ((abωc)ωab)ω are examples of ω-terms. The symbol ω
plays an abstract role similar to the star symbol in a regular expression and
should not be interpreted as denoting infinite iteration. Two ω-terms can be
concatenated to form their product. This product is associative and extends the
usual product on words. Further, if x is an ω-term, x and xω commute, that
is, xxω = xωx. This ω-term is often denoted by xω+1, and more generally, we
write xω+n for xnxω or xωxn. Finally, 1ω = 1 and for each ω-term, xωxω = xω

and (xω)ω = xω .
Morphisms between free monoids extend to ω-terms in a natural way. For

instance, if ϕ : {a, b, c}∗ → {a, b}∗ is defined by ϕ(a) = ab, ϕ(b) = ba and ϕ(c) =
1, then ϕ(((abωc)ωab)ω) = ((ϕ(a)ϕ(b)ωc)ωϕ(a)ϕ(b))ω = ((ab(ba)ω)ωabba)ω.

Morphisms from a free monoid into a finite monoid M also extend to ω-
terms in a very simple way by interpreting the symbol ω as the exponent of M .
It follows that if ϕ : A∗ → M is a morphism and x is an ω-term, then ϕ(xω) is
equal to ϕ(x)ω , the unique idempotent of the subsemigroup of M generated by
ϕ(x).

We now consider ordered equations of the form u 6 v, where u and v are
two ω-terms. This kind of equations is mainly used in Proposition 1.6. This

7



proposition avoids to duplicate proofs unnecessarily. Equations of the form
u = v are then just a shortcut for u 6 v and v 6 u. Let L be a regular language
of A∗, let (M,6) be its syntactic ordered monoid and let η : A∗ → M be its
syntactic morphism. We say that L satisfies the equation u 6 v if η(u) 6 η(v).

Denote by T one of the following types of morphisms: all morphisms, all
p-morphisms, all d-morphisms or all i-morphisms. Let now u and v be two ω-
terms on the alphabet B. We say that L satisfies the T -identity u 6 v if, for all
T -morphisms γ : B∗ → A∗, it satisfies the equation γ(u) 6 γ(v). As promised,
we illustrate our abstract definition by two examples.

Proposition 1.4 Let L be a regular language over A and let n be its exponent.
Then L satisfies the identity [ p-, d-, i-identity ] xω+1 6 xω if and only if,
for every word [ letter, word of length 6 1, nonempty word ] u ∈ A∗, one has
un+1 6L u

n.

Proof. Let γ : B∗ → A∗ be a morphism and let u = γ(x). When γ ranges over
the set of all morphisms [ p-, d-, i-morphisms ], u ranges over the set of all words
[ letters, words of length 6 1, nonempty words ]. Since γ(x)ω = uω and η(uω) =
η(u)n, the equation uω+1 6 uω is satisfied if and only if η(u)n+1 6 η(u)n or,
equivalently, un+1 6L un.

The proof of the next result is similar and is therefore omitted. Both re-
sults are immediate consequences of the general definition of identities and T -
identities [1, 8, 14].

Proposition 1.5 Let L be a regular language over A and let n be its exponent.
Then L satisfies the identity [ p-, d-, i-identity ] (xωyω)ω+1 = (xωyω)ω if and
only if, for every pair of words [ letters, words of length 6 1, nonempty words ]
(u, v) ∈ A∗ ×A∗, one has (unvn)n+1 ∼L (unvn)n.

As one can see from these examples, the symbols occurring in the equations can
be considered as variables. These variables are interpreted as words of length
depending on the class of morphisms T , according to the table below.

Class of Identity Interpretation

morphisms type of variables

all morphisms identity words

length preserving morphisms p-identity words of length 1

length increasing morphisms i-identity words of length > 1

length decreasing morphisms d-identity words of length 6 1

Note that if L satisfies a T -identity u 6 v where u and v are ω-terms on the
alphabet B, then for all ω-terms x, y, it satisfies the T -identity xuy 6 xvy.

Proposition 1.6 Let u be an ω-term. Then the equations uω+1 6 uω and
uω+1 = uω are equivalent on regular languages.

Proof. Let L be a regular language of exponent n, let (M,6) be its syntactic
ordered monoid and let η : A∗ → M be its syntactic morphism. We claim
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that if L satisfies the equation uω+1 6 uω, then it also satisfies the equation
uω+1 = uω. If L satisfies uω+1 6 uω, then by induction it also satisfies the
equations

uω+n
6 · · · 6 uω+1

6 uω .

Since n is the exponent of L, one gets

η(uω+n) = η(uω)η(u)n = η(u)nη(u)n = η(u)n = η(uω) .

Now the relations

η(uω) = η(uω+n) 6 η(uω+1) 6 η(uω)

show that η(uω+1) = η(uω), which proves the claim and the proposition.

We conclude this section by proving three stability results. The first one
states that the class of languages satisfying an equation of the form uω+1 6 uω

is stable under product. The second and the third results assert that the class
of languages satisfying the d-identity xω+1 6 xω (respectively xωyxωy 6 xωyy)
is stable under shuffle.

Proposition 1.7 Let u be an ω-term of A∗. If two regular languages satisfy
the equation uω+1 6 uω, then their product also satisfies this equation.

Proof. Let L1 and L2 be languages of A∗ satisfying the equation uω+1 6 uω

and let L be their product. Let n be the least common multiple of the exponents
of the languages L1, L2 and L. By Proposition 1.4, it suffices to prove that for
every word u ∈ A∗, un+1 6L u

n. Suppose that xuny ∈ L. Since un ∼L u
2n, one

has xu2ny ∈ L and thus xu2ny = u1u2 for some u1 ∈ L1 and u2 ∈ L2. It follows
that one of the words u1 or u2 contains un as a factor. Since the two cases are
symmetrical, we may assume that u1 = xunz for some z ∈ A∗. It follows that
xun+1z ∈ L1, since L1 satisfies the identity uω+1 6 uω. Thus xu2n+1y ∈ L
and finally xun+1y ∈ L since u2n ∼L un. Therefore L satisfies the equation
uω+1 6 uω.

Proposition 1.8 If two regular languages satisfy the d-identity xω+1 6 xω,
then their shuffle also satisfies this d-identity.

Proof. Let L1 and L2 be languages of A∗ satisfying the d-identity xω+1 6 xω

and let L = L1 xxy L2. Let n be the least common multiple of the exponents of
the languages L1, L2 and L. According to Proposition 1.4, it suffices to prove
that, for each word u of length 0 or 1, one has un+1 6L un. The result is
obvious if u is the empty word and thus we may assume that u = a for some
letter a ∈ A.

Suppose that xany ∈ L for some words x, y ∈ A∗. Since an ∼L a
2n, one has

xa2ny ∈ L and thus xa2ny ∈ u1 xxy u2 for some u1 ∈ L1 and u2 ∈ L2. It follows
that one of the words u1 or u2 contains an as a factor. If, for instance, u1 = rans
for some r, s ∈ A∗, then ran+1s ∈ L1 since L1 satisfies the d-identity aω+1 6 aω.
It follows that xa2n+1y ∈ L and finally xan+1y ∈ L since a2n ∼L an. Thus L
satisfies the d-identity aω+1 6 aω.
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Proposition 1.9 If two regular languages satisfy the d-identity xωyxωy 6 xωyy
(resp. yxωyxω 6 yyxω), then their shuffle also satisfies this identity.

Proof. By symmetry, it suffices to prove the first identity. Let L1 and L2 be
languages satisfying this identity and let L = L1 xxy L2. Let n be the least
common multiple of the exponents of the languages L1, L2 and L. According
to Proposition 1.4, it suffices to prove that, for all words u, v of length 0 or 1,
one has unvunv 6L u

nvv. The result is obvious if u or v is the empty word and
thus we may assume that u = a and v = b for some letters a, b ∈ A.

Suppose that xanbby ∈ L for some words x, y ∈ A∗. Since an ∼L a2n, the
word u = xa2nbby also belongs to L and thus u ∈ u1 xxy u2 for some u1 ∈ L1

and u2 ∈ L2.
First assume that each of the words u1 and u2 contains exactly one of the

two letters b. Since u contains at least 2n occurrences of a on the left of the two
letters b, the word anb is a factor of either u1 or u2. Without loss of generality,
we may assume that anb is a factor of u1, as depicted in Figure 1. In this
diagram, the letters of u1 are represented in white, the letters of u2 in grey and
the factors of u in which letters from u1 and u2 may occur simultaneously are
represented in light grey.

u :

u1 : u2 :

x an an b b y

an b b

Figure 1: u ∈ u1 xxy u2

Since n is a multiple of the exponent of L1, iterating an in u1 produces a word
u′1 of L1. One can also insert this new factor in u, as indicated in Figure 2, to
obtain the word u′ = xa2nbanby as a shuffle of u′1 and u2. Thus, in this case,
xa2nbanby belongs to L. Finally, since an ∼L a2n, xanbanby ∈ L.

u′ :

u′1 : u2 :

x an an b an b y

an an b b

Figure 2: Inserting an.

Suppose now that one of the words u1 or u2, say u1, contains the two occurrences
of b. Out of the 2n occurrences of a preceding the two letters b, at least n
originate from the same word. First assume that this word is u2, as illustrated
in Figure 3.

10



u :

u1 : u2 :

x an an b b y

b b an

Figure 3: Case an in u2

Since n is a multiple of the exponent of L2, iterating an in u2 produces a word
u′2 of L2. One can also insert this new factor in u, as indicated in Figure 4, to
obtain the word xa2nbanby as a shuffle of u1 and u′2. Thus, in this case again,
xanbanby belongs to L.

u′ :

u1 : u′2 :

x an an b an b y

b b an an

Figure 4: Inserting an again. . .

Finally, if at least n occurrences of a originate from u1, then anbb is a factor of
u1, and since L1 satisfies the equation aωbaωb 6 aωbb, the word obtained from
u1 by replacing this factor by anbanb is still in L1. It follows, once again, that
xanbanby belongs to L. This exhausts all cases and concludes the proof.

2 Intermixed languages

By definition, the class C of intermixed languages is the smallest class of lan-
guages containing the singletons {1} and {a}, for each letter a, and closed under
Boolean operations, product and shuffle. Let us show immediately that these
properties entail two other closure properties.

Theorem 2.1 Intermixed languages form a d-variety of languages.

Proof. We proceed in four steps. After a preliminary step, we show that C is
closed under quotients, then that it is closed under inverses of length-preserving
morphisms and finally under inverses of length-decreasing morphisms.

Preliminary step. We show that, for each alphabet A, C(A∗) contains the lan-
guages B and B∗, for each subset B of A. The first property is obvious, since
B = ∪a∈B{a}. For the second one, it suffices to prove that the complement of
B∗ is in C(A∗). This complement is equal to A∗(A \ B)A∗ and since C(A∗) is
closed under product, it belongs to C(A∗).

First step. Let C′ be the class of all languages L of C such that, for each letter
a, a−1L and La−1 are in C. Clearly, the singletons {1} and {b}, for each letter
b, are in C′. Further, standard commutation rules show that C′ is closed under
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Boolean operations, product and shuffle. Therefore C′ contains C and thus C is
closed under quotient by a letter. It follows by induction that C is closed under
quotient.

Second step. Let F be the class defined as follows: for each alphabet A, F(A∗) is
the class of all languages L of A∗ such that, for each length-preserving morphism
ϕ : B∗ → A∗, one has ϕ−1(L) ∈ C(B∗). First, F(A∗) contains the singletons
{1} and {a}, for each letter a ∈ A, since ϕ−1(1) = {1} and ϕ−1(a) is a subset of
B. Next, standard commutation rules and Proposition 1.1 show that F is closed
under Boolean operations, product and shuffle. This shows that F contains C.
Thus C is closed under inverses of length-preserving morphisms.

Third step. Let L be a language of C(A∗) and let ϕ : B∗ → A∗ be a length-
decreasing morphism. If A is empty, then L = {1} and ϕ−1(1) = B∗. Otherwise,
let us fix a letter a of A. Setting

C = {b ∈ B | ϕ(b) 6= 1} and D = {b ∈ B | ϕ(b) = 1} ,

define a length-preserving morphism ψ : B∗ → A∗ by setting

ψ(b) =

{

ϕ(b) if b ∈ C ,

a if b ∈ D .

Then the equality ϕ−1(L) = (ψ−1(L) ∩ C∗) xxy D∗ and the previous steps show
that ϕ−1(L) ∈ C(B∗). Thus C is closed under inverses of length-decreasing
morphisms.

We now come to the main theorem of this paper.

Theorem 2.2 Intermixed languages satisfy the d-identities xω+1 = xω and
(xωyω)ω+1 = (xωyω)ω.

Proof. Let F be the class of languages satisfying the two identities of the
statement. Then F is closed under Boolean operations and it is easy to see that
it contains the singletons {1} and {a} for each letter a. We also know that,
according to Proposition 1.6, one may replace the d-identities of the statement
by xω+1 6 xω and (xωyω)ω+1 6 (xωyω)ω. Finally, Proposition 1.7 shows that
F is closed under product. Therefore, we just need to prove that F is closed
under shuffle to conclude.

Let L1 and L2 be two languages of F(A∗) and let L = L1 xxy L2. Proposition
1.8 already shows that L satisfies the d-identity xω+1 6 xω. Let n be the least
common multiple of the exponents of L1, L2 and L. By Propositions 1.5 and
1.6, we have to prove that if u and v are words of length 6 1 of A∗, then
(unvn)n+1 6L (unvn)n. The result is trivial if one of the words is empty, and
we may assume that u = a and v = b, for some (possibly equal) letters a and b.

Let x, y ∈ A∗ and suppose that x(anbn)ny ∈ L. Since L satisfies the d-
identity aω+1 = aω, one has a2n−1 ∼L an and b2n−1 ∼L bn. Setting u =
x(a2n−1b2n−1)ny, we get u ∈ L and thus u ∈ u1 xxy u2 for some u1 ∈ L1 and
u2 ∈ L2. A factor of u of the form a2n−1 or b2n−1 will be called a block in the
sequel. Let us say that a letter of u is red if it projects onto u1 and black if it
projects onto u2 and that a block is red (resp. black) if it contains a majority
of red (resp. black) letters.
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First suppose that in u, at least two consecutive blocks have different colours.
Let us assume for instance that a red block a2n−1 is followed by a black block
b2n−1 (the three other cases are similar). We may also assume that the n last
letters of a2n−1 are red and the first n letters of b2n−1 are black: if it is not the
case, it suffices to permute a few letters a (resp. b) without changing the shuffle
product. Since n is a multiple of an exponent of L1 and L2, replacing a2n by an

and b2n by bn within u1 (resp. u2) yields a word of L1 (resp. L2). Reshuffling
these words a2n and b2n, we can replace the central factor anbn of a2n−1b2n−1 by
anbnanbn. Thus we may replace in u the factor a2n−1b2n−1 by a2n−1bnanb2n−1,
and still obtain a word of L. Since a2n−1 ∼L an and b2n−1 ∼L bn, one may
replace a2n−1bnanb2n−1 by anbnanbn and the other factors a2n−1b2n−1 by anbn,
to obtain the word x(anbn)n+1y, which is therefore still in L. This proves the
result in this case.

The only remaining possibility is that all blocks have the same colour, say
red. This means that

u1 = x1a
p1bq1 · · · apnbqny1 and u2 = x2a

r1bs1 · · ·arnbsny2 ,

with pi, qi > n and ri, si < n. Since L1 satisfies the equation aω+1 = aω, the
word x1(a

nbn)ny1 is in L1, and since L1 satisfies the equation

(aωbω)ω+1
6 (aωbω)ω ,

it also contains the words x1(a
nbn)n+1y1 and u′1 = x1a

nbnap1bq1 · · ·apnbqny1.
Reshuffling with u2 shows that x(anbn)n+1y is in L.

Theorem 2.2 suffices to prove that intermixed languages form a proper sub-
class of the class of all regular languages.

Corollary 2.3 The language (aa)∗ over the single letter alphabet {a} is not
intermixed.

Proof. This language clearly does not satisfy the d-identity xω+1 = xω .

It is tempting to try to generalise the identities of Theorem 2.2 to three
variables or more. The next paragraph summarizes one of our unsuccessful
attempts to do so.

Let L be a regular language of A∗ and let η : A∗ → M be its syntactic
morphism. For each nonnegative integer n, consider the property (Pn) defined
as follows:

In M , the subsemigroup generated by n elements of the form η(a)ω ,

where a is a letter, is aperiodic.

It is easy to see that L satisfies (P2) if and only if it satisfies the d-identities
xω+1 = xω and (xωyω)ω+1 = (xωyω)ω and thus, by Theorem 2.2, every in-
termixed language satisfies (P2). This result lead us to conjecture that every
intermixed language should satisfy (Pn) for all n, until our hopes were ruined
by the following counterexample.
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Example 2.1 Let A = {a, b, c}, H = (a+b)+a+ and

L =
(

Hc+Hc+
)+
H xxy b+ .

A computation shows that the syntactic monoid of L is the 76-element monoid
M presented by

〈{a, b, c} | aa = a, cb = bc, cc = c, b2b = b2, b2c = bc, ab2a = abab, acac = 0,

baba = abab, babb = bab, b2ab = bab, b2ac = babc, bcac = 0,

cabb = bcab, cabc = 0, cac = 0, cabab = bcaba, cabacabac = c〉 .

Denote by S the subsemigroup of M generated by the three idempotents a, b2

and c. Then S is a 44-element semigroup in which the element x = ab2acab2a
satisfies x3 = x but x2 6= x. Therefore S is not aperiodic.

We claim that L is intermixed. First, one has L = K xxy b+ with

K =
(

Hc+Hc+
)+
H .

Next K = (R xxy a∗) \ A∗ca+cA∗ where R =
(

(ab)+ac+(ab)+ac+
)+

(ab)+a. The
language A∗ca+cA∗ is star-free. Further, one has

R =

(

aA∗ ∩
(

(

(ab)+ac(ab)+ac
)+

(ab)+a xxy c∗
)

∩A∗a

)

\A∗(bc ∪ cb)A∗

and
(

(ab)+ac(ab)+ac
)+

=
(

(ab)+ac
)+

∩
(

(acc)∗ xxy {a, b}∗
)

.

Since the remaining pieces are star-free and hence intermixed, the claim is
proved.

A weaker condition (Qn) could also be considered:

In M , the minimal ideal of each subsemigroup generated by n ele-

ments of the form η(a)ω , where a is a letter, is aperiodic.

It is easy to see that L satisfies the d-identities xω+1 = xω and (xωyω)ω+1 =
(xωyω)ω if and only if it satisfies (Q1) and (Q2). We leave as an open problem
to know whether every intermixed language satisfies (Qn) for all n.

We conclude this section by a nontrivial example of intermixed languages.
Recall that a word is primitive if it is not a power of another word. If u is a
primitive word, then u∗ is a star-free language (see for instance [13] for a more
general result).

Proposition 2.4 Let u be a primitive word of length > 1. Then for each non-
negative integer r, the language (ur)∗ is intermixed.

Proof. Let u be a primitive word of A∗. Then u contains at least two distinct
letters of A. Let a be the last letter of u. Then u can be written as vbak, where
v ∈ A∗, k > 0 and b is a letter distinct from a.

Let w = ar|u|a−kbak. Since w contains a single b, it is primitive. Observing
that w∗ xxy (A \ b)∗ = {z ∈ A∗ | |z|a ≡ 0 mod r|u|a}, we get

(

ur
)∗

= u∗ ∩
[

w∗
xxy (A \ b)∗

]

.
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Since u and w are primitive, the languages u∗ and w∗ are star-free and thus
(

ur
)∗

is intermixed.

Note that the condition |u| > 1 is mandatory in Proposition 2.4 since the lan-
guage (aa)∗ is not intermixed.

3 Shuffle by a letter

The operation of shuffling a language L by a letter a is the operation L 7→ L xxy a.
In this section we consider classes of languages closed under Boolean operations
and under shuffle by a letter. Proposition 1.3 shows that the smallest class
with these properties is the class of commutative star-free languages. We are
interested in larger classes containing at least one noncommutative language.
The following proposition shows that, under some reasonable conditions, it is
natural to start with the language {ab} on a two letter alphabet.

Proposition 3.1 Let V be a p-variety of languages. If V contains the fi-
nite commutative languages and at least one noncommutative language, then
V({a, b}∗) contains the language {ab}.

Proof. Let L be a noncommutative language of V(A∗). By definition, there
exist two distinct letters c, d ∈ A and two words x, y ∈ A∗ such that xcdy ∈ L
and xdcy /∈ L. Setting K = x−1Ly−1, we get cd ∈ K and dc /∈ K. But since V
is closed under quotients, K ∈ V(A∗). Furthermore, since V contains the finite
commutative languages, V(A∗) contains the language R = {cd, dc}. It follows
that {dc} = R \ K is a language of V(A∗). Let now ϕ : {a, b}∗ → A∗ be the
length-preserving morphism defined by ϕ(a) = d and ϕ(b) = c. By construction,
ϕ−1({dc}) = {ab} and thus V({a, b}∗) contains the language {ab}.

Let C0 denote the smallest class of languages containing the languages of the
form {ab}, where a, b are distinct letters, and which is closed under Boolean
operations and under shuffle by a letter.

The aim of this section is to give both a combinatorial and an algebraic
characterization of C0. Although the combinatorial characterization may appear
more descriptive to the reader, the algebraic one is more powerful. It shows in
particular that the class C0 is decidable: given a regular language, one can
effectively decide whether or not it belongs to C0.

We first prove a combinatorial result of independent interest.

Proposition 3.2 Let u be a word of length > 3. Then the language {u} is a
Boolean combination of languages of the form v xxy a, where a is a letter and v
is a word of length |u| − 1.

Proof. Let n = |u| − 1 and E = {(v, a) ∈ An ×A | u ∈ v xxy a}. The result will
follow from the formula

{u} =
(

⋂

(v,a)∈E

v xxy a
)

\
(

⋃

(v,a)∈(An×A)\E

v xxy a
)

. (∗)

Let L be the right hand side of (∗). It is clear that u ∈ L. Suppose that
L contains another word w. Then |w| = |u| and, for every (v, a) ∈ An × A,
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u ∈ v xxy a if and only if w ∈ v xxy a. Let f be the longest common prefix of
u and w. Assuming u 6= w, one can write u = fau′ and w = fbw′, for some
u′, w′ ∈ A∗, a, b ∈ A and a 6= b. We claim that f is the empty word. Otherwise,
let c be a letter of f and let f = f1cf2. Let us assume that c 6= a (the case
c 6= b would be symmetric by exchanging u and w). Then u ∈ f1f2au

′ xxy c
and thus w = f1cf2bw

′ ∈ f1f2au
′ xxy c. This means that c has to be inserted

in the word f1f2au
′ to produce f1cf2bw

′. Since a 6= b, this insertion cannot
occur inside the prefix f1f2a. Therefore f1f2a = f1cf2, a contradiction, since
|f1f2a|a > |f1cf2|a.

Thus the longest common prefix of u and w is the empty word, and by a
symmetric argument, their longest common suffix is also the empty word. Let
c be the first letter of u′. Then u′ = cx for some word x ∈ A∗. It follows that
u ∈ ax xxy c and thus w ∈ ax xxy c. Since the first letter of w is b, it means
that c = b and w = bax. It follows that x is a common suffix of u and w and
thus x is the empty word. Therefore u = ab and w = ba, a contradiction, since
|u| > 3.

Proposition 3.3 The class C0 contains all finite languages.

Proof. Since C0(A
∗) is closed under union, it suffices to prove that it contains

the languages reduced to a single word u. If |u| 6 1, the language {u} is star-
free commutative and the result follows from Proposition 1.3. If |u| = 2, say
u = ab, either a 6= b and the language {ab} belongs by definition to C0(A

∗),
or a = b and the language {u} is star-free commutative. Finally, if |u| > 2,
Proposition 3.2 permits to conclude by induction on the length of u.

A language L is said to be almost star-free commutative if there exists a
star-free commutative language C such that the symmetric difference L△ C is
finite.

Theorem 3.4 The class C0 is the class of almost star-free commutative lan-
guages.

Proof. Since C0(A
∗) is a Boolean algebra, Propositions 1.3 and 3.3 show that

C0(A
∗) contains the almost star-free commutative languages. Since this latter

class of languages is closed under Boolean operations and contains the languages
of the form {ab}, it suffices to show that it is closed under shuffle by a letter.
But this property follows immediately from the formula

(L xxy a) △ (C xxy a) ⊆ (L△ C) xxy a ,

which holds1 for any languages L and C, and any letter a.

Corollary 3.5 The class C0 is an i-variety of languages.

1Note that this inclusion might be strict. For instance, if L = {ab} and C = {ba}, then
(L xxy a) △ (C xxy a) = {aab, baa} and (L △ C) xxy a = {aab, aba, baa}.
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Proof. Let L be an almost star-free commutative language of A∗. By assump-
tion, there exists a star-free commutative language C such that L△C is finite.
If u is a word, then u−1C is star-free commutative and u−1(L △ C) is finite.
It follows, since (u−1L) △ (u−1C) = u−1(L△ C), that u−1L is almost star-free
commutative. The proof that Lu−1 is almost star-free commutative is dual.
Thus C0 is closed under quotients.

Let ϕ : B∗ → A∗ be a length-increasing morphism. Since star-free commu-
tative languages form a variety of languages, ϕ−1(C) is star-free commutative.
Further, since ϕ is length-increasing, ϕ−1(L△ C) is finite. Finally, ϕ−1 com-
mutes with Boolean operations and hence ϕ−1(L △ C) = ϕ−1(L) △ ϕ−1(C),
which shows that ϕ−1(L) is almost star-free commutative. Therefore C0 is an
i-variety of languages.

Since C0 is an i-variety of languages, it corresponds to some variety of semi-
groups V. Now, an almost star-free commutative language is a Boolean combi-
nation of finite languages and of star-free commutative languages. The i-variety
of finite or cofinite languages corresponds to the variety of finite nilpotent semi-
groups Nil and the i-variety of star-free commutative languages corresponds to
the variety of finite aperiodic commutative semigroups Acom [5]. It follows
that V is the join of the varieties Nil and Acom. We are indebted to Jorge
Almeida for providing us with a set of equations defining V, which lead to the
following characterization.

Theorem 3.6 A regular language is almost star-free commutative if and only
if it satisfies the i-identities xω = xω+1, xωy = yxω and xωyz = xωzy.

Proof. Let V be the join of the varieties Nil and Acom. As explained before,
it suffices to prove that a finite semigroup belongs to V if and only if it satisfies
the three identities xω = xω+1, xωy = yxω and xωyz = xωzy. These identities
are clearly satisfied by a nilpotent semigroup and by a commutative aperiodic
semigroup.

Let S be a finite semigroup satisfying these identities. The identity xω =
xω+1 says that S is aperiodic and the identity xωy = yxω means that each
idempotent of S commutes with any other element of S. These properties
imply that the minimal ideal of S is a singleton and therefore S has a zero.
We now prove by induction on the number of elements of S that S belongs to
Nil ∨ Acom.

If S has only one idempotent, then S is nilpotent and the result is trivial.
Otherwise, let e be a nonzero idempotent of S. Then eS is an ideal of S, since
SeS = eSS ⊆ eS. Observe also that if s ∈ eS, then es = s since, if s = ex
for some x ∈ S, then es = eex = ex = s. Finally let us show that eS is a
commutative semigroup. Let y, z ∈ S. Since eS = S, one has y = ey and
z = ez. Further, the identity xωyz = xωzy gives eyz = ezy. Putting these
relations together, we get yz = eyz = ezy = zy.

Denote by π the projection from S onto the Rees quotient S/eS and let
ϕ : S → eS × S/eS be the morphism defined by ϕ(s) = (es, π(s)). We claim
that ϕ is injective. Indeed, suppose that ϕ(s) = ϕ(t). The condition π(s) = π(t)
implies that s and t are either both in eS or both in its complement. If s, t ∈
S \ eS, the condition π(s) = π(t) ensures that s = t. If s, t ∈ eS, then es = s
and et = t. Therefore es = et implies s = t, which proves the claim. Thus S
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is a subsemigroup of eS × S/eS. Since 0 and e are in eS, they are identified
by π and |S/eS| < |S|. It follows by the induction hypothesis that S/eS ∈ V.
Since the semigroup eS is aperiodic and commutative, it also belongs to V and
finally S also belongs to V.

Corollary 3.7 It is decidable whether a given regular language is almost star-
free commutative.

4 Jumbled languages

In this section, we consider the smallest class of languages C1 containing C0 and
closed under Boolean operations and under shuffle by a letter and by the star of
a letter. We call the languages of this class jumbled languages. We first establish
some closure properties.

Proposition 4.1 A class of languages which is closed under finite union and
under shuffle by a letter and by the star of a letter is also closed under the
operations L 7→ L xxy K, where K is a star-free commutative language.

Proof. By Proposition 1.2, every star-free commutative language is a finite
union of languages of the form [u] xxy B∗ where u is a word and B is a subset of
A. Now, set u = a1 · · ·an, and B = {b1, b2, . . . , bk}, where a1, . . . , an, b1, . . . , bk
are letters. Then [u] = a1 xxy a2 xxy · · · xxy an and B∗ = b∗1 xxy b∗2 · · · xxy b∗k. The
result now follows, since the shuffle product is associative and distributes over
union.

Proposition 4.2 The class of jumbled languages forms a d-variety of languages.

Proof. The proof is similar to that of Theorem 2.1. We first prove that the
class of jumbled languages is closed under quotient and then that it is closed
under inverses of length decreasing morphisms.

First step. Let F be the class of languages containing the jumbled languages L
such that for all a ∈ A, a−1L,La−1 is jumbled. Since quotients commute with
Boolean operations, F is closed under Boolean operations. Further, since C0 is
contained in C1 and is closed under quotient, it is contained in F . In particular,
for each alphabet A, the languages of the form {a}, a∗ and {ab}, where a and
b are letters of A, are in F(A∗). Next we show that F is closed under shuffle
by a letter and shuffle by the star of a letter. Suppose that L ∈ F(A∗) and let
a be a letter. Then L is jumbled and thus L xxy a and L xxy a∗ are also jumbled.
For b ∈ A, the following formulas hold:

(L xxy a)b−1 =

{

(La−1 xxy a) ∪ L if b = a .

Lb−1 xxy a otherwise.
(4)

(L xxy a∗)b−1 =

{

(La−1 xxy a∗) ∪ (L xxy a∗) if b = a .

Lb−1 xxy a∗ otherwise.
(5)

It follows that (L xxy a)b−1 and (L xxy a∗)b−1 (and by symmetry b−1(L xxy a) and
b−1(L xxy a∗)) are jumbled. Thus L xxy a and L xxy a∗ are in F(A∗).
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It follows that F contains C0 and is closed under the Boolean operations and
under shuffle by a letter and by the star of a letter. In other words, F contains
the jumbled languages. Coming back to the definition of F , it means that the
class of jumbled languages is closed under quotients.

Second step. Let F ′ be the class of all jumbled languages L of A∗ such that,
for each length-decreasing morphism ϕ : B∗ → A∗, ϕ−1(L) ∈ C1(B

∗). We claim
that, for each alphabet A, the languages of the form {a}, a∗ and {ab}, where
a and b are letters of A, belong to F ′(A∗). First, these languages are jumbled.
Let now ϕ : B∗ → A∗ be a length-decreasing morphism. Let Ba, Bb and C be
the subsets of B consisting of the letters c such that ϕ(c) is respectively equal
to a, b and 1. Then

ϕ−1({a}) = C∗BaC
∗ =

⋃

c∈Ba

c xxy C∗ , (6)

ϕ−1(a∗) = (C∗Ba)∗C∗ = B∗
a xxy C∗ , (7)

ϕ−1({ab}) = C∗BaC
∗BbC

∗ =
⋃

c∈Ba,d∈Bb

cd xxy C∗ . (8)

By Proposition 4.1, these languages are jumbled.
Next we show that F ′ is closed under shuffle by a letter and by the star of

a letter. Suppose that L ∈ F ′(A∗) and let a be a letter. Then the languages
L, L xxy a and L xxy a∗ are jumbled. Let ϕ : B∗ → A∗ be a length-decreasing
morphism. Proposition 1.1 shows that

ϕ−1(L xxy a) = ϕ−1(L) xxy ϕ−1(a) and ϕ−1(L xxy a∗) = ϕ−1(L) xxy ϕ−1(a∗).

Now Formulas (6) and (7) and Proposition 4.1 show that ϕ−1(L xxy a) and
ϕ−1(L xxy a∗) are in C1(B

∗). Thus L xxy a and L xxy a∗ are in F ′(A∗).
Finally, F ′(A∗) is closed under Boolean operations, since these operations

commute with inverse morphisms. It follows that the class F ′ contains the
languages of the form {ab}, and is closed under the Boolean operations and
shuffle by a letter and by the star of a letter. Since C1 is by definition the smallest
class with these properties, F ′ contains C1. Coming back to the definition of F ′,
it means that the class of jumbled languages is closed under inverses of length
decreasing morphisms.

Recall that a language is piecewise testable if it is a Boolean combination of
languages of the form u xxy A∗, where u is a word. These languages have been
characterized by I. Simon: a language is piecewise testable if and only if its
syntactic monoid is J -trivial.

Note that the class of piecewise testable languages is closed under the oper-
ation L 7→ L xxy A∗ since, by a celebrated theorem of Higman, every language of
the form L xxy A∗ can be written as F xxy A∗ for some finite language.

Proposition 4.3 Every piecewise testable language is jumbled.

Proof. By Proposition 3.3, C1 contains all languages of the form {u}, where u
is a word. Therefore, by Proposition 4.1, it also contains the languages of the
form u xxy A∗.

We shall frequently use the following consequence of Proposition 4.3.
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Corollary 4.4 The languages of the form A∗
0a1A

∗
1a2 · · · akA

∗
k, where A0, . . . , Ak

are subsets of the alphabet and, for 1 6 i 6 k, ai /∈ Ai−1 ∪Ai, are jumbled.

Proof. Indeed these languages are piecewise testable.

Proposition 4.5 The languages of the form anA∗ and anbA∗, where a, b ∈ A,
are jumbled.

Proof. Let B = A \ {a}. Then anB∗ can be written as ∅∗a∅∗a · · · ∅∗aB∗ and
thus is jumbled by Corollary 4.4. Now anA∗ = anB∗ xxy a∗ and thus anA∗ is also
jumbled. Corollary 4.4 also shows that a∗b(A \ {b})∗ is jumbled. Consequently,
the language {a, b}∗bA∗, which is equal to a∗b(A \ {b})∗ xxy b∗, is also jumbled.

Let us show by induction on n that anbA∗ is jumbled. For n = 0, it follows
from the previous result. Next, the formula

anbA∗ =
(

(anA∗
xxy b) ∩ {a, b}∗bA∗

)

\
(

(1 ∪ a ∪ · · · ∪ an−1)bA∗ ∪ an+1A∗
)

provides the induction step.

Proposition 4.5 already suffices to separate C0 from C1.

Corollary 4.6 Let A = {a, b}. Then the language aA∗ is jumbled but is not
almost star-free commutative.

Proof. The first part follows from Proposition 4.5. Next, the syntactic semi-
group of aA∗ is the semigroup S = {a, b} defined by a2 = ab = a and ba = bb =
b. In particular, idempotents do not commute in S and by Theorem 3.6, aA∗ is
not in C0(A

∗).

Recall that a language L of A∗ is local if there exist two subsets P and S of
A and a subset N of A2 such that L \ {1} = (PA∗ ∩A∗S) \A∗NA∗.

Proposition 4.7 Every local language is jumbled.

Proof. The language {1} is jumbled since it is finite and the languages of the
form aA∗ are jumbled by Proposition 4.5. Let now a and b be two (possibly
equal) letters of A and let C = A \ {a, b}. Then by Corollary 4.4, C∗abC∗ is
jumbled. Now A∗abA∗ = C∗abC∗ xxy {a, b}∗ and thus A∗abA∗ is also jumbled.
Thus every local language is jumbled.

We now state a useful property of the jumbled languages, which is not an
immediate consequence of the definition.

Proposition 4.8 If L is a jumbled language and u is a word, the languages uL
and Lu are also jumbled.

Proof. Let L be a jumbled language. By symmetry, it suffices to prove that
uL is also jumbled. Actually, it suffices to show that for each letter a, aL is
jumbled.

If the empty word belongs to L, one has L = {1} ∪ (L \ {1}). Therefore
one may assume that L does not contain the empty word. By Theorem 2.2,

20



L satisfies the equation aω = aω+1. Let n be the smallest integer such that
an ∼L a

n+1.
Let B = A \ {a} and, for 0 6 i 6 n − 1, let Li = L ∩ aiBA∗. Finally, let

Ln = L ∩ anA∗, Ln+1 = L ∩ an+1A∗ and K = L ∩ a∗. By Proposition 4.5,
the languages Li, where 0 6 i 6 n + 1, are jumbled. The language K is also
jumbled. Note that

L = L0 ∪ L1 ∪ · · · ∪ Ln ∪K.

We claim that aLn = Ln+1. Indeed, let u ∈ Ln. Then u = anv for some v ∈ A∗

and since an ∼L an+1 and anv ∈ L, one gets au = an+1v ∈ L. Therefore
au ∈ Ln+1 and thus aLn ⊆ Ln+1. To prove the opposite inclusion, consider a
word u ∈ Ln+1. Then u ∈ L and u = an+1v for some v ∈ A∗. Since an ∼L a

n+1,
one also has anv ∈ L and thus anv ∈ Ln. Therefore u ∈ aLn, which proves the
claim. Now, the formulas

aL0 = (a xxy L0) \BA
∗ ,

aL1 = (a xxy L1) \ aBA
∗ ,

...

aLn−1 = (a xxy Ln−1) \ a
nBA∗ ,

aLn = Ln+1

show that for 0 6 i 6 n, the languages aLi are jumbled. Since aK is commuta-
tive star-free, it is also jumbled. Finally, the language

aL = aL0 ∪ aL1 ∪ · · · ∪ aLn ∪ aK

is jumbled.

Proposition 4.9 The languages A∗anA∗ and A∗anbamA∗, for n,m > 0 and
a, b ∈ A, are jumbled.

Proof. Let B = A \ {a}. Then A∗anA∗ = B∗anB∗ xxy a∗. Since B∗anB∗ is
jumbled by Corollary 4.4, A∗anA∗ is also jumbled.

Let C = A\{a, b}. By Corollary 4.4, the languages of the form C∗akban−kC∗

are jumbled. Now the formulas

B∗anbB∗ = (C∗anbC∗
xxy b∗) \

⋃

0<k<n

(C∗akban−kC∗
xxy b∗) ,

A∗anbA∗ = B∗anbB∗
xxy a∗

show that A∗anbA∗ is jumbled.
Finally, if m > 0, the languages of the form B∗anbamB∗ are jumbled by

Corollary 4.4. Since

A∗anbamA∗ = B∗anbamB∗
xxy a∗ ,

the languages of the form A∗anbamA∗ are also jumbled.
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Proposition 4.10 The languages (anb)∗ and ((ab)n)∗, for n > 0, are jumbled.
In particular, there exist non star-free jumbled languages.

Proof. Let A = {a, b}. By Corollary 4.4, C1 contains, for each k, the language
a∗bakba∗. The result now follows from the previous propositions by the following
sequence of relations:

A∗b(ab∗)kbA∗ = a∗bakba∗ xxy b∗ ,

(anb)∗ = {1} ∪

(

(

anA∗ ∩A∗b
)

\
(

A∗an+1A∗ ∪
⋃

06k6n−1

A∗b(ab∗)kbA∗
)

)

,

((ab)n)∗ =
(

(anb)∗ xxy b∗
)

∩ (ab)∗ .

Now, the word ab generates a cyclic group of order n in the syntactic monoid of
((ab)n)∗. Therefore, by Schützenberger’s theorem, ((ab)n)∗ is not star-free for
n > 2.

Other examples of jumbled languages include the language

{a, b}∗abc{a, b}∗ = (b∗abcb∗ xxy a∗) \ (b∗acb∗ xxy a∗) ,

but it is an open problem to know whether the language A∗abbaA∗ is jumbled.

Corollary 4.11 The class of jumbled languages is not closed under inverses of
morphisms.

Proof. Let ϕ : {a}∗ → {a, b}∗ be the morphism defined by ϕ(a) = ab. Then
ϕ−1((abab)∗) = (aa)∗. Now, the language (abab)∗ is jumbled by Proposition
4.10, but Corollary 2.3 shows that the language (aa)∗ is not jumbled.

In fact, the closure of the class of jumbled languages under inverses of mor-
phisms is equal to the class of all regular languages. More precisely, one has the
following result, the proof of which relies on an argument of [7].

Proposition 4.12 For every regular language L over A, there exist an alphabet
C, a morphism ϕ from A∗ to C∗ and a jumbled language K over C such that
L = ϕ−1(K).

Proof. It is a well-known fact that every regular language is the image of some
local language under a length-preserving morphism. Therefore, there is an al-
phabet B, a length-preserving morphism γ : B∗ → A∗ and a local language R
of B∗ such that L = γ(R). By Proposition 4.7, R is jumbled.

Let c be a new letter and let C = B ∪ {c}. We claim that the languages
of C∗

R1 = R xxy c∗ , R2 = (Bc)∗

are jumbled. This is clear for R1. For R2 observe that R2 = π−1((ab)∗), where
π denotes the length-preserving morphism from C∗ into {a, b}∗ mapping c to b
and each letter of B to a, and apply Propositions 4.10 and 4.2 to conclude. It
follows that the language

K = (R1 ∩R2) xxy B∗
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is jumbled. To finish the proof, let, for each a ∈ A, ua be a word ofB∗ containing
exactly one occurrence of each letter in γ−1(a), and no other letter. Consider
the morphism ϕ : A∗ → C∗ defined, for each a ∈ A, by ϕ(a) = uac. It is shown
in [7] that γ(R) = ϕ−1(K). Thus L = ϕ−1(K).

5 Conclusion

We introduced four classes of regular languages related to the shuffle operation:
almost star-free commutative, jumbled, shuffled and intermixed languages. We
completed the study of the first class and proved only partial results on the
other ones. Our hope is that these incomplete results and open problems will
stimulate research on the shuffle, one of the most fascinating operations on
regular languages.
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[4] A. Cano Gómez and J.-E. Pin, A Robust Class of Regular Languages, in
Mathematical Foundations of Computer Science 2008, 33rd International
Symposium, MFCS 2008, Torun, Poland, August 25-29, 2008, Proceedings,
E. Ochmanski and J. Tyszkiewicz (eds.), Berlin, 2008, pp. 36–51, Lect.
Notes Comp. Sci. vol. 5162, Springer.

[5] S. Eilenberg, Automata, languages, and machines. Vol. B, Academic
Press [Harcourt Brace Jovanovich Publishers], New York, 1976.
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