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Abstract

We prove some results related to the generalized star-height problem.
In this problem, as opposed to the restricted star-height problem, com-
plementation is considered as a basic operator. We first show that the
class of languages of star-height ≤ n is closed under certain operations
(left and right quotients, inverse alphabetic morphisms, injective star-free
substitutions). It is known that languages recognized by a commutative
group are of star-height 1. We extend this result to nilpotent groups of
class 2 and to the groups that divide a semidirect product of a commu-
tative group by (Z/2Z)n. In the same direction, we show that one of the
languages that was conjectured to be of star height 2 during the past ten
years, is in fact of star height 1. Next we show that if a rational language
L is recognized by a monoid of the variety generated by wreath products
of the form M ◦ (G ◦N), where M and N are aperiodic monoids, and G
is a commutative group, then L is of star-height ≤ 1. Finally we show
that every rational language is the inverse image, under some morphism
between free monoids, of a language of (restricted) star-height 1.

The determination of the star-height of a rational language is an old problem
of formal language theory (see Brzozowski [1], for an historical survey). The
restricted star-height problem has been recently solved by Hashiguchi [4], but
here we are interested in that aspect of the problem concerning generalized star-
height, in which complementation is considered as a basic operator. Thus, in
the rest of this paper, the word ”star-height” will always refer to generalized
star-height.

The aim of this paper is to present some new results related to the star-
height problem : “Is there an algorithm to compute the star-height of a given
rational language” (this language can be given, for instance, by a rational ex-
pression). The star-height problem seems to be extremely difficult, and very
little is known on the subject. For instance, it is not yet known whether there
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is a language of star-height > 1. The most important known result is the
theorem of Schützenberger [10] that gives an algebraic characterization of the
languages of star-height 0 (also called star-free languages). A language is star-
free if and only if its syntactic monoid is aperiodic (or group-free). This theorem
has greatly influenced subsequent research. First, since group-free is equivalent
to star-free, it is natural to search for candidates having star-height 2 or more
among languages whose syntactic monoid is a group (or equivalently, that are
accepted by a permutation automaton). The intuitive idea is that a “complex”
group should recognize “complex” languages. But what kind of complexity is
required for the group ? Henneman [5] was the first to study this problem in
a systematic way. He showed that any language recognized by a commutative
group is of star-height ≤ 1, and gave some upper bounds on the star-heights of
languages recognized by various classes of groups. In the quest for a language
of star-height > 1, the next level of complexity was nilpotent groups of class
2, and such candidates were actually proposed in Brzozowski [1]. The combi-
natorial structure of the languages recognized by nilpotent groups is related to
the generalized binomial coefficients introduced by Eilenberg [3], which count
the number of times that a word u appears as a subword (in the sense of sub-
sequence) of a word v. A precise description, involving the class of nilpotency
of the group, is given in Thérien [14]. Let L(u, k, n) denote the set of words w
in which the number of appearances of u as a subword is congruent to k mod
n. Then a language is recognized by a nilpotent group of class c if and only
if it is a boolean combination of languages L(u, k, n) where |u| ≤ c. Thus, the
problem of finding the star-height of languages recognized by nilpotent groups
reduces to finding the star-height of the languages L(u, k, n). Henneman’s result
mentioned above is a consequence of the fact that the star-height of L(u, k, n)
is 1 if u is a word of length 1. Here we show that the star-height of L(u, k, n) is
at most 1 if u is a word of length ≤ 2; this corresponds to the case of nilpotent
groups of class 2. We were not able to treat completely the case of words of
length 3. However, we prove that the star-height of L(u, k, n) is at most 1 if u is
a word of length ≤ 3 and n is a square-free integer. This covers in particular the
case of L(abc, 0, 2), which was proposed as a candidate for having star-height 2
in Brzozowski [1].

Using slightly different techniques, we give some other classes of monoids
or groups that recognize only languages of star-height ≤ 1. For instance the
groups that divide a semidirect product of a commutative group by (Z/2Z)n,
and the monoids that divide a wreath product of the form M ◦ (G ◦N), where
M and N are aperiodic monoids, and G is a commutative group. In particular,
every language recognized by a group of order less than 12 is of star-height at
most 1.

We also investigate the closure properties of languages of star height ≤ n,
for a given n. By definition, these classes are closed under boolean operations
and concatenation. We show they are also closed under left and right quotients,
star-free injective substitutions and inverse alphabetic morphisms. On the other
hand, we prove that every rational language is the inverse image, under some
morphism between free monoids, of a language of (restricted) star-height 1. In

2



particular, if languages of star-height ≤ 1 are closed under inverse morphisms,
every rational language is of star-height ≤ 1.

The paper is divided into eight sections. Section 1 contains a precise defini-
tion of the star-height problem. Section 2 gives some basic results about monoids
and varieties and the known results on star-height are presented in Section 3.
Operations preserving star-height are the subject of Section 4. In Section 5 we
recall some basic facts about sequential functions and wreath products. Section
6 contains most of the technical results. The first lemma of this section, called
the transfer lemma is of special interest. For instance, it gives an easy proof
of the results of Thomas [15]. The main results of the paper are presented in
Section 7. Section 8 concludes the paper with some further comments on the
problem of finding a language of star-height 2.

The results of this paper have been announced in Pin et al. [9].

1 The generalized star-height problem.

Given a finite alphabet A, the (extended) rational expressions over A are defined
recursively as follows.

(a) ∅, 1 and a (for every a ∈ A) are rational expressions.

(b) If E and F are rational expressions, so are (E ∪ F ), (EF ), Ec and E∗.

The (generalized) star-height h(E) of a rational expression E is defined recur-
sively by

(a) h(∅) = 0, h(1) = 0 and, for every a ∈ A, h(a) = 0.

(b) h(E ∪ F ) = h(EF ) = max(h(E), h(F )), h(Ec) = h(E) and h(E∗) =
h(E) + 1.

The value v(E) of a rational expression E is the language represented by E (Ec

stands for the complement of E). More formally, v is recursively defined by

(a) v(∅) = ∅, v(1) = {1} and, for every a ∈ A, v(a) = {a}.

(b) v(E ∪ F ) = v(E) ∪ v(F ), v(EF ) = v(E)v(F ), v(Ec) = A∗ \ v(E) and
v(E∗) = (v(E))∗.

The (generalized) star-height h(L) of a rational language L is the minimum of
the star-heights of all rational expressions representing L. One can give another
description of the star-height, which follows directly from the definition.

Proposition 1.1 For every n ≥ 0, the set of languages of star-height ≤ n + 1
is the smallest class of languages containing the languages of the form L or L∗,
where h(L) ≤ n, and closed under boolean operations and concatenation product.

The star-height problem is : Is there an algorithm to compute the star-height
of a given rational language? (This language can be given, for instance, by a
rational expression). The aim of this paper is to present some new results related
to this problem. We introduce some rather deep techniques to establish that a
language is of star-height 1. For instance, we show that if the syntactic monoid
of a language is a nilpotent group of class two, then L is of star-height ≤ 1.
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Similar results hold for various varieties of finite monoids. Another consequence
of our results is that one of the languages presented in Brzozowski [1] as a
possible candidate for star-height 2 is in fact of star-height 1. This result may
appear rather modest, but is in fact highly non-trivial. For instance, if one really
wanted to write down the expression of star-height 1 obtained for this language,
ten pages would probably not suffice! This means that there is probably no
hope to find an expression of star-height 1 for this language by brute force.

2 Monoids and varieties.

Monoids often permit one to give an algebraic solution of problems about ra-
tional languages. Recall that a monoid M recognizes a language L of A∗ if
there exists a monoid morphism η : A∗ → M and a subset P of M such that
L = Pη−1. The syntactic congruence of a language L of A∗ is the congruence
∼L defined by

u ∼L v if and only if, for every x, y ∈ A∗, (xuy ∈ L ⇔ xvy ∈ L).

The quotient M(L) = A∗/∼L is the syntactic monoid of L. In fact the syntactic
monoid of L is the “smallest” monoid that recognizes L. More precisely, M(L)
recognizes L, and M(L) divides (that is, is a quotient of a submonoid of) every
monoid that recognizes L. As is well-known, a language is rational if and only
if it is recognized by a finite monoid (or equivalently, if and only if its syntactic
monoid is finite).

Note that, given a rational expression E, one can effectively compute the
syntactic monoid of the language L represented by E. Indeed, there exist stan-
dard algorithms to compute the minimal automaton of L. Now, the syntactic
monoid of L is simply the transition monoid of this minimal automaton. The
reader is referred to [3, 6, 8] for further details.

A variety of monoids is a class of finite monoids closed under taking sub-
monoids, quotients (that is, morphic images) and finite direct products. For
instance, the class of aperiodic monoids, considered in the next section, is a
variety of monoids, denoted by A. The class of finite groups is also a variety
of monoids, denoted by G. This variety contains some well-known subvarieties,
for instance the variety of finite commutative groups, and, for every n > 0, the
variety of nilpotent groups of class n. Recall that the lower central series of a
group G is defined as G1 = G and Gi+1 = [Gi, G], where [H, K] denotes the
subgroup of G generated by all elements h−1k−1hk, h ∈ H , k ∈ K. A group G
is nilpotent of class c if Gc 6= {1} and Gc+1 = {1}.

Let M and N be two monoids. We write M additively (although M is not
assumed to be commutative) and N multiplicatively. In particular, we denote
by 0 and 1 the identities of M and N respectively. A (left) action of N on M
is a function

N ×M → M

(n, m) → n ·m
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satisfying for every m, m1, m2 ∈ M and n, n1, n2 ∈ N ,

n · (m1 + m2) = n ·m1 + n ·m2, n1 · (n2 ·m) = (n1n2) ·m,

n · 0 = 0, 1 ·m = m

Given an action of N on M , the semidirect product M ∗N is the monoid defined
on M ×N by the multiplication

(m, n)(m′, n′) = (m + nm′, nn′).

The wreath product M ◦ N is the monoid defined on the set MN × N by the
multiplication given by the following formula (where f1, f2 are applications from
M into N , and n1, n2 are elements of N)

(f1, n1)(f2, n2) = (f, n1n2)

where f is the application from M into N defined, for all n ∈ N , by nf =
nf1 + (nn1)f2.

Given two varieties of monoids V and W, we denote by V ∗W the variety
generated by all semidirect products of a monoid of V by a monoid of W,
which is also the variety generated by all wreath products of a monoid of V by
a monoid of W.

One of the goals of variety theory, introduced by Eilenberg, is to describe the
class of languages whose syntactic monoids belong to a given variety of monoids.
We shall briefly recall such a description for the varieties of commutative and
nilpotent groups in this section, and for the variety A in the next section.

A word u = a1a2 · · · an is a subword of a word v if v can be factored as
v = v0a1v1 · · ·anvn. For instance, ab is a subword of cacbc. Given two words u
and v, we denote by

(

v
u

)

the number of times that u appears as a subword of v.
More formally, if u = a1a2 · · · an, then

(

v

u

)

= Card{(v0, v1, . . . , vn) | v0a1v1 · · · anvn = v}

Observe that if u is a letter a, then
(

v
a

)

is simply the number of occurrences of
the letter a in v, also denoted by |v|a. More generally, if B is a subset of the
alphabet A, we put |v|B =

∑

b∈B |v|b. Finally, |v| = |v|A denotes the length of
v.

For every word u of A∗, and for any integers k and n such that 0 ≤ k < n,
we put

L(u, k, n) =

{

v ∈ A∗

(

v

u

)

≡ k mod n

}

.

We can now state

Theorem 2.1 [3, 6, 8] Let L be a recognizable language. Then the following
conditions are equivalent :

(1) L is recognized by a finite commutative group,
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(2) the syntactic monoid of L is a finite commutative group,

(3) L is a boolean combination of languages of the form L(a, k, n), where a is
a letter, and 0 ≤ k < n.

Note that one could take 0 < k < n in condition (3), since

L(a, 0, n) = A∗ \
⋃

0<k<n

L(a, k, n).

Theorem 2.2 [14] Let L be a recognizable language. Then the following condi-
tions are equivalent :

(1) L is recognized by a finite nilpotent group of class m,

(2) the syntactic monoid of L is a finite nilpotent group of class m,

(3) L is a boolean combination of languages of the form L(u, k, n), where
|u| ≤ m, and 0 ≤ k < n.

3 Some known results on star-height.

The first major result on star-height was the algebraic characterization of the
languages of star-height 0, also called star-free languages, obtained by Schützen-
berger in 1965.

Recall that a finite monoid M is aperiodic if for every x ∈ M , there exists
an integer n such that xn = xn+1. Again this property can be effectively tested.

Theorem 3.1 Schtzenberger, 1965) Let L be a rational language. Then the
following conditions are equivalent :

(1) L is recognized by a finite aperiodic monoid,

(2) M(L) is aperiodic,

(3) h(L) = 0.

Corollary 3.2 There is an algorithm to decide if a given rational language has
star-height 0.

The complexity of this algorithm is analyzed in Stern [11]. Given a finite
deterministic automaton A, deciding whether A recognize a star-free set can be
solved in polynomial space. It is also the complement of an NP-hard problem.

There is a very elementary example for which a direct proof is possible.

Lemma 3.3 Let B be a subset of the alphabet A. Then h(B∗) = 0.

Proof. Indeed, we have B∗ = (∅c(A \B)∅c)c and thus h(B∗) = 0.

Theorem 3.1 shows that there exist some languages of star-height 1, for
instance (aa)∗ (it is not difficult to verify that the syntactic monoid of this
language is not aperiodic). Theorem 3.1 also suggests that one study the star-
height problem through properties of the syntactic monoid. In this direction,

6



Henneman [5] has studied the languages whose syntactic monoids are groups.
The case of commutative groups is especially interesting.

Theorem 3.4 Henneman [5] A language recognized by a finite commutative
group is of star-height ≤ 1.

Proof. By Theorem 2.1, L is a boolean combination of languages of the form
L(a, k, n), where a is a letter, and 0 ≤ k < n. But

L(a, k, n) = (B∗a)k((B∗aB∗)n)∗ where B = A \ {a}.

Now h(B∗) = 0 by Lemma 3.3. It follows that h(L(a, k, n)) ≤ 1 and finally
h(L) ≤ 1 as required.

Corollary 3.5 A language recognized by a finite commutative monoid is of star-
height ≤ 1.

Proof. Indeed, by a result of Eilenberg [3], a language of A∗ recognized by
a commutative monoid is a boolean combination of languages of the form
(B∗a)kB∗ (where B = A \ {a} and k ≥ 0) and of languages recognized by
a commutative group.

Non-trivial examples of languages of star-height 1 were given by Thomas
[15]. Let A = {a, b} and, for each n ≥ 0, put xn = anb. Then the set X =
{xn | n ≥ 0} is a prefix code such that X∗ = A∗b ∪ {1}. In particular, every
word of X∗ admits a unique factorization as a product of words of X . Now, let
W (h, k, r, m) be the set of words w of X∗ such that, in the factorization of w,
the number of factors xn with n ≡ r mod m is congruent to h mod k. Then
we have

Theorem 3.6 (Thomas [15]) For every h, k, r, m, the languages W (h, k, r, m)
are of star-height at most 1.

4 Operations that preserve star-height.

By definition, the class of all languages of star-height≤ n is closed under boolean
operations and concatenation. In this section, we show that this class is also
closed under other operations : left and right quotients, star-free injective sub-
stitutions, and inverse alphabetic morphisms.

If K and L are two languages of A∗, we call the left (or right) quotient or
residual of L by K the language K−1L (or LK−1) which is defined by

K−1L = {v ∈ A∗ | there exists u ∈ K such that uv ∈ L}

LK−1 = {v ∈ A∗ | there exists u ∈ K such that vu ∈ L}
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Proposition 4.1 For every rational language L of A∗, and for every language
K of A∗, h(K−1L) ≤ h(L) and h(LK−1) ≤ h(L). In particular, for every
n ≥ 0, the set of languages of star height ≤ n is closed under left and right
quotients.

Proof. We only give the proof for left quotients, since the proof for right quo-
tients is dual. First of all, it is well-known that for a rational language L,
every quotient K−1L is a finite union of languages of the form u−1L, where u
is a word. Furthermore, since (uv)−1L = v−1(u−1L), it suffices by induction
to show that h(a−1L) ≤ h(L) for every letter a ∈ A. We prove this result
by induction on n = h(L). This is true for n = 0, since by the theorem of
Schützenberger, star-free languages form a variety of languages. Assume that
the result holds for n, and let C be the class of all the languages L of A∗ such
that h(L) ≤ n + 1 and h(a−1L) ≤ n + 1 for every letter a ∈ A. Let K be a
language such that h(K) ≤ n. Then K ∈ C by induction, and also K∗ ∈ C.
Indeed, h(K∗) ≤ n+1, and, for every letter a ∈ A, a−1K∗ = (a−1K)K∗ so that
h(a−1K∗) ≤ max{h(a−1K), h(K∗)} ≤ n+1. Thus C contains every language of
the form K or K∗ where h(K) ≤ n. Finally assume that K, K1, K2 ∈ C. Then
h(K), h(K1), h(K2) ≤ n+1 and hence h(Kc), h(K1∪K2), h(K1K2) ≤ n+1. Fur-
thermore h(a−1(Kc)) ≤ n+1 and h(a−1(K1∪K2)) ≤ n+1 since a−1(K1∪K2) =
a−1K1∪a−1K2 and a−1Kc = (a−1K)c, so that K1∪K2 ∈ C and Kc ∈ C. Simi-
larly, a−1(K1K2) = (a−1K1)K2 if 1 /∈ K and a−1(K1K2) = (a−1K1)K2∪a−1K2

if 1 ∈ K1 and thus K1K2 ∈ C. Therefore, by Proposition 1.1, C contains all the
languages of star height ≤ n + 1, and this concludes the proof.

A substitution σ : A∗ → B∗ is a relation on A∗×B∗ which induces a map from
A∗ into P(B∗) such that 1σ = {1} and, for every u, v ∈ A∗, (uv)σ = (uσ)(vσ).
A substitution is rational if, for every a ∈ A, as is a rational language. This
implies in particular that, for every rational language L, the language

Lσ =
⋃

u∈L

uσ

is a rational language. All the substitutions considered in this article will be
rational substitutions.

A substitution σ : A∗ → B∗ is injective if for every u, v ∈ A∗, uσ ∩ vσ 6= ∅
implies u = v. (Note that this definition is compatible with the definition
of an injective relation, but does not mean that σ induces an injective func-
tion from A∗ into P(B∗)). The next proposition provides useful examples of
injective substitutions. Recall that a subset X of A+ is a code if, for every
x1, . . . , xn, y1, . . . , ym ∈ X , x1x2 . . . xn = y1 . . . ym implies n = m and xi = yi

for i = 1, . . . , n.

Proposition 4.2 Let σ : A∗ → B∗ be a substitution. Then if the sets aσ (for
a ∈ A) are pairwise disjoint, and if Aσ is a code, then σ is injective.

Proof. . Assume that x ∈ (a1 · · · ar)σ ∩ (b1 · · · bs)σ for some a1, . . . , ar, b1,
. . . , bs ∈ A. Then there exist x1 ∈ a1σ, . . . , xr ∈ arσ, y1 ∈ b1σ, . . . , ysσ ∈ bsσ
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such that x = x1 · · ·xr = y1 · · · ys. Since Aσ is a code, it follows that r = s and
x1 = y1, . . . , xs = ys. Thus x1 ∈ a1σ∩b1σ, . . . , xs ∈ asσ∩bsσ and hence a1 = b1,
. . . , as = bs since the sets aσ are pairwise disjoint. Thus σ is injective.

The converse of Proposition 4.2 is false. For instance let σ : a∗ → {a, b}∗ be
the substitution defined by aσ = {a, ab, ba}. Then σ is injective since x ∈ anσ
implies n = |x|a, but aσ is not a code since a(ba) = (ab)a. The following
proposition summarizes some well-known properties of substitutions.

Proposition 4.3 Let σ : A∗ → B∗ be a substitution. Then for every language
L, L1, L2 ⊂ A∗, we have

(1) (L1 ∪ L2)σ = L1σ ∪ L2σ

(2) (L1L2)σ = (L1σ)(L2σ)

(3) L∗σ = (Lσ)∗

(4) If furthermore, σ is injective, then (L1∩L2)σ = L1σ∩L2σ and (L1\L2)σ =
L1σ \L2σ.

Proof. (1), (2) and (3) are obvious. Assume that σ is injective. Clearly (L1 ∩
L2)σ ⊂ L1σ ∩ L2σ. Conversely, let v ∈ L1σ ∩ L2σ. Then v ∈ u1σ ∩ u2σ for
some u1 ∈ L1 and u2 ∈ L2. Since σ is injective, u1 = u2 ∈ L1 ∩ L2 and thus
v ∈ (L1 ∩ L2)σ. This proves that (L1 ∩ L2)σ = L1σ ∩ L2σ.

In particular, (L1 \L2)σ ∩L2σ = ∅σ = ∅. It follows that (L1 \L2)σ ⊂ L1σ \
L2σ. But since L1σ = (L1 \L2)σ∪L2σ, we have (L1 \L2)σ = L1σ \L2σ.

A substitution σ is star-free if for every star-free language L, Lσ is also star-
free. For instance, σ : {a, b}∗ → {a, b, c}∗ defined by aσ = {a, ab}, bσ = {c, bc}
is an injective star-free substitution. It is decidable whether or not an effectively
given rational injective substitution is star-free.

Proposition 4.4 Let σ : A∗ → B∗ be an injective substitution. Then σ is
star-free if and only if it satisfies the following conditions :

(1) for every a ∈ A, aσ is star-free,

(2) (Aσ)∗ is star-free.

Proof. Since (Aσ)∗ = A∗σ, the condition is necessary. Conversely, let σ be
an injective substitution that satisfies (1) and (2). Let S be the set of all
rational languages L of A∗ such that Lσ is star-free. Since 1σ = 1, {1} ∈ S,
and by (1), S contains every letter. Furthermore, Proposition 4.2 shows that
S is closed under union, difference and concatenation. Finally if L ∈ S, then
(A∗ \ L)σ = (Aσ)∗ \ Lσ is star-free by (2) and thus A∗ \ L ∈ S. Thus S is also
closed under complementation and hence contains all star-free languages.
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There exist injective substitutions which satisfies (2) but not (1). For in-
stance, the substitution σ : {a, b}∗ → {a, b}∗ defined by aσ = b(a2)∗ and
bσ = b(a2)∗a. But if σ is a morphism, condition (1) is always satisfied since aσ
is a single word in this case. Furthermore, since σ is injective as a substitution,
Aσ is a finite code. It is known [3] that (Aσ)∗ is star-free if and only if Aσ is
a pure code (a code X is pure if un ∈ X∗ for some n > 0 implies u ∈ X∗).
An injective morphism ϕ such that Aϕ is a pure code is called a pure coding.
Therefore

Corollary 4.5 An injective morphim is star-free if and only if it is a pure
coding.

In fact, as one of the referees pointed out, one can show that a star-free
morphism which does not map every word on the empty word is injective. We
shall not use this stronger result in this paper. We can now state the main
result of this section.

Theorem 4.6 Let σ : A∗ → B∗ be a star-free injective substitution. Then for
every rational language L, h(Lσ) ≤ h(L). In particular, for every n ≥ 0, the set
of languages of star-height ≤ n is closed under star-free injective substitutions.

Proof. Let σ be a star-free substitution. For every a ∈ A, let Ea be a star-free
expression representing aσ and let E∗ be a star-free expression for (Aσ)∗. We
first extend σ to rational expressions as follows:

∅σ = ∅, 1σ = 1 and aσ = Ea for every a ∈ A

(E1 ∪ E2)σ = E1σ ∪ E2σ

(E1E2)σ = (E1σ)(E2σ)

(Ec)σ = (E∗ \Eσ)

E∗σ = (Eσ)∗

It is not difficult to prove by induction on E that

(a) v(Eσ) = (v(E))σ

(b) h(Eσ) ≤ h(E).

Now assume that h(L) ≤ n. Then there exists an expression E such that
h(E) ≤ n and v(E) = L. By (a), Eσ is an expression representing Lσ and by
(b), h(Eσ) ≤ n. Thus h(Lσ) ≤ n.

Recall that a morphism ϕ : A∗ → B∗ is alphabetic if, for every letter a ∈ A,
aϕ is either a letter of B or the empty word. Then we can state

Corollary 4.7 For every n ≥ 0, the set of languages of star-height ≤ n is closed
under inverse alphabetic morphisms.

Proof. Let ϕ : A∗ → B∗ be an alphabetic morphism. Define a relation σ :
B∗ → A∗ by setting 1σ = 1, and for every word u ∈ B+, uσ = uϕ−1. We claim
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that σ is an injective star-free substitution. First of all, since ϕ is alphabetic, σ
is an injective substitution. Put C = {a ∈ A∗ | aϕ = 1}, and, for every letter
b ∈ B, Cb = {a ∈ A | aϕ = b}. Then for every b ∈ B, bϕ−1 = C∗CbC

∗ is
star-free by Lemma 3.3. Finally, B∗σ = A∗ is star-free and thus σ is star-free
by Proposition 4.4. Thus, by Theorem 4.6, if L is a language of A∗ such that
h(L) ≤ n, then h(Lσ) ≤ n. Now if 1 is not in L, then Lϕ−1 = Lσ and hence
h(Lϕ−1) ≤ n. If 1 ∈ L, we have Lϕ−1 = C∗∪(L\{1})σ and since C∗ is star-free,
h(Lϕ−1) ≤ h((L \ {1})σ). Now by Theorem 4.6, h((L \ {1})σ) ≤ h(L {1}) =
h(L). Therefore h(Lϕ−1) ≤ n as required.

5 Sequential functions and wreath product

In this section we review the definition of sequential functions and their relations
with wreath products.

Recall that a (left sequential) transducer T = (Q, A, B, ·, ∗, q0) consists of
an input alphabet A, an output alphabet B, a finite set of states Q, an initial
state q0 ∈ Q, and two functions

Q×A → Q Q×A → B

(q, a) → q ·a (q, a) → q ∗ a

called the next state function and the output function, respectively. These
functions are extended to Q×A∗ by setting, for u ∈ A∗ and a ∈ A,

q ·1 = q q ·(ua) = (q ·u)·a

q ∗ 1 = 1 q ∗ (ua) = (q ∗ u)((q ·u) ∗ a)

The (partial) function σ : A∗ → B∗ realized by T is defined by

uσ = q0 ∗ u.

A sequential function is a function realized by such a transducer.
We shall use the classical “state transition diagram” to represent the deter-

ministic automaton A = (Q, A, ·, q0). For instance, the fact that q ·a = q′ is
represented by an edge

q
a
−→ q′.

Assume that σ is a total function, or, equivalently, that A is a complete automa-
ton (this will be the case in all the examples considered in this paper). Then
every word u = a1 · · ·ak defines a unique path

p(u) = (q0, a1, q1)(q1, a1, q2) · · · (qk−1, ak, qk)

where q0 is the initial state and qi+1 = qi ·ai+1 for 0 ≤ i ≤ k − 1. Therefore we
may use without ambiguity the shorter notation

p(u) = (q0, a1)(q1, a2) · · · (qk − 1, ak) (1)

11



Now we have by definition

uσ = (q0 ∗ a1)(q1 ∗ a2) · · · (qk−1 ∗ ak) (2)

and it follows from (1) and (2) that

|uσ|b =
∑

q∗a=b

|p(u)|(q,a)

Thus counting the number of occurrences of a given letter in uσ reduces to
counting the number of occurrences of a given edge in p(u). Therefore, it suffices
to count modulo n the number of occurrences of a given edge in the path defined
by a word u. We shall discuss this problem in detail in Section 6.

Sequential functions are intimately related to wreath products. Indeed let
M(σ) be the transition monoid of the automaton A defined above. Then if
a language L ⊂ B∗ is recognized by a monoid M , Lσ−1 is recognized by the
wreath product M ◦M(σ). There is a partial converse to this result. Let N ◦M
be a wreath product and let η : A∗ → N ◦ M be a morphism recognizing a
language L. We denote by π : N ◦M → M the natural projection and we put
ϕ = ηπ and B = M ×A. Then we have

Proposition 5.1 (Wreath product principle [12]) If L is recognized by η : A∗ →
N ◦ M , then L is a boolean combination of languages of the form X ∩ Y σ−1

where X ⊂ A∗ is recognized by M , Y ⊂ B∗ is recognized by N and σ : A∗ → B∗

is the sequential function defined by

(a1 · · · ar)σ = (1, a1)(a1ϕ, a2) · · · ((a1 · · · ar−1)ϕ, ar).

Note that the sequential function σ is realized by the transducer T =
(M, A, M ×A, ·, ∗, 1) where the next state function and the output function are
defined, for every m ∈ M and every a ∈ A, by m·a = m(aϕ) and m∗a = (m, a).

We conclude this section by a definition. Given two varieties of monoids V

and W, we denote by V ∗W the smallest variety of monoids containing all the
wreath products of the form M ◦N where M ∈ V and N ∈ W. One can show
that the operation (V,W) → V ∗W is an associative (but non-commutative!)
operation on varieties.

6 Some languages of star-height 1

We have collected in this section the technical results that lead to the main
results of the next section. The first of these results is called the Transfer
Lemma because it is based on an identity in which the expression b∗ occurs on
the left side but not on the right side, while the expression a∗ occurs on the
right side but not on the left side. Thus, informally, stars have been transfered
from b∗ to a∗.

12



Lemma 6.1 (Transfer Lemma). Let L0 and L1 be star-free languages of A∗

such that L∗
0 is star-free. Assume that the substitution σ defined by aσ = L0 and

bσ = L1 is injective and let L = [(L∗
1L0)

n]∗L∗
1 = L∗

1[(L0L
∗
1)

n]∗ = [(L∗
1L0L

∗
1)

n]∗.
Then h(L) ≤ 1.

Proof. Let A = {a, b} be a two-letter alphabet. Since |u|a + |u|b = |u|, we
have |u|a ≡ 0 mod n if and only if there exists r such that 0 ≤ r < n and
|u| ≡ |u|b ≡ r mod n. Therefore

L(a, 0, n) =
⋃

0≤r≤n−1

[(An)∗Ar ∩ L(b, r, n)]

Now, L(a, 0, n) = (b ∪ (ab∗)n−1a)∗ = ((b∗a)n)∗b∗ and L(b, n, r) = (a∗b)r(a ∪
(ba∗)n−1b)∗ and thus we obtain the following formula:

((b∗a)n)∗b∗ =
⋃

0≤r≤n−1

[(An)∗Ar ∩ (a∗b)r(a ∪ (ba∗)n−1b)∗] (1)

By (1) and Proposition 4.2, we have

L =
⋃

0≤r≤n−1

[((L0 ∪ L1)
n)∗(L0 ∪ L1)

r ∩ (L∗
0L1)

r(L0 ∪ (L1L
∗
0)

n−1L1)
∗]

Now h(L∗
0) = 0, h(L0) = 0, h(L1) = 0 and thus the above formula shows that

h(L) ≤ 1.

The transfer Lemma is very useful since it permits one to remove a star level
in an expression. As an example, we give a simple proof of Theorem 3.6. Put

L0 = {arb} and L1 = {am, b, ab, . . . , ar−1b, ar+1b, . . . , am−1b}.

Then one can verify that

W (h, k, r, m) = [(L∗
1L0)

k]∗L∗
1(L0L

∗
1)

h ∩ (A∗b ∪ {1}).

Now L0, L1 and L∗
0 are star-free, and since L0∪L1 is a prefix code, the substitu-

tion σ defined by aσ = L0 and bσ = L1 is injective by Proposition 4.2. Thus, by
the Transfer Lemma, [(L∗

1L0)
k]∗L∗

1 is of star-height 1, and so is W (h, k, r, m).
In the sequel we encounter the following type of problem. Given a total

function γ : A∗ → N and two integers k, n such that 0 ≤ k < n, find the star
height of the language

L(γ, k, n) = {u ∈ A∗ | uγ ≡ k mod n}.

Here is a first result to handle this problem.

Proposition 6.2 Let c, c1, . . . , cr ∈ Z \ {0} and let γ, γ1, . . . , γr : A∗ → N be
total functions such that, for every u ∈ A∗, c(uγ) = c1(uγ1) + . . . + cr(uγr).
Then for every k, n such that 0 ≤ k < n, L(γ, k, n) is a boolean combination of
languages of the form L(γi, ki, cn), where 0 ≤ ki < n and 1 ≤ i ≤ r.

13



Proof. First, uγ ≡ k mod n is equivalent to c(uγ) ≡ ck mod cn. Now by
definition, c(uγ) = c1(uγ1) + . . . + cr(uγr) for every word u ∈ A∗. Therefore
c(uγ) ≡ ck mod cn if and only if there exist k1, k2, . . . , kr such that

(1) uγi ≡ ki mod cn for 1 ≤ i ≤ r, and

(2)
∑

1≤i≤r ciki = ck mod cn.

It follows that

L(γ, k, n) =
⋃

c1k1+...+crkr=ck

(

⋂

1≤i≤r

L(γi, ki, cn)
)

.

We now come to the analysis of the situation already encountered in Section
5. Let A = (Q, A, ·, q0) be a complete deterministic automaton (in which the
set of final states is not specified). We have seen that every word u = a1 · · ·ak

defines a unique path p(u) = (q0, a1)(q1, a2) · · · (qk−1, ak). Let q ∈ Q, a ∈ A and
0 ≤ k < n be two integers. We would like to compute the star height of the
language

L(A, (q, a), k, n) = {u ∈ A∗ | |p(u)|(q,a) ≡ k mod n}.

We start with two general results. Recall that an automaton A is transitive
(or strongly connected) if for every q1, q2 ∈ Q, there exists a word u such that
q1 ·u = q2.

Proposition 6.3 Let A be a transitive deterministic automaton. Then the fol-
lowing equality holds for every q ∈ Q and for all the integers k, n such that
0 ≤ k < n: h(L(A, (q, a), k, n)) = h(L(A, (q, a), 0, n)).

Proof. Let r, s, t be words of minimal length such that q0 ·r = q, q ·as = q
and q ·t = q0. Put w = r(as)kt. Then q0 ·w = q0 and p(w) contains exactly k
occurrences of the edge (q, a). We claim that

w−1L(A, (q, a), k, n) = L(A, (q, a), 0, n).

Indeed, let u ∈ L(A, (q, a), k, n). Then since q0 ·w = q0, we have

|p(wu)|(q,a) = |p(w)|(q,a) + |p(u)|(q,a) = k + |p(u)|(q,a).

Therefore |p(u)|(q,a) ≡ 0 mod n if and only if |p(wu)|(q,a) ≡ k mod n, proving
the claim. It follows by Proposition 4.1 that

h(L(A, (q, a), k, n)) ≤ h(A, (q, a), 0, n))

and a dual argument proves the opposite inequality.

Proposition 6.4 Let A = (Q, A, ., q0) be a transitive deterministic automaton.
Assume that for every u ∈ A∗, q ·u = q for some q ∈ Q implies q ·u = q for
every q ∈ Q. Then for every q ∈ Q and every a ∈ A, h(L(A, (q, a), 0, n)) =
h(L(A, (q0, a), 0, n)).
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Proof. Let q ∈ Q and a ∈ A. Since A is transitive, there exists a word v ∈ A∗

such that q0 ·v = q. We claim that

|p(vu)|(q,a) = |p(v)|(q,a) + |p(u)|(q0,a).

Indeed, let u = u1au2 be a factorization of u such that q0 ·u1 = q0. Then q ·u1 = q
by the hypothesis and q0 ·vu1 = q ·u1 = q. Conversely, if vu = (vu1)au2 with
q0 ·vu1 = q, then q ·u1 = q. Thus the claim holds and it follows that

L(A, (q0, a), 0, n) = v−1L(A, (q, a), k, n) where k ≡ |p(v)|(q,a) mod n.

Therefore, by Propositions 4.1 and 6.3,

h(L(A, (q0, a), 0, n)) ≤ h(L(A, (q, a), 0, n))

and a dual argument would show the opposite inequality.

Corollary 6.5 Let A = (Q, A, ·, q0) be a transitive deterministic automaton. If
the transition monoid of A is commutative, then

h(L(A, (q, a), 0, n)) = h(L(A, (q0, a), 0, n))

for every q ∈ Q and every a ∈ A.

We are now ready to treat our first example.

Proposition 6.6 Let Q = {0, 1, . . . , n− 1} and let ρ be the permutation on Q
defined by q ·ρ = q + 1 mod n. Let A = (Q, A, ·, 0) be a complete deterministic
automaton in which the action of each letter induces either the identity or the
permutation ρ on Q. Then for each q ∈ Q, for each letter a ∈ A inducing
the identity on Q, and for all the integers k and m such that 0 ≤ k < m,
h(L(A, (q, a), k, m)) ≤ 1.

Proof. The result is trivial if all the letters of A induce the identity on Q.
Otherwise A is transitive and we may suppose k = 0 by Proposition 6.3 and
q = 0 by Proposition 6.4. Set B = {a ∈ A | a induces the identity on Q} and
let C = A \ B. Thus every letter of C induces the permutation ρ on Q and
a ∈ B. Put D = B \ {a}. The situation is summarized in Figure 1.
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Figure 1:

We claim that
L(A, (0, a), 0, m) = P ∗[(aP ∗)m]∗S−1

where
P = D ∪ (CB∗)n−1C and S =

⋃

0≤k<n

(CB∗)k.

Indeed, let u ∈ L(A, (0, a), 0, m) and let q = 0·u. Since A is transitive, there
exists at least one letter c ∈ C. Put v = cn−q if q 6= 0 and v = 1 if n = 0, so that
0·uv = q ·cn−q = 0. Then v ∈ S and uv ∈ P ∗[(aP ∗)m]∗ since P is the set of all
the words x such that p(x) is a simple loop from 0 to 0 containing no occurrence
of (0, a). Thus u ∈ P ∗[(aP ∗)m]∗S−1. Conversely, if u ∈ P ∗[(aP ∗)m]∗S−1, then
uv ∈ P ∗[(aP ∗)m]∗ for some v ∈ S. Put q = 0·u. Then q ·v = 0 and since v ∈ S,
the path from q to 0 defined by v contains no occurrence of (0, a). It follows
that |p(uv)|(0,a) = |p(u)|(0,a) ≡ 0 mod m. Thus u ∈ L(A, (0, a), 0, m), proving
the claim.

Now {a} ∪ P is a prefix code and hence the substitution σ : {a, b}∗ → A∗

defined by aσ = a and bσ = P is injective by Proposition 4.2. Furthermore
a∗ and P are star-free by Lemma 3.3 and thus the Transfer Lemma can be
applied to show that h(P ∗[(aP ∗)m]∗) ≤ 1. It follows, by Proposition 4.1, that
h(L(A, (0, a), 0, m)) ≤ 1.

A similar result holds for another type of automaton.
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Proposition 6.7 If the transition monoid of a deterministic automaton A =
(Q, A, ·, 0) is aperiodic, then h(L(A, (q, a), k, n)) ≤ 1 for every q ∈ Q, a ∈ A
and for all the integers k and n such that 0 ≤ k < n.

Proof. Put q′ = q ·a and let B be the automaton deduced from A by erasing
the transition q ·a (so that q ·a is undefined in B). The transition monoid of
B is also aperiodic. Otherwise, there exists a word u inducing in B a non
trivial permutation on a subset K of Q. Therefore u also induces in A a non
trivial permutation on K, so that A is not aperiodic, a contradiction. For each
q1, q2 ∈ Q, we define

K(q1, q2) = {u ∈ A∗ | q1 ·u = q2 ∈ B}.

All these languages are star-free by Theorem 3.1. Now a simple inspection of the
occurrences of (q, a) in the path defined by a word in A leads to the following
formulas, where S =

⋃

s∈Q K(q′, s):

L(A, (q, a), k, n) =
{

K(q0, q)[(aK(q′, q))n]∗(aK(q′, q))k−1aS if k > 0,

K(q0, q)[(aK(q′, q))n]∗(aK(q′, q))n−1aS ∪
(
⋃

s∈Q K(q0, s)
)

if k = 0.

It follows that h(L(A, (q, a), k, n)) ≤ 1.

We conclude this section by two slightly more technical results. Let p be a
prime number and let A = (Q, A, ·, q0) be an automaton with Q = (Z/pZ)r,
q0 = (0, . . . , 0), such that for every a ∈ A, there exists an r-tuple va ∈ Q with
q ·a = q + va for all q ∈ Q. For instance, the automaton represented in Figure 2
is of this form

0, 0

1, 0

0, 1

1, 1

a a

a a

d

c
b b

d

c

Figure 2:

We can now state
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Proposition 6.8 Let A = (Q, A, ·, q0) be one of the automata described above,
and let a be a letter of A that induces the identity on Q. Then for all the integers
k, n such that 0 ≤ k < n, h(L(A, (q, a), k, n)) ≤ 1.

Proof. If A is not transitive, we define a new automaton B = (Q, A ∪ B, ·, q0)
as follows: B = {b1, . . . , br} is a set of new letters and, for 1 ≤ i ≤ r,
(q1, . . . , qr)·bi = (q1, . . . , qi−1, qi + 1, qi+1, . . . , qr). Now B is clearly transitive
and we have

L(A, (q, a), k, n)) = (L(B, (q, a), k, n) ∩ A∗)ϕ−1

where ϕ : A∗ → (A ∪ B)∗ is the natural morphism defined by uϕ = u for every
u ∈ A∗. Now A∗ is a star-free subset of (A ∪ B)∗ by Lemma 3.3 and ϕ is
an alphabetic morphism. Therefore, by Corollary 4.7, it suffices to show that
h(L(B, (q, a), k, n)) ≤ 1; that is, it suffices to prove the proposition for transitive
automata. Therefore, we may suppose k = 0 by Proposition 6.2 and q = q0 by
Proposition 6.3.

We first treat the case r = 1. In this case every letter of A induces a power
of the cyclic permutation ρ = (0, 1, . . . , p− 1). Let P be the set of all the words
u such that p(u) is a simple loop from 0 to 0 containing no occurrence of (0, a).
More formally

P = {u ∈ A∗ | 0·u = 0, |p(u)|(0,a) = 0 and
∑

b6=a

|p(u)|(0,b) = 1}

We claim that P is star-free. Indeed P is recognized by the automaton C =
({0, 1, . . . , p− 1} ∪ {f}, A, ·, 0, {f}), where f is a new state and the transitions
are the same as in A except for the transitions of the form q ·a = 0 which are
replaced in C by q ·a = f .

Let u ∈ A+ and let q1, . . . , qs be a sequence of states such that, in C,

(1) q1 ·u = q2, q2 ·u = q3, . . . , qs−1 ·u = qs, qs ·u = q1. (2)

The definition of the transitions of C implies that q1, . . . , qs ∈ {1, . . . , p − 1}
and that relations (1) also hold in A. But since u induces a power of ρ in A,
s divides p. But s < p and p is prime, so that s = 1. Therefore the transition
semigroup of C is aperiodic and P is star-free by Theorem 3.1.

Since {a} ∪ P is a prefix code, Proposition 4.2 shows that the substitution
σ : {a, b}∗ → A∗ defined by aσ = a and bσ = P is injective. Furthermore a∗

and P are star-free and thus h([(P ∗aP ∗)n]∗) ≤ 1 by the Transfer Lemma. Set,
for each q ∈ Q,

Sq = {u ∈ A∗ | q ·u = 0 and q ·v 6= 0 for any proper left factor v of u}.

In particular S0 = {1}. We claim that

L(A, (0, a), 0, n) = [(P ∗aP ∗)n]∗S−1 where S =
⋃

q∈Q

Sq .
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Indeed let w ∈ L(A, (0, a), 0, n) and let q = 0·w. Since A is transitive, there
exists a word u ∈ A∗ of minimal length such that q ·u = 0. Now, by definition,
q ·v 6= 0 for any proper left factor v of u, so that u ∈ Sq . Now 0·wu = 0 and
wu ∈ [(P ∗aP ∗)n]∗ since |p(u)|(0,a) ≡ 0 mod n.

Conversely, assume that w ∈ [(P ∗aP ∗)n]∗S−1 and let u ∈ S be a word such
that wu ∈ [(P ∗aP ∗)n]∗. Let q = 0·w. Then 0·wu = q ·u = 0 and q′.u = 0 for
every q′ 6= q since every word of A∗ induces a permutation on Q. It follows that
u ∈ Sq. Now, by the definition of Sq ,

|p(w)|(0,a) = |p(wu)|(0,a) ≡ 0 mod n,

proving the claim. It follows that h(L(A, (0, a), 0, n)) ≤ 1.
For the general case we need a trick, which is just an extension of the fol-

lowing formula, in which a, b, and c are distinct letters and u is a word:

2|u|a = |u|{a,b} + |u|{a,c} − |u|{b,c}.

Thus, to compute |u|a, it “suffices” to compute |u|{a,b}, |u|{a,c} and |u|{b,c}.
In our case, we want to find a similar formula to replace the computation of

|p(u)|(q0,a) by computations of numbers of the form |p(u)|{(q1,a),(q2,a),...,(qs,a)}.
For this purpose we introduce an abbreviation. If S is a subset of Q, we put

|p(u)|S =
∑

q∈S

|p(u)|(q,a).

For every j, j1, . . . , jr ∈ Z/pZ, we define the following subsets of Q = (Z/pZ)r:

H(j1, . . . , jr; j) = {(q1, . . . , qr) ∈ Q | j1q1 + . . . + jrqr = j}

Then one can state

Lemma 6.9 For every word u ∈ A∗, the following equality holds:

(p− 1)pr−1|p(u)|(q0,a) = (p− 1)
∑

E

|p(u)|H(1,j2,...,jr ;0) −
∑

F

|p(u)|H(0,j2 ,...,jr ;j)

where
E = {(j2, . . . , jr) ∈ (Z/pZ)r−1}

and

F = {(j2, . . . , jr, j) ∈ (Z/pZ)r | j 6= 0 and (j2, . . . , jr) 6= (0, . . . , 0)}.
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Before proving this lemma, let us write explicitly the formula when p = 2 and
r = 3.

4|p(u)|(0,0,0) =|p(u)|{(0,0,0),(0,0,1),(0,1,0),(0,1,1)}

+|p(u)|{(0,0,0),(0,1,0),(1,0,1),(1,1,1)}

+|p(u)|{(0,0,0),(0,0,1),(1,1,0),(1,1,1)}

+|p(u)|{(0,0,0),(0,1,1),(1,0,1),(1,1,0)}

−|p(u)|{(0,0,1),(0,1,1),(1,0,1),(1,1,1)}

−|p(u)|{(0,1,0),(0,1,1),(1,1,0),(1,1,1)}

−|p(u)|{(0,0,1),(0,1,0),(1,0,1),(1,1,0)}

Proof. If we expand the right part of the formula by using the definition

|p(u)|S =
∑

q∈S

|p(u)|(q,a),

we obtain a sum of the form
∑

q∈S cq |p(u)|(q,a). The only thing to prove is that

cq0
= (p− 1)pr−1 and cq = 0 if q 6= q0. We first observe that

q0 = (0, . . . , 0) ∈ H(1, j2, . . . , jr; 0) for every (j2, . . . , jr) ∈ F

and that q0 ∈ H(0, j2, . . . , jr; j) for no (j, j2, . . . , jr) ∈ F . Therefore, cq0
=

(p− 1) Card(E) = (p− 1)pr−1.
Next assume that q = (q1, 0, . . . , 0) for some q1 6= 0. Then

q ∈ H(1, j2, . . . , jr; 0)

for no (j2, . . . , jr) ∈ E and q ∈ H(0, j2, . . . , jr; j) for no (j, j2, . . . , jr) ∈ F . Thus
cq = 0− 0 = 0 in this case.

Finally assume that q = (q1, q2, . . . , qr) with (q2, . . . , qr) 6= (0, . . . , 0). Then
the equation in the unknown j2, . . . , jr defined by q1 + j2q2 + . . . + jrqr = 0
has exactly pr−2 solutions in E, and the equation in the unknown j, j2, . . . ,
jr defined by j2q2 + . . . + jrqr = j has exactly pr−2(p − 1) solutions in F .
Thus cq = (p − 1)pr−2 − (p − 1)pr−2 = 0 in this case also and this proves the
lemma.

We return to the proof of Proposition 6.8. It follows from Lemma 6.9 and
Proposition 6.2 that L(A, (q0, a), k, n) is a boolean combination of languages of
the form

{u ∈ A∗ | |p(u)|H(1,j2,...,jr ;0) ≡ t mod pr−1n}

or
{u ∈ A∗ | |p(u)|H(0,j2 ,...,jr;j) ≡ t mod (p− 1)pr−1n}

Thus the problem reduces to showing that

h({u ∈ A∗ | |p(u)|H ≡ k mod n}) ≤ 1
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where H = H(j1, j2, . . . , jr; j) for some (j1, j2, . . . , jr) 6= (0, . . . , 0). Let γ : Q →
Z/pZ be the function defined by

(q1, q2, . . . , qr)γ = j1q1 + . . . + jrqr

and let ∼ be the equivalence on Q defined by q ∼ q′ if and only if qγ = q′γ.
Then ∼ is a congruence of the automaton A. Indeed, if a is a letter, (q ·a)γ =
(q + va)γ = qγ + vaγ. Therefore q ∼ q′ implies qγ + vaγ = q′γ + vaγ, that
is q ·a ∼ q′ ·a. One verifies immediately that the quotient automaton A/∼ is
isomorphic to A′ = (Z/pZ, A, ., 0) where, for every a ∈ A and every q ∈ Z/pZ,
q ·a = q + vaγ. For instance, if A is the automaton represented in Figure 2, and
if H = {(0, 1), (1, 0)} is defined by H = {(q1, q2) | q1 + q2 = 1}, then A′ will be
represented as in Figure 3.

0 1

b, d

b, d

a, c a, c

Figure 3:

Furthermore, γ defines an automaton morphism from A onto A′ that maps
every element of H onto j (by definition of H). Therefore the following for-
mula holds, where p(u) (respectively p′(u)) denotes the path defined by u in A
(respectively in A′):

|p(u)|H = |p′(u)|(j,a)

It follows that

{u ∈ A∗ | |p(u)|H ≡ k mod n} = L(A′, (j, a), k, n).

But A′ has p states and hence h(L(A′, (j, a), k, n)) ≤ 1 by the first part of the
proof.

We now consider the case p = 2. Thus A = ((Z/2Z)r , A, q0, ·) where q0 =
(0, . . . , 0) and, for every letter a ∈ A, there exists an r-tuple va ∈ Q with
q ·a = q + va for all q ∈ Q. Then Proposition 6.8 can be slightly improved.

Proposition 6.10 Let A = ((Z/2Z)r, A, q0, ·) be the automaton described above.
Then for all the integers k, n such that 0 ≤ k < n, for every letter a ∈ A, and
for every state q ∈ Q, h(L(A, (q, a), k, n)) ≤ 1.

Proof. An argument similar to the end of the proof of Proposition 6.8 shows
that one can assume r = 1, that is, Q = {0, 1}. Let C be the set of all letters of
A inducing the identity on Q and let B = A \ ({a} ∪ C). Let ϕ : A∗ → {a, b}∗

be the alphabetic morphism defined by

aϕ = a, bϕ =

{

b if b ∈ B

1 if b ∈ C.
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Let A′ = ({0, 1}, {a, b}, ·, 0) be the automaton defined by the transitions

0·a = 1, 1·a = 0, 0·b = 1 and 1·b = 0.

A and A′ are represented in Figure 4.

0 1

a, B

a, B

C C

A

0 1

a, b

a, b

A′

Figure 4:

Let p(u) (respectively p′(u)) be the path defined by a word u in A (respectively
A′). Then, for every u ∈ A∗, |p(u)|(0,a) = |p′(uϕ)|(0,a), and hence,

L(A, (0, a), k, n) = [L(A′, (0, a), k, n)]ϕ−1.

Thus, by Corollary 4.7, it suffices to show that h(L(A′, (0, a), k, n)) ≤ 1. Put
L = L(A′, (0, a), k, n) and K = L ∩ {x ∈ {a, b}∗ | 0·x = 0}. We claim that

L = K{1, b}−1.

Indeed, let u ∈ L and let q = 0·u. If q = 0, then u ∈ K. If q = 1, then
0·ub = 1·b = 0 and |p′(ub)|(0,a) = |p′(u)|(0,a). Thus ub ∈ K. Conversely, let
u be a word of K{1, b}−1. Then u ∈ K and hence u ∈ L or ub ∈ K. Then
0·ub = 0 and 0·u = 1. It follows that |p′(u)|(0,a) = |p′(ub)|(0,a) and u ∈ L,
proving the claim.

Therefore, by Proposition 4.1, it suffices to show that h(K) ≤ 1. Let X be
the prefix code X = {aa, ab, ba, bb} and let x ∈ X . If u ∈ X∗, we denote by |u|x
the number of occurrences of x in the (unique) factorization of u as a product
of words of X . Then

K = {u ∈ X∗ | |u|ab + |u|aa ≡ k mod n}

= {u ∈ X∗ | 2|u|ab + 2|u|aa ≡ 2k mod 2n}.

Furthermore, for every u ∈ X∗, |u|ab + |u|ba + 2|u|aa = |u|a. It follows that

K = {u ∈ X∗ | |u|a + |u|ab − |u|ba ≡ 2k mod 2n}.

Therefore, by Proposition 6.2, K is a boolean combination of languages of the
form

{u ∈ X∗ | |u|a ≡ s mod 2n}

and of the form
{u ∈ X∗ | |u|ab − |u|ba ≡ s mod 2n}.
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Languages of the first type are recognized by a commutative group and hence
are of star height ≤ 1 by Theorem 3.4. Let us now consider the languages of the
second type. Let ϕ : {a, b}∗ → {a, b}∗ be the morphism defined by aϕ = ab and
bϕ = ba. Then A∗ϕ = {ab, ba}∗ is star-free (one can verify that its syntactic
monoid is aperiodic and apply Theorem 3.1) and thus ϕ is an injective star-free
morphism by Proposition 4.4. Let

S = {u ∈ {a, b}∗ | |u|a − |u|b ≡ s mod 2n}.

Then h(S) ≤ 1 by Theorem 3.4 and h(Sϕ) ≤ 1 by Theorem 4.6. This concludes
the proof, since Sϕ = {u ∈ X∗ | |u|ab − |u|ba ≡ s mod 2n}.

7 Main results.

The results of Section 3 show that languages recognized by aperiodic monoids
or by commutative groups are of star height ≤ 1. The aim of this section is
to prove similar results for some other varieties of monoids. Given a variety of
monoids V, we define the star height of V as the number

h(V) = max{h(L) | L is recognized by a monoid of V}

Thus h(A) = 0 and h(Gcom) = 1. Note that it is still an open problem to find
a language (or a variety) of star height > 1! However one can prove a rather
general result on h(V). Recall that a monoid morphism ϕ : M → N is aperiodic
if for every idempotent e ∈ N , eϕ−1 is an aperiodic subsemigroup of M . Given
a variety of monoids V, A−1V denotes the smallest variety containing all the
monoids M such that there exists an aperiodic morphism ϕ : M → N where
N ∈ V. Varieties of this form play an important role in semigroup theory (see
[3, 8, 12] for more details). Then we have

Proposition 7.1 For every variety of monoids V, h(V) = h(A−1V) = h(A ∗
V)

Proof. Since V ⊂ A ∗V ⊂ A−1V, we have h(V) ≤ h(A ∗V)) ≤ h(A−1V).
Now by a theorem of [12], every language L recognized by a monoid of A−1V

is a boolean combination of languages of the form L0a1L1a2 . . . akLk where
k ≥ 0, a1, . . . , ak ∈ A and L0, . . . , Lk are languages recognized by monoids of
V. Now since h(L0), . . . , h(Lk) ≤ h(V) by definition, h(L) ≤ h(V) and hence
h(A−1V) ≤ h(V) as required.

Here is another general result which might be considered as a first step to
compute h(V).

Proposition 7.2 Let F be a class of finite monoids and let V be the variety of
monoids generated by F . If every language recognized by a monoid of F is of
star-height ≤ n, then h(V) ≤ n.
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Proof. Let M ∈ V. Then M divides a direct product M1 × . . . × Mk of
elements of F . Let L ⊂ A∗ be a language recognized by M . Then since M
divides M1 × . . . × Mk, L is also recognized by M1 × . . . × Mk. Therefore
there exists a monoid morphism η : A∗ → M1 × . . . × Mk and a subset P of
M1 × . . .×Mk such that L = Pη−1. Since L = ∪m∈P mη−1, it suffices to prove
that h(mη−1) ≤ n for each m ∈ P . Denote by πi : M1 × . . . ×Mk → Mi the
natural projection and set m = (m1, . . . , mk). Then mη−1 = ∩1≤i≤kmiπ

−1
i η−1.

But the language Li = miπ
−1
i η−1 is recognized by Mi so that h(Li) ≤ n by

assumption. Therefore h(mη−1) ≤ n as required.

Theorem 3.4 can be extended to the case of finite nilpotent groups of class 2.

Theorem 7.3 Every language recognized by a finite nilpotent group of class 2
is of star-height ≤ 1.

Proof. By Theorem 2.2, it suffices to show that the languages of the form
L(u, k, n), where |u| ≤ 2 and 0 ≤ k < n, are of star height ≤ 1. If |u| ≤ 1,
L(u, k, n) is recognized by a commutative group (Theorem 2.1) and the result
follows from Theorem 3.4. If u = aa for some letter a, then L(u, k, n) is also

recognized by a commutative group. Indeed, since
(

v
aa

)

=
(

|v|a
2

)

, we have
(

v
aa

)

≡

k mod n if and only if there exists a positive integer r such that
(

|v|a
2

)

≡ k
mod n and |v|a ≡ r mod 2n. Therefore L(aa, k, n) is a finite union of languages
of the form L(a, r, 2n).

Thus we may assume that u = ab for some distinct letters a and b. We define
a deterministic complete automaton as follows. An = ({0, 1, . . . , n− 1}, A, ·, 0)
where the transition function is given by

q ·a = q + 1 mod n

q ·c = q if c 6= a.

This automaton is represented in Figure 5.
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Figure 5:

We now observe that for every v ∈ A∗,

(

v

ab

)

=
∑

0≤i<n

i|p(v)|(i,b) mod k

where p(v) denotes the path defined by v in An. Thus by Proposition 6.2,
L(ab, k, n) is a boolean combination of languages of the form L(A, (q, b), ki, n),
where 0 ≤ ki < n. Now by Proposition 6.6, we have h(L(A, (q, b), ki, n)) ≤ 1
and hence L(ab, k, n) ≤ 1.

More generally, we have

Theorem 7.4 Let a and b be two letters of A. Then for every i, j, k, n such
that 0 ≤ k < n, h(L(aibaj , k, n)) ≤ 1.

Proof. Fix i, j and k and put m = (max(i, j))! and N = mn. Elementary
arithmetic shows that if s, t are positive integers such that s ≡ t mod N , then

(

s

i

)

≡

(

t

i

)

mod n and

(

s

j

)

≡

(

t

j

)

mod n.

Let u ∈ A∗. Then every factorization u = xby defines exactly
(

|x|a
i

)(

|y|a
j

)

oc-

currences of the subword aibaj since this corresponds to the number of ways
to take i occurrences of a in x and j occurrences of a in y. Thus every b that
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follows a number of a’s congruent to s mod N produces a number of subwords
aibaj congruent to

(

s
i

)(

N+|u|a−s
j

)

modulo n.

Let AN = ({0, 1, . . . , N − 1}, A, ., 0) be the automaton defined by

q ·a = q + 1 mod N,

q ·c = q for every letter c 6= a.

Thus, intuitively, AN counts modulo N the number of occurrences of a. Now
we have

(

u

aibaj

)

≡
∑

0≤q<N

(

q

i

)(

N + |u|a − q

j

)

|p(u)|(q,b) mod n.

Thus
(

u
aibaj

)

≡ k mod n if and only if there exist an integer s such that 0 ≤
s < N and integers r0, . . . , rN−1 < N such that

(a) s ≡ |u|a mod N ,

(b) k ≡
∑

0≤q<N

(

q
i

)(

N+s−q
j

)

rq mod n, and

(c) For 0 ≤ q < N , |p(u)|(q,b) ≡ rq mod n.

It follows by Proposition 6.2 that L(aibaj , k, n) is a boolean combination of
languages of the form L(a, s, N) and L(AN , (q, a), rq , n). But h(L(a, s, N)) ≤
1 by Theorem 3.4 and h(L(AN , (q, a), rq , n)) ≤ 1 by Proposition 6.7. Thus
h(L(aibaj , k, n)) ≤ 1.

The next theorem is probably the most important result of this article. It
shows in particular that the language L(abc, 0, 2), which was considered as a
possible candidate for star height 2 for the past ten years (Brzozowski, [1]), is
in fact of star height one.

Recall that a number n is square-free if it admits no square as a divisor.

Theorem 7.5 Let a, b and c be letters of A. If n is a square-free number, then
h(L(abc, k, n)) ≤ 1 for every k such that 0 ≤ k < n.

Proof. If a = c, b = c or a = b, the result follows from Theorem 7.4. Suppose
now that a, b and c are three distinct letters and let n = p1 · · · ps be the decom-
position of n into prime numbers. Let, for 1 ≤ i ≤ s, ki be a number such that
0 ≤ ki < pi and ki ≡ k mod pi. Then by the Chinese Remainder Theorem,
x ≡ k mod n if and only if x ≡ ki mod pi for 1 ≤ i ≤ s, so that

L(abc, k, n) =
⋂

1≤i≤s

L(abc, ki, pi).

Thus we may assume that n = p is a prime number. The proof now mimics for
the most part the proof of Theorem 7.4. Every factorization u = xby defines
|x|a|y|c occurrences of the subword abc. Furthermore, we observe that |y|c =
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|u|c − |x|c. Let A = (Q, A, ·, q0) be the automaton defined by Q = (Z/pZ)2,
q0 = (0, 0) and

(q1, q2)·a = (q1 + 1, q2),

(q1, q2)·c = (q1, q2 + 1),

(q1, q2)·d = (q1, q2) if d is a letter different from a and c.

Thus, intuitively, A counts simultaneously modulo p the number of occurrences
of a’s and of c’s. Then we have

(

u

abc

)

≡
∑

q∈Q

q1(|u|c + p− q2)|p(u)|(q,b) mod p.

Thus
(

u
abc

)

≡ k mod p if and only if there exists an integer s such that 0 ≤ s < p
and integers rq < n (for q ∈ Q) such that

(a) s ≡ |u|c mod p,

(b) k ≡
∑

q∈Q q1(s + p− q2)rq mod p,

(c) For every q ∈ Q, |p(u)|(q,b) ≡ rq mod p.

It follows that L(abc, k, n) is a boolean combination of languages of the form
L(c, s, p) and L(A, (q, b), rq , p). But h(L, c, s, p) ≤ 1 by Theorem 3.4 and

h(L(A, (q, b), rq , p)) ≤ 1

by Proposition 6.8. Thus h(L(abc, k, n)) ≤ 1.

We conclude this section with two results on the varieties of the form V∗W.

Theorem 7.6 Every language recognized by a monoid of the variety Gcom ∗
(Z/2Z) is of star-height ≤ 1.

Proof. By definition, the variety Gcom ∗ (Z/2Z) is generated by the wreath
products of the form G ◦ (Z/2Z)r where G is a commutative group. Thus by
Proposition 7.2, it suffices to show that every language recognized by such a
wreath product is of star-height ≤ 1.

Thus, let η : A∗ → G ◦ (Z/2Z)r be a morphism recognizing a language L.
We denote by π : G ◦ (Z/2Z)r → (Z/2Z)r the natural projection and we put
ϕ = ηπ and B = (Z/2Z)r ×A. By the wreath product principle, L is a boolean
combination of languages of the form X ∩Y σ−1 where X ⊂ A∗ is recognized by
(Z/2Z)r, Y ⊂ B∗ is recognized by G and σ : A∗ → B∗ is the sequential function
defined by

(a1 · · · ar)σ = (1, a1)(a1ϕ, a2) · · · ((a1 · · · ar−1)ϕ, ar).

Since (Z/2Z)r is a commutative group, h(X) ≤ 1 by Theorem 3.4 and it suffices
to show that h(Y σ−1) ≤ 1. Since Y is recognized by a commutative group,
Theorem 2.1 shows that Y is a boolean combination of languages of the form
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L(b, k, n) (where b ∈ B, and 0 ≤ k < n). Since σ−1 commutes with boolean
operations, it is sufficient to prove that h(L) ≤ 1 where L = {u ∈ A∗ | |uσ|b ≡ k
mod n}. As we observed in Section 5, it is sufficient to show, for every s such
that 0 ≤ s < n, that h(L(A, (q, a), s, n) ≤ 1 where (q, a) is an arbitrary edge
in the automaton A associated with σ. But A = ((Z/2Z)r, A, ·, 1) where the
transition function is defined by q ·a = q + (aϕ). Thus h(L) ≤ 1 by Proposition
6.10.

Corollary 7.7 Every language recognized by a group of order less that 12 is of
star-height ≤ 1.

Proof. Let G be a finite group of order n < 12. If n = p or n = p2, where p is
prime, then G is commutative, and if n = p3, G is nilpotent of class 2. Thus,
if n is different from 6 and 10, we may apply Theorem 3.4 or Theorem 7.3. If
n = 2m, G is either cyclic (and thus commutative) or equal to the dihedral
group Dm. But Dm can be decomposed as a semidirect product of the form
Z/mZ ∗ Z/2Z, and thus Theorem 7.6 can be applied.

Theorem 7.8 Every language recognized by a monoid of the variety A∗Gcom∗
A is of star-height ≤ 1.

Proof. By Proposition 7.1, it suffices to show that every language recognized
by a monoid of the variety Gcom ∗ A is of star height ≤ 1. By definition,
Gcom ∗A is generated by the wreath products of the form G ◦M where G is a
commutative group and M is an aperiodic monoid. Thus by Proposition 7.2, it
suffices to show that every language recognized by such a wreath product G◦M
is of star-height ≤ 1.

Thus, let η : A∗ → G ◦ M be a morphism recognizing a language L. We
denote by π : G ◦ M → M the natural projection and we put ϕ = ηπ and
B = M × A. By the wreath product principle, L is a boolean combination of
languages of the form X ∩ Y σ−1 where X ⊂ A∗ is recognized by M , Y ⊂ B∗ is
recognized by G and σ : A∗ → B∗ is the sequential function defined by

(a1 · · · ar)σ = (1, a1)(a1ϕ, a2) · · · ((a1 · · · ar−1)ϕ, ar).

Since M is aperiodic, h(X) = 0 by Theorem 3.1 and it suffices to show that
h(Y σ−1) ≤ 1. Since Y is recognized by a commutative group, Theorem 2.1
shows that Y is a boolean combination of languages of the form L(b, k, n) (where
b ∈ B, and 0 ≤ k < n). Since σ−1 commutes with boolean operations, it is
sufficient to prove that h(L) ≤ 1 where L = {u ∈ A∗ | |uσ|b ≡ k mod n}. As
we observed in Section 5, it is sufficient to show, for every s such that 0 ≤ s < n,
that h(L(A, (q, a), s, n) ≤ 1 where (q, a) is an arbitrary edge in the automaton
A associated with s. But A = (M, A, ·, 1) where the transition function is
defined by q ·a = q(aϕ), so that the transition monoid of A is M , an aperiodic
monoid. Therefore we can apply Proposition 6.7 to conclude the proof.
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8 Further results.

Unfortunately, it is even not known whether there exist languages of star-height
greater than or equal to 2! A possible candidate is

L = (ab∗a ∪ ba∗b(ab∗a)∗ba∗b)∗.

Notice that if A is the automaton represented on Figure 6,

0 12

a

a

b

b

a b

Figure 6:

then L = {u ∈ A∗ | 0·u = 0 and |p(u)|(0,b) ≡ 0 mod 2}.
More generally, good candidates can be found among the languages the syn-

tactic monoid of which is a “sufficently complicated” finite group. The previous
theorems suggest that languages of star-height≤ n can be characterized through
a property of their syntactic monoid. This hypothesis is explicitly stated in [5]
but is very unlikely, unless every language is of star-height 0 or 1, according to
the following result

Theorem 8.1 For every rational language L of A∗, there exists a morphism
ϕ : A∗ → B∗ and a rational language K ⊂ B∗ of restricted star-height ≤ 1 such
that L = Kϕ−1.

Proof. Let A = (Q, A, ·, 1, F ) be the minimal automaton of L, and let Q =
{1, 2, . . . , n}. Let B = A∪{c} where c is a letter not in A. Finally, let τ : N → N

be the function defined by
nτ = 2n−1 − 1

(in fact the proof works with every function τ such that, for every a, b, c, d in
N, aτ + bτ = cτ + dτ implies {a, b} = {c, d}). Set

P = {ciτacnτ−(i·a)τ | a ∈ A, i ∈ Q},

S = {ciτ | i ∈ F} and R = P ∗S.

Let ϕ : A∗ → B∗ be the morphism defined by aϕ = acnτ for every a ∈ A.
R is, by construction, a language of restricted star-height 1 and furthermore
Rϕ−1 = L.

In fact, Theorem 8.1 shows that languages of star-height ≤ n can even
not be characterized through a property of their pointed syntactic monoid (if
η : A∗ → M is the syntactic morphism of L, the pair (M, Lη) is called the
pointed monoid of L), unless every language is of star-height 0 or 1.
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