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Abstract

In this paper, we give two descriptions of the languages recognized by

finite supersoluble groups. We first show that such a language belongs

to the Boolean algebra generated by the modular products of elementary

commutative languages. An elementary commutative language is defined

by a condition specifying the number of occurrences of each letter in its

words, modulo some fixed integer. Our second characterization makes use

of counting functions computed by transducers in strict triangular form.

Eilenberg’s variety theorem [7] is a powerful tool for classifying regular lan-
guages. It states that, given a variety of finite monoids V, the class of languages
V whose syntactic monoid belongs to V is a variety of languages, that is, a class
of regular languages closed under finite union, complement, left and right quo-
tients and inverse of morphisms. Further, the correspondence V → V between
varieties of finite monoids and varieties of languages is one-to-one and onto.

Eilenberg’s theorem can be used in both ways: given a variety of languages,
one can look for the corresponding variety of monoids, or, given a variety of
monoids, one can seek for a combinatorial description of the corresponding
variety of languages. Examples abound in the literature: for instance, aperi-
odic monoids correspond to star-free languages, J -trivial languages to piecewise
testable languages, etc. We refer the reader to [10] for a survey.

It is therefore natural to ask for a nice characterization of the variety of
languages corresponding to the variety of groups. The answer to this frequently
asked question is unfortunately negative: there is no known satisfactory answer
to this question. The reason is hidden in the complexity of finite groups since
a solution would probably require a description of the languages recognized by
each finite simple group . . .

However, solutions are known for some important subvarieties: abelian groups
[7], p-groups [7, 17, 18], nilpotent groups [7, 16] and soluble groups [14, 18]. The
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aim of this paper is to complete these results by giving a description of the lan-
guages corresponding to the variety of supersoluble groups.

We first proceed in Section 1 to an algebraic study of the variety of super-
soluble groups. Most of the results of this section were actually known before,
but we try to present them in a selfcontained way that suits our needs for the
next sections. We show in particular that the variety of supersoluble groups is
generated by the Borel groups Bn(Fp) for all n > 0 and all primes p.

In Section 2, we first state, in a slightly improved version, the description of
the languages recognized by abelian groups. In this new version, these languages
are described as a disjoint union of “elementary languages”, which have a simple
combinatorial description. We also define the modular concatenation product,
an operation on languages first introduced by Straubing [14].

Our main result (Corollary 2.8) states that the languages recognized by su-
persoluble groups can be obtained in two steps: first take the modular products
of elementary languages and then take the Boolean algebra generated by these
languages.

In the last part of the paper, we give another characterization of the lan-
guages recognized by supersoluble groups, which relies on the following idea.
Given a function τ from words to numbers and an integer r, consider the lan-
guage of all words u such that τ(u) = r. One can say that this language is
defined by counting modulo τ . This leads to the idea of describing regular
languages by suitable counting functions. It turns out that this idea is very suc-
cessful for describing group languages: for instance, languages of abelian groups
can be described by counting letters and languages of p-groups can be described
by counting subwords. Our second description of the languages recognized by
supersoluble groups (Corollary 2.14) makes use of counting functions computed
by transducers in strict triangular form (the precise definition can be found
in Section 2.4). It would be nice to have a simple combinatorial description of
these transducers, but there is unfortunately no evidence that such a description
exists.

1 The variety of supersoluble groups

Throughout this paper, the term variety will be used to mean a class of finite
groups (or monoids) closed under finite direct products, subgroups (submonoids)
and morphic images.

Given two groups G and H , we use the standard notation H 6 G (respec-
tively H ∼= G) to mean that H is a subgroup of G (respectively H is isomorphic
to G). Finally, for any element g ∈ G and any subgroup H of G, the g-conjugate
of H is the set Hg = g−1Hg.

Given a family of varieties of groups (Hi)i∈I , their join consists of all groups
which are quotients of subgroups of direct products H1×· · ·×Hn with Hk ∈ Hik

,
for some ik ∈ I. It is the smallest variety of groups which contains Hi for all
i ∈ I. Given two varieties of groups U and V, the product variety U∗V consists
of all groups G having a normal subgroup U ∈ U such that G/U ∈ V.

For a prime p, Gp denotes the variety of all p-groups. For any positive integer
d, Ab(d) denotes the variety of all abelian groups of exponent dividing d. A
group G is supersoluble if it has a normal series with cyclic factors. In particular,
all nilpotent groups are supersoluble and any supersoluble group is soluble. The
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class of all finite supersoluble groups form a variety of groups. A description of
supersoluble groups in terms of p-groups and abelian groups was given in [3].

Proposition 1.1 The variety of all finite supersoluble groups is the join of the
varieties Gp ∗ Ab(p − 1), where p runs over all primes.

Proposition 1.1 is actually a particular case of a general result from the the-
ory of formations of groups (see [6, IV] for more details on this topic). The
class U of supersoluble groups is a saturated formation and, as such, can be
defined by a local formation function f which associates with each prime p a
(possibly empty) formation of groups f(p). The class U is locally defined by
f(p) = Ab(p− 1), for all primes p [5], [6, IV, (3.4)]. In general, a saturated for-
mation F possesses many local definitions but it has a unique full and integrated
local formation function F [6, IV, (3.7)]. In the supersoluble case, it is given by
F (p) = Gp ∗ Ab(p − 1), for all primes p, [6, IV, (3.8)]. Now, given a saturated
formation F and its full and integrated local definition F , it is easy to see that
F is just the formation generated by F (p), when p runs over all primes. Since
F (p) is included in F for all primes p, so is their join H. Conversely, assume
that F \H is not empty and consider G ∈ F of minimal order such that G 6∈ H.
By [6, II, (2.5)], G has a unique minimal normal subgroup N . If p is a prime
dividing the order of N then G ∈ F (p), [6, IV, (3.2)]. This contradiction shows
that F = H.

There is another interesting characterization of this variety. Let p be a
prime number and Fp = Z/pZ the field with p elements. Let us denote by
GLn(Fp) the group of all invertible n × n matrices with entries in Fp and by
Bn(Fp) the group of all invertible upper triangular matrices of GLn(Fp). The
group Bn(Fp) is known as the standard Borel subgroup of GLn(Fp). Finally,
we denote by Un(Fp) the group of unitriangular matrices of Bn(Fp) (upper
triangular matrices with ones on the diagonal) and by Dn(Fp) the group of all
diagonal matrices of Bn(Fp). It is well known that Un(Fp) is a Sylow p-subgroup
of GLn(Fp) which is normal in Bn(Fp) and that Bn(Fp) = Un(Fp)Dn(Fp), see
[2, pages 50, 64]. Since Dn(Fp) is isomorphic with (F∗

p)
n, it follows that Bn(Fp)

belongs to the variety Gp ∗ Ab(p − 1).
The next theorem is also well known.

Theorem 1.2 A group belongs to the variety Gp ∗ Ab(p − 1) if and only if it
is isomorphic to a subgroup of Bn(Fp) for some n > 0.

Proof. Let G be a group belonging to Gp ∗Ab(p− 1). There exists a normal
subgroup N of G such that N is a p-group and G/N ∈ Ab(p − 1). By [6, A,
(11.3)], there exists a subgroup C of G such that G = NC and C ∼= G/N . If V is
a simple FpG-module then N centralizes V , by [6, B, (3.12)]. In particular, this
implies that V is a simple FpG-module if and only if V is a simple FpC-module.
Now, since C ∈ Ab(p− 1), any simple FpC-module has dimension 1 over Fp [6,
B, (9.8)]. Thus, any simple FpG-module has dimension 1 over Fp.

Let R be the regular FpG-module and let {0} = R0 < R1 < · · · < Rn = R
be a composition series of R as FpG-module. We use this composition series
in order to chose a basis of R over Fp. Any factor Ri+1/Ri is a simple FpG-
module and then dimFp

(Ri+1/Ri) = 1 for i = 0, . . . , n − 1. We choose r1 ∈ R1

a basis of R1 over Fp. Now, let r2 + R1 a basis of R2/R1. Notice that {r1, r2}
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is a linearly independent set. Now, assume we have chosen {r1, . . . , ri} in that
way and take ri+1 + Ri a basis of Ri+1/Ri. Then {r1, . . . , ri+1} is a linearly
independent set. Let B = {r1, . . . , rn} be a basis of R over Fp constructed in
this way. Let ϕ : G → GLn(Fp) the matrix representation of G afforded by B.
Since G acts faithfully over R, it follows that G is isomorphic to a subgroup of
GLn(Fp). Moreover, the choice of B assures that the matrix associated to any
element g of G is a triangular matrix. Thus, G is isomorphic with a subgroup
of Bn(Fp).

Corollary 1.3 The variety of supersoluble groups is generated by the Borel
groups Bn(Fp) for all n > 0 and all primes p.

2 Languages

We shall denote by Up the variety of languages associated with the variety of
groups Gp ∗ Ab(p − 1) and by U the variety of languages associated with the
variety of supersoluble groups. Proposition 1.1 shows that U is the join of the
varieties of languages Up, for any prime p. These varieties of languages will
be described in Section 2.3. Before that, we need a precise description of the
varieties of languages corresponding to Ab(n) and to Gp.

2.1 Languages recognized by Abelian groups

Let us call n-commutative a language recognized by a group in Ab(n). The
set of n-commutative languages of A∗ is denoted by Ab(n)(A∗). A description
of these languages was given in [7]. It relies on the fact that this variety is
generated by the cyclic groups of order n.

Proposition 2.1 For each alphabet A, the n-commutative languages of A∗ form
the Boolean algebra generated by the languages of the form

F (a, k, n) = {u ∈ A∗ | |u|a ≡ k mod n} = ((B∗a)n)∗(B∗a)kB∗,

where a ∈ A, B = A \ {a} and 0 6 k < n.

We shall need an improved version of this result, which avoids using com-
plementation. Let A = {a1, . . . , as} be an alphabet. Let us call n-elementary
commutative a language of the form

F (r1, . . . , rs, n) = {u ∈ A∗ | |u|a1
≡ r1, . . . , |u|as

≡ rs mod n}

where r1, . . . , rs ∈ {0, . . . , n − 1}. Thus, with the notation of Proposition 2.1,

F (r1, . . . , rs, n) = F (a1, r1, n) ∩ . . . ∩ F (as, rs, n)

Proposition 2.2 A language is n-commutative if and only if it is a disjoint
union of n-elementary commutative languages.

Proof. Let A = {a1, . . . , as}, let G be a group in Ab(n) and let ϕ : A∗ → G
be a morphism. If L is recognized by ϕ, then L = ϕ−1(P ) for some subset P of
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G. Put ϕ(a1) = g1, . . . , ϕ(as) = gs. Let u ∈ A∗ and, for 1 6 i 6 s, let |u|ai
≡ ri

mod n. Adopting an additive notation for G, we get

ϕ(u) =
∑

16i6s

|u|ai
gi =

∑

16i6s

rigi

Therefore u ∈ L if and only if
∑

16i6s rigi ∈ P and hence

L =
⋃

(r1,...,rs)∈E

F (r1, . . . , rs, n)

where E = {(r1, . . . , rs) |
∑

16i6s rigi ∈ P}. This concludes the proof, since the
languages F (r1, . . . , rs, n) are clearly pairwise disjoint.

2.2 Languages recognized by p-groups

A few auxiliary definitions are required to describe the variety of languages Gp

associated with Gp, for a given prime p.
A word u = a1a2 · · ·an (where a1, . . . , an are letters) is a subword of a word

v if v can be factored as v = v0a1v1 · · · anvn. For instance, ab is a subword of
cacbc. Given two words u and v, we denote by

(

v
u

)

the number of distinct ways
to write u as a subword of v.

More formally, if u = a1a2 · · ·an, then

(

v

u

)

= Card{(v0, v1, . . . , vn) | v0a1v1 · · ·anvn = v}

Observe that if u is a letter a, then
(

v
a

)

is simply the number of occurrences of
the letter a in v, also denoted by |v|a.

The following result is credited to Eilenberg and Schützenberger in [7].

Proposition 2.3 A language of A∗ is recognized by a p-group if and only if it
is a Boolean combination of the languages

S(u, r, p) = {v ∈ A∗ |

(

v

u

)

≡ r mod p},

for 0 6 r < p and u ∈ A∗.

Another characterization, given in [17, 18], relies on a variation of the con-
catenation product, called the modular concatenation product and first intro-
duced in [14]. Let L0, . . . , Lk be languages of A∗, let a1, . . . , ak be letters of A
and let r and p be integers such that 0 6 r < p. We define (L0a1L1 · · · akLk)r,p

as the set of all words u in A∗ such that the number of factorizations of u in
the form u = u0a1u1 · · · akuk, with ui ∈ Li for 0 6 i 6 k, is congruent to r
modulo p.

Proposition 2.4 A language of A∗ is recognized by a p-group if and only if it
is a Boolean combination of languages of the form (A∗a1A

∗ · · · akA∗)r,p, where
0 6 r < p, k > 0 and a1, . . . , ak ∈ A.
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Contrary to the concatenation product, the modular concatenation product
does not distribute over union. For instance, if A = {a, b},

({b}a{1, ba})1,2 = {ba, baba}, ({bab}a{1, ba})1,2 = {baba, bababa}

but ({b, bab}a{1, ba})1,2 = {ba, bababa}

since baba = (b)a(ba) = (bab)a(1). However, a weaker property holds.

Proposition 2.5 Let L0, . . . , Lk be languages of A∗ and let i ∈ {0, . . . , k}.
Suppose that Li is the disjoint union of the languages Li,1, . . . , Li,ℓ. Then each
modular product (L0a1L1 · · ·akLk)r,p is a union of intersections of languages
of the form (L0a1L1 · · ·Li−1aiLi,jai+1Li+1 · · · akLk)s,p, with 1 6 j 6 ℓ and
0 6 s < p.

Proof. We claim that (L0a1L1 · · · akLk)r,p is equal to

⋃

r1+...+rℓ≡r mod p
06r1,...,rℓ<p

⋂

16j6l

(L0a1L1 · · ·Li−1aiLi,jai+1Li+1 · · · akLk)rj ,p

For a given word u, consider the set F (u) of all k-uples (u0, u1, . . . , uk) such that
u = u0a1u1 · · · akuk, with u0 ∈ L0, . . . , uk ∈ Lk. The set F (u) is the disjoint
union of the sets Fj(u) defined by

Fj(u) = {(u0, u1, . . . , uk) ∈ F (u) | ui ∈ Li,j}

It follows that |F (u)| =
∑

16j6ℓ |Fj(u)| and hence |F (u)| ≡ r mod p if and
only if there exist r1, . . . , rℓ such that r1 + . . .+ rℓ ≡ r and |F1(u)| ≡ r1 mod p,
. . . , |Fℓ(u)| ≡ rℓ mod p. This proves the claim and the proposition.
Coming back to the previous example, one has

({b}a{1, ba})0,2 = A∗ \ {ba, baba}, ({bab}a{1, ba})0,2 = A∗ \ {baba, bababa}

Therefore

({b}a{1, ba})0,2 ∩ ({bab}a{1, ba})1,2 = {bababa}

({b}a{1, ba})1,2 ∩ ({bab}a{1, ba})0,2 = {ba}

and the union of these two languages is exactly ({b, bab}a{1, ba})1,2.

2.3 Languages recognized by supersoluble groups

The aim of this section is to prove our main result, which describes the languages
of Up.

Theorem 2.6 Let L be a language of A∗. The following conditions are equiv-
alent:

(1) L is recognized by a group in Gp ∗ Ab(p − 1),

(2) L is a Boolean combination of languages of the form (L0a1L1 · · ·akLk)r,p,
where each Li is a (p − 1)-elementary commutative language,

(3) L is a Boolean combination of languages of the form (L0a1L1 · · ·akLk)r,p,
where each Li is a Boolean combination of (p−1)-elementary commutative
languages.
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We can also formulate our result in terms of varieties of languages.

Corollary 2.7 For every alphabet A, Up(A
∗) is the Boolean algebra generated

by the languages of the form (L0a1L1 · · · akLk)r,p, where each Li is a (p − 1)-
elementary commutative language of A∗.

Corollary 2.8 For every alphabet A, U(A∗) is the Boolean algebra generated
by the languages of the form (L0a1L1 · · · akLk)r,p, where each Li is a (p − 1)-
elementary commutative language of A∗, for any prime p.

We shall give three different proofs. The first one relies on the wreath product
principle, the second one on the representation theory of finite semigroups and
the third makes use of matrix representations of transducers.

2.3.1 Proof using the wreath product principle

We shall need two auxiliary tools to characterize the languages of Up. The
first one is an operation on groups introduced in [17, 18] to study the modular
concatenation product.

Let G1, . . . , Gr be groups. Denote by K = Fp[G1 × · · · × Gr] the group
algebra of G1 × · · · × Gr over Fp. The Schützenberger product over Fp of the
groups G1, . . . , Gr, denoted by Fp♦(G1, . . . , Gr), is the subgroup of GLr(K)
made up of matrices m = (mi,j) such that

(1) mi,j = 0, for i > j,

(2) mi,i = (1, . . . , 1, gi, 1, . . . , 1) for some gi ∈ Gi,

(3) mi,j ∈ Fp[1 × · · · × 1 × Gi × · · · × Gj × 1 × · · · × 1], for i < j.

The following result was first proved in [17, 18].

Proposition 2.9 Let, for 0 6 i 6 k, Li be a language of A∗ recognized by a
group Gi. Then the language (L0a1L1 · · · akLk)r,p is recognized by the group
Fp♦(G0, . . . , Gk).

Our second tool, the sequential transducer of a morphism, is required to
characterize the languages recognized by the wreath product of two monoids.

Let G be a group and let ϕ : A∗ → G be a monoid morphism. Set BG =
G×A. The sequential function associated with ϕ is the function σϕ : A∗ → B∗

G

defined by

σϕ(a1a2 · · · an) = (1, a1)(ϕ(a1), a2) · · · (ϕ(a1 · · · an−1), an)

Straubing’s wreath product principle [14, 15, 13] leads immediately to the fol-
lowing result.

Proposition 2.10 For every alphabet A, Up(A
∗) is the smallest Boolean algebra

containing Ab(p−1)(A∗) and the languages of the form σ−1
ϕ (V ), where σϕ is the

sequential function associated with a morphism ϕ : A∗ → G, with G ∈ Ab(p−1),
and V is a language of B∗

G recognized by a p-group.

We are now ready to prove our main theorem.
Proof. (2) implies (3) is trivial.
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(3) implies (1). By Proposition 2.1, any Boolean combination of (p − 1)-
elementary commutative languages is recognized by a group in Ab(p− 1). Fur-
ther, Proposition 2.9 shows that, if each language Li is recognized by a group
Gi, then the language (L0a1L1 · · ·akLk)r,p is recognized by the group G =
Fp♦(G0, . . . , Gk). Consequently, it just remains to show that if the groups Gi are
all in Ab(p−1), then G is an element of Gp∗Ab(p−1). Let π : G → G0×· · ·×Gk

be the surjective morphism which maps each matrix onto the product of its diag-
onal elements. Thus if m ∈ G, π(m) = m0,0 · · ·mk,k. We claim that Ker(π) is a
p-group. Indeed, if m belongs to Ker(π), then mi,j = 0 if i > j, mi,i = (1, . . . , 1)
for i = 0, . . . , k and mi,j ∈ Fp[1×· · ·×1×Gi×· · ·×Gj×1×· · ·×1], for i < j. No-
tice that, for i < j, the (i, j)-th entry of m can be written as

∑

h∈Gi×···×Gj
αhh

for some αh ∈ Fp. Since there are exactly p|Gi|···|Gj| elements of this form, the
order of Ker(π) is a power of p (more precisely,

∏

i<j p|Gi|···|Gj|) and Ker(π) is
a p-group. Therefore, G ∈ Gp ∗ Ab(p − 1).

(1) implies (2). With the notation of Proposition 2.10, it suffices to show
that the languages of Ab(p − 1)(A∗) and the languages σ−1

ϕ (V ) are of the form
described in (2). For the languages of Ab(p − 1)(A∗), this follows directly from
Proposition 2.1. Consider now a language σ−1

ϕ (V ), where σϕ is the sequential
function associated with a morphism ϕ : A∗ → G, with G ∈ Ab(p − 1), and
V is a language of B∗

G recognized by a p-group. Since σ−1
ϕ commutes with

Boolean operations, we may assume by Proposition 2.3, that V = S(u, r, p)
with 0 6 r < p and u ∈ B∗

G. Since BG = G × A, u is a word of the form
(g1, c1) · · · (gk, ck), where g1, . . . , gk ∈ G and c1, . . . , ck ∈ A. Thus V is the set
of words v ∈ B∗

G such that

Card {(v0, v1, . . . , vk) | v0(g1, c1)v1 · · · vk−1(gk, ck)vk = v} ≡ r mod p

Let us now compute σ−1
ϕ (V ). If u = a1 · · · an, then

σϕ(a1 · · · an) = (1, a1)(ϕ(a1), a2) · · · (ϕ(a1 · · ·an−1), an)

Therefore u belongs to σ−1
ϕ (V ) if and only if it belongs to

(

ϕ−1(h1)c1ϕ
−1(h2)c2 · · ·ϕ−1(hk)ckA∗

)

r,p

where h1 = g1, h2 = (g1ϕ(c1))
−1

g2, . . . , hk = (gk−1ϕ(ck−1))
−1gk. Since G

is in Ab(p − 1), the languages ϕ−1(h1), . . . ϕ
−1(hk) are, by Proposition 2.2, a

disjoint union of (p − 1)-elementary commutative languages. To conclude the
proof, it remains to use Proposition 2.5 to “distribute” the modular product
(L0a1L1 · · ·akLk)r,p over this disjoint union.

2.3.2 Proof using representation theory

The second proof relies on a result [1] describing the variety of languages corre-
sponding to a Mal’cev product of the form LGp M©V. We actually don’t need
the full version of this theorem and we shall only state it when V is a variety of
finite groups. In this case, LGp M©V = Gp ∗V and the result can be formulated
as follows.

Theorem 2.11 (See [1, Corollary 6.3]) Let V be a variety of finite groups
and W = Gp ∗ V. Let V and W be the varieties of languages corresponding

8



to V and W, respectively. Then for each alphabet A, W(A∗) is the Boolean
algebra generated by the languages of the form (L0a1L1 · · · akLk)r,p, where each
Li belongs to V(A∗).

When V = Ab(p − 1), we get immediately:

Corollary 2.12 For every alphabet A, Up(A
∗) is the Boolean algebra generated

by the languages of the form (L0a1L1 · · ·akLk)r,p where each Li is a (p − 1)-
commutative language.

In order to obtain the stronger version stated in Theorem 2.6 and Corollary
2.7, one needs again to use Proposition 2.5 as we did in the first proof.

2.3.3 Proof using matrix representation of transducers

A general method to study operations on regular languages using transducers
was given by Pin and Sakarovitch [11, 12]. This method can be used, for in-
stance, to show that the marked product of n languages is recognized by the
Schützenberger product of these languages. It can easily be adapted (see next
Section) to prove that a language of the form (L0a1L1 · · · akLk)r,p, where each
Li is a (p − 1)-elementary commutative language of A∗, is recognized by an
upper triangular group of matrices over Fp.

A result of the second author [8] shows that if a language L is recognized
by the Schützenberger product of the monoids M0, . . . , Mn, then L belongs
to the Boolean closure of the set of languages of the form Li0a1Li1 · · · arLir

(0 6 i0 < i1 < . . . < ir 6 n) where the ak are letters and the Lik
are recognized

by Mik
(0 6 k 6 r). This result has been extended [9, 18] to upper triangular

matrices over Z/nZ, with the products of the form (L0a1L1 · · · akLk)r,p in place
of the marked product. It is not difficult to adapt these arguments to show that
a language is recognized by an upper triangular group of matrices over Fp, then
it is a Boolean combination of languages of the form (L0a1L1 · · · akLk)r,p, where
each Li is a (p − 1)-elementary commutative language. Then it remains to use
the fact that the variety of supersoluble groups is generated by upper triangular
group of matrices over Fp, for some p.

2.4 Transducers and languages recognized by supersoluble

groups

We now give another description of the variety of languages associated with the
variety of supersoluble groups.

A transducer with output in Fp is a 5-tuple T = (Q, A, I, F, E) where Q is
a finite set of states, A is the input alphabet, I ⊆ Q is the set of initial and
F ⊆ Q the set of final states. The set of transitions E is a finite subset of
Q × A × F

∗
p × Q. Intuitively, a transition (p, a, r, q) is interpreted as follows: if

a is an input letter, the automaton moves from state p to state q and produces
the output r.

It is convenient to represent a transition (p, a, r, q) as an edge p
a|r
−→ q. Initial

(resp. final) outputs are represented by incoming (resp. outgoing) arrows. A
successful path is a sequence of consecutive transitions:

q0
a1|r1

−→ q1
a2|r2

−→ q2 · · · qn−1
an|rn
−→ qn

9



starting in some initial state and ending in some final state. The label of the
path is the word a1a2 · · · an. Its output is the product r1r2 · · · rn. The function
realized by T maps each word u of A∗ onto the sum of the outputs of all successful
paths of label u.

1 2 3
a| − 1 b|2

a|1

a|2, b|1 a|1, b|2 a| − 1, b|2

Figure 2.1: A transducer with output in F5.

For instance, if τ is the transduction realised by the transducer of Figure 2.1,
there are five successful paths of input label abab.

(1) 1
a|2
−→ 1

b|1
−→ 1

a|−1
−→ 2

b|2
−→ 3 (2) 1

a|2
−→ 1

b|1
−→ 1

a|1
−→ 3

b|2
−→ 3

(3) 1
a|−1
−→ 2

b|2
−→ 2

a|1
−→ 2

b|2
−→ 3 (4) 1

a|−1
−→ 2

b|2
−→ 3

a|−1
−→ 3

b|2
−→ 3

(5) 1
a|1
−→ 3

b|2
−→ 3

a|−1
−→ 3

b|2
−→ 3

The output of the first path is 2 × 1 × (−1) × 2 = 1 mod 5, the output of
the other paths are respectively −1, 1, −1 and 1. It follows that τ(abab) =
1 − 1 + 1 − 1 + 1 = 1.

A transducer is in strict triangular form if Q = {1, . . . , n}, 1 is the unique
initial state, n is the unique final state, and its transitions satisfy the three
following conditions:

(1) there is no transition from p to q such that p > q,

(2) for p < q and for each letter a ∈ A, there is at most one transition from p
to q with label a,

(3) for each letter a ∈ A and every state q ∈ Q there is exactly one transition

of the form q
a|r
−→ q, for some r ∈ F

∗
p.

For instance, the transducer in Figure 2.1 is in strict triangular form. To each
such transducer is associated a morphism µ : A∗ → Bn(Fp), called its linear
representation, and defined as follows. For each letter a ∈ A,

µ(a)p,q =

{

0 if there is no transition of label a from p to q

r if p
a|r
−→ q is the unique transition of label a from p to q

On our example, we obtain

µ(a) =





2 −1 1
0 1 0
0 0 −1



 µ(b) =





1 0 0
0 2 2
0 0 2



 µ(abab) =





−1 2 1
0 −1 0
0 0 −1





The linear presentation gives an easy way to compute the function realised by
the transducer, since τ(u) = µ(u)1,n (see [4] for details). For instance, on our
example, µ(abab)1,3 = 1.

10



We can now state our last characterisation of the variety of languages Up.

Theorem 2.13 A language belongs to Up(A
∗) if and only if it is a Boolean

combination of languages of the form τ−1(r), where r ∈ Fp and τ : A∗ → Fp is
a function realised by some transducer in strict triangular form.

Proof. Let B be the Boolean algebra described in the statement of the theo-
rem. We want to show that B = Up(A

∗).
Consider a function τ : A∗ → Fp realised by a transducer in strict triangular

form and let µ : A∗ → Bn(Fp) be its linear representation. Let r ∈ Fp. We
claim that the language τ−1(r) is recognized by Bn(Fp). Indeed, since τ−1(r) =
{u ∈ A∗ | µ(u)1,n = r}, one has τ−1(r) = µ−1(R) where R is the set of all
matrices m of Bn(Fp) such that m1,n = r. This proves the claim and shows
that the languages of the form τ−1(r) are in Up(A

∗). The inclusion B ⊆ Up(A
∗)

follows, since both B and Up(A
∗) are Boolean algebras.

Conversely, since by Theorem 1.2, the variety Gp ∗Ab(p−1) is generated by
the groups Bn(Fp), the Boolean algebra Up(A

∗) is generated by the languages
recognized by Bn(Fp), for some n > 0. Consider a language L of A∗ recognized
by Bn(Fp). By definition, there exists a morphism η : A∗ → Bn(Fp) and a
subset P of Bn(Fp) such that L = η−1(P ). We claim that L belongs to B. Since
η−1(P ) =

⋃

m∈P η−1(m), it suffices to establish the result when P contains a
single matrix m. Observe that

η−1(m) =
⋂

16i,j6n

Li,j where Li,j = {u ∈ A∗ | η(u)i,j = mi,j}

Put t = j − i + 1 and let µ : A∗ → Bt(Fp) be the morphism defined, for all
a ∈ A, by

µ(a)k,ℓ = η(a)i+k−1,i+ℓ−1 for 1 6 k, ℓ 6 t

Thus µ(a) is the submatrix of η(a) whose right top element is η(u)i,j and bottom
left element is η(u)j,i. It follows that, for all u ∈ A∗, µ(u)1,t = η(u)i,j . Setting
mi,j = r, one sees that u ∈ Li,j if and only if µ(u)1,t = r. Therefore L is of
the form τ−1(r), where τ is the function realised by the transducer in strict
triangular form defined by µ.

Corollary 2.14 A language belongs to U(A∗) if and only if it is a Boolean
combination of languages of the form τ−1(r), where r ∈ Fp, p is a prime number
and τ : A∗ → Fp is a function realised by some transducer in strict triangular
form.
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