Logic, semigroups and automata on words.

Jean-Eric Pin &

Abstract This is a survey paper on the connections between formal logic and
the theory of automata. The logic we have in mind is the sequential calculus
of Buchi, a system which allows to formalize properties of words. In this logic,
there is a predicate for each letter and the unique extra non logical predicate
is the relation symbol, which is interpreted as the usual order on the integers.
Several famous classes have been classified within this logic.

We shall briefly review the main results concerning second order, which
covers classes like PH, NP, P, etc. and then study in more detail the results
concerning the monadic second order and the first order logic.

1. Introduction

The aim of this paper is to survey the connections between formal logic and the theory
of automata. The logic we have in mind is the “sequential calculus” of Buchi, a system which
allows to formalize properties of words. A typical formula of this logic looks like

Jz Ty ((x < y) A (Raz) A (Ryy)),

and can intuitively be interpreted on a word u by “there exist two integers & < y such that,
in u, the letter in position 2 is an a and the letter in position y is a b”.

Thus, if A = {a,b} is the alphabet, the set of finite words satisfying our formula is the
set of all words containing an occurrence of a followed (but not necessarily immediately) by
an occurrence of b, and can be described by the rational expression A*a A*bA*. Similarly, the
set of infinite (resp. biinfinite) words satisfying the formula is A*aA*b A% (resp. A¥aA*bA¥).

This example illustrates the logical point of view to define a set of words, but there
are other approaches to do so, including automata, rational expressions and semigroups. As
we shall see in this paper, these various points of view complement each other and are, to
some extent, equivalent. This leads to a remarkable theory and to numerous problems, some
of which are still open.

In this paper, we focus on the logical point of view. We shall classify the most
fundamental logical problems that arise in this framework into three categories:

(1) Descriptive power. Given a set S of sentences (such as first order sentences, X,
formulae, etc..) characterize the sets of words that can be defined by a formula of S.

(2) Decision problems. Given a set S of sentences and a rational set of words X, is it
decidable whether X can be defined by a sentence of S7

(3) Flementary equivalence. Given a set S of sentences, two words are said to be S-
equivalent if they satisfy exactly the same sentences of S. The problem is to describe these
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equivalence relations. The following question, proposed by Parikh, falls into this category:
“if two biinfinite words u and v have the same factors, do they satisfy the same first order
formule of the theory of successor?”

But before we tackle such logical problems, we need to survey the three other ap-
proaches: automata, semigroups and rational expressions.

2. Automata, semigroups and rational sets

In this section, we recall the basic definitions of the theory of finite automata needed
in this article. Most of them are quite standard, but the reader might not be familiar with
some of them, in particular those relative to biinfinite words and to semigroups.

2.1. Words
Let A be a finite set called an alphabet, whose elements are letters. A finite word is
a finite sequence of letters, that is, a function u from a finite set of the form {0,1,2,... n}

into A. If one puts u(¢) = a; for 0 < ¢ < n, the word u is usually denoted by aga; - - - ay, and
the integer |u| = n + 1 is the length of u. The unique word of length 0 is the empty word,
denoted by 1. An infinite word (on the right)is a function u from N into A, usually denoted
by agaias - -+, where u(é) = a; for all ¢ € N. An infinite word on the leftis a function u from
the set of non positive integers into A, usually denoted by - -a_sa_jag, where a_; € A
for all : € N. Finally, a bunfinite word is a function u from Z into A, usually denoted by
< s@_9a_qagaias--- . Two biinfinite words w : A — 7 and v : A — 7. are shift equivalent
if there exists an integer n such that, for all i € 7, v(i) = u(i + n). A bilateral word is an
equivalence class for the shift equivalence. It is usually denoted by - -a_sa_jagajas--- .
A word 1s either a finite word, an infinite word on the right, an infinite word on the left or
a bilateral word.

Intuitively, the concatenation or product of two words u and v is the word uv obtained
by writing u followed by v. More precisely, if u is finite and v is finite or infinite on the
right, then uv is the word defined by

u(i) if i < |ul

(wv)(i) = {v(i “lul) ifi> |l
if u is infinite on the left and v is finite, then uv is the word defined by
N oul(d) if <0
(wv)(i) = {v(i 1) ifi>0
Finally, if u is infinite on the left and v is infinite on the right, then uv is the shift class of
the biinfinite word uv defined by

. ne i <0
(we)(i) = {v((i)— 1) ifi>0

We denote respectively by A*, At AN A=Y and AZ the set of all finite words, finite non-
empty words, infinite words (on the right), infinite words on the left and bilateral words.
A word # is a factor of a word w if there exist two words u and v (possibly empty) such

that w = uxv. A factor x of a biinfinite word u = - -a_sa_jagaras--- occurs “infinitely
often on the right” (respectively left) of u if for every n, x is a factor of the infinite word
Apnt10n42 - (TESP. -+ dpy28n41an). A biinfinite word u is recurrent if every factor of u

occurs infinitely often on the right and on the left. Since these notions are invariant under
shift, they can be extended to bilateral words.

For every finite word u = agaqy---a,, we set 4 = ana,_1 ---ag. Similarly. for every
infinite word on the right u. we denote by u the infinite word on the left defined by w_,, = u,,.



2.2. Rational sets

The rational operations are the three operations union, product and star, defined on
the set of subsets of A* as follows

(1) Union : LiULy={u|u€ Ljoru€ Ly}
(2) Product : LiLy ={ujus |ug € Ly and uy € Lo}
(3) Star : L*={uy-u, |n>0and uy,...,u, € L}

It is also convenient to introduce the operator
LV =TL*={uy --uy |n>0and u,....u, €I}

The set of rational subsets of A* is the smallest set of subsets of A* containing the finite sets
and closed under finite union, product and star. For instance, (a U ab)*abU (ba*b)* denotes
a rational set. The rational subsets of AT are the rational subsets of A* that do not contain
the empty word.

Tt 1s possible to generalize the concept of rational sets to infinite words as follows. First, the
product can be extended to A* x AN by setting, for X C A* and Y C A",

XY ={ay|lrveXandyeY}
Next. we define an infinite iteration w by setting, for every subset X of A¥
X“ ={zoxy -+ | foralli> 02 € X}

Equivalently, X* is the set of infinite words obtained by concatenating an infinite sequence
of words of X. In particular, if u = agaq - - - a,, we set

u = agay - apagal - Apody - - Apdody - - -

By definition. a subset of A" is N-rational if and only if it can be written as a finite union
of subsets of the form XY“ where X and Y are non-empty rational subsets of A1,
For biinfinite words, we first extend the product to A=¥x AN by setting, for X ¢ A1
and ¥ c AN
XY ={ay|lrveXandyeY}

Next, infinite iteration on the left is defined by
X9 ={ue AV |ae (X))

where X = {& | 2 € X}. By definition, a subset of A% is Z-rational if and only if it can be
written as a finite union of subsets of the form X“Y Z% where X, Y and Z are non-empty
rational subsets of AT,

Example 2.1. The set of infinite words on the alphabet {a,b} having only a finite number
of b’s is given by the expression {a,b}*a®. The set of biinfinite words on the alphabet {a,b}
having only a finite number of b’s is given by the expression a“{a,b}*a“.



2.3. Finite automata and recognizable sets
A finite (non deterministic) automaton is a triple A = (@, 4, E) where @ is a finite
set (the set of stales), A is an alphabet, and F is a subset of @ x A x @, called the set of
transitions. Two transitions (p,a,q) and (p',d’. ¢’) are consecutive if ¢ = p'. A path in A is
a finite sequence of consecutive transitions

€n = (QO;aocfh), € = (Qhahfh), sy Enp = (Qn,an,qﬂ,+1)
also denoted
G0 —= q1 a1— ¢2 - Gn — qut1

The state qq is the origin of the path, the state ¢, is its end, and the word = apaq - - - a,
1s 1ts label.
An N-path in A is a sequence p of consecutive transitions indexed by N,

eo = (qo0,@0.q1), €1 =(q1,a1,92),
also denoted
ao a
go — q1 — 42
The state ¢ 1s the origin of the infinite path and the infinite word aqay - - - is its label A
state ¢ occurs infinitely often in p if ¢, = ¢ for infinitely many n. Similarly, a Z-path in A
is a sequence p of consecutive transitions indexed by 7Z. A state ¢ occurs infinitely often on
the right (vrespectively on the left) in p if ¢, = ¢ for infinitely many positive (respectively
negative) n.

Example 2.2, Let A = (Q, A, E) where
Q={1,2},A={a,b} and £ ={(1,0a,1),(2,6,1),(1,a,2),(2.5,2)}

be the automaton represented below.

ag b
b

Figure 2.1.

Then (1,a,2)(2,6,2)(2,b,1)(1,a,2)(2,b,2)(2,b,1)(1,a,2)(2,b,2)(2,b,1) - - - is an infinite path
of A.

A finite Biichi automaton is a quintuple A = (Q, A, E, I, F') where

(1) (@, A, E) is a finite automaton,

(2) I and F are subsets of @, called the set of initial and final states, respectively.
A finite path in A is successful if its origin is in T and its end is in F. An N-path p is
successful if its origin is in T and if some state of F' occurs infinitely often in p. A 7Z-path p
1s successful if some state of I occurs infinitely often on the left in p and if some state of F'
occurs infinitely often on the right in p.

The set of finite (respectively infinite, bilateral) words recognized by A is the set,
denoted L*(.A) (vespectively L¥(A), L”(A)), of the labels of all successful finite (respectively
N-, 7-) paths of A. A set of finite (respectively infinite, bilateral) words X is recognizable
if there exists a finite Biichi automaton A4 such that X = LT (A) (respectively X = L¥(A),
X = LE(A)).



Example 2.3. Let A be the Biichi automaton obtained from example 2.1 by taking I = {1}
and F' = {2}. Initial states are represented by an incoming arrow and final states by an
arrow going out.

Y A
ag b
b

Figure 2.2. A Biichi automaton.

Then L*(A) = a{a.b}* is the set of all finite words whose first letter is an a, L¥(A) =
a(a*b)* is the set of infinite words whose first letter is an a and containing an infinite
number of b’s and LZ(A) = (ab*)¥(a*b)® is the set of infinite words containing infinitely
many a’s on the left and infinitely many b’s on the right.

The relationship between rational and recognizable sets of finite words is given by the
famous theorem of Kleene.

Theorem 2.1. A subset of A* is rational if and only if it is recognizable.

The counterpart of Kleene’s theorem for infinite words is due to Biichi [12] and for
bilateral words to Nivat and Perrin [43].

Theorem 2.2. A subset of AV (resp. AZ) is N-rational (resp. Z-rational) if and only if it
is recognizable.

2.4. Semigroups

A semigroup is a set equipped with an internal associative operation which is usually
written in a multiplicative form. A monoid is a semigroup with identity (usually denoted by
1). If S is a semigroup, S* denotes the monoid equal to S if S has an identity and to SU{1}
otherwise. In the latter case, the multiplication on S is extended by setting sl = 1s = s
for every s € S'. An element e of a semigroup S is idempotent if e2 = e. A zero is an
element 0 such that, for every s € 5, s0 = 0s = 0. (iven two semigroups, S and T, a
(semigroup) morphism ¢ : .S — T is an application of S into T such that for all z,y € 5,
o(zy) = e(2)p(y). A semigroup S is a quotient of a semigroup T if there exists a surjective
morphism from 7" onto S. A semigroup S diwwides a semigroup 7T if S is a quotient of a
subsemigroup of 7. Division is a quasi-order on finite semigroups (up to an isomorphism).

A semiring is a sett K equipped with two operations, called respectively addition and
multiplication, denoted (s,t) — s+t and (s,t) — s-t, and an element, denoted 0, such that:

(1) (K,4+,0) is a commutative monoid,

(2) (K,.) is a semigroup,

(3) for all s,t1,t2 € K, s(t1 +12) = sty + sty and (1 +12)s = 15 + 1a5,
(4) forall s € K, 0s =50 =0.



Thus the only difference with a ring is that inverses with respect to addition may not exist.
We denote by B the boolean semiring defined by the following operations

+ 0 1 : 0 1
0 0 1 0 0 0
1 1 1 1 0 1

Given a semiring K, the set K7*” of n x n matrices over K is naturally equipped with a

nxXn

structure of semiring. In particular, K is a monoid under multiplication defined by

(rs)ig = D Tiksk;

1<k<n

Let ¥ be a countable alphabet. Given two words u, v of £t (resp. X*), a semigroup (resp.
monoid) S satisfies the equation u = v if, for every semigroup (monoid) morphism ¢ from
Y+ () into S, ¢(u) = ¢(v). For instance, a semigroup is commutative if and only if it
satisfies the equation zy = yx. Let (up, = vp)nen be a sequence of equations. A semigroup
(resp. monoid) S ultimately satisfies the sequence of equations (u, = vy )nen if there exists
an integer ng such that, for all n > ng, S satisfies the equation v, = v,. For instance, one
can show that a finite monoid is a group if and only if it ultimately satisfies the equations
(um = Dpso-

Green’s relations on a semigroup S are defined as follows. If s and ¢ are elements of
S, we note

s Lt if there exist z,y € S' such that s = 2f and t = ys,

sRt if there exist =,y € S! such that s = tx and t = sy,

sJt if there exist z,y,u,v € S* such that s = zty and t = usv.
sHt if sRtand s Lt.

For finite semigroups, these four equivalence relations can be represented as follows. The
elements of a given R-class (resp. L-class) are represented in a row (resp. column). The
intersection of an R-class and a L-class is an H-class. Each J-class is a union of R-classes
(and also of L-classes). Tt is not obvious to see that this representation is consistent : it
relies in particular on the non-trivial fact that, in finite semigroups, the relations R and
L commute. An idempotent is represented by a star. Omne can show that each H-class
containing an idempotent e is a subsemigroup of S, which is in fact a group with identity
e. Furthermore, all R-classes (resp. L-classes) of a given J-class have the same number of

elements. )
Each column 1s an £-class

* *
. Ay, a2 as, aq as, ag
Each row i1s an R-class = -
ar, ag g, a10 a1, @12
A J-class.

A semigroup S is L-trivial (resp. R-trivial, J-trivial, H-trivial) if two element of .S which
are L-equivalent (resp. R-equivalent, J-equivalent, H-equivalent) are equal.



2.5. Semigroups and recognizable sets

In this section, we turn to a more algebraic definition of the recognizable sets, using
semigroups in place of automata. Although this definition 1s more abstract than the defi-
nition using automata, it is more suitable to handle the fine structure of recognizable sets.
Indeed, as discovered by Eilenberg [21], semigroups provide a powerful and systematic tool
to classify recognizable sets. We will see in particular that most of the classes of recognizable
sets associated with standard classes of formulee (first order, existential, etc.) admit some
simple algebraic characterizations.

The abstract definition of recognizable sets is based on the following observation.
Let A = (Q,A, E,I,F) be a finite automaton. To each word u € A*, there corresponds a
boolean square matrix of size Card(Q), denoted p(u), and defined by

(U)p.q = { 1 if there exists a path from p to ¢ with label u
Htp.g 0 otherwise

Example 2.4. Let A= (Q, A, E, I, F) be the automaton represented below

Y A
ag ab

b

Figure 2.3. A non deterministic automaton.

Then @ = {1.2}, A ={a.b} and £ = {(1,a,1),(1,a,2),(2.a,2),(2,0,1),(2,6,2)}, T = {1},
F = {2}, whence

It is not difficult to see that p is a semigroup morphism from AT into the multiplicative
semigroup of square boolean matrices of size Card(@). Furthermore, a word u is recognized
by A if and only if there exists a successful path from 1 to 2 with label u, that is, if
()12 = 1. Therefore, a word is recognized by A if and only if (), » = 1. The semigroup

u(A1) = {((1) (1]), (é 1) (1 1)} is called the transition semigroup of A.

Let us now give the formal definitions. Let ¢ : AT — S be a semigroup morphism. A
subset X of AT is recognized by ¢ if there exists a subset P of S such that X = ¢=*(P). As
shown by the previous example, a set recognized by a finite automaton is recognized by the
transition semigroup of this automaton. Conversely, given a finite semigroup recognizing a
subset X of AT, one can build a finite automaton recognizing X. Therefore, the two notions
of recognizable sets (by finite automata and by finite semigroups) are equivalent:



Theorem 2.3. A subset of AT is recognizable if and only if it is recognized by a finite
semigroup.

Let X be a recognizable set of AT. Amongst the finite semigroups that recognize X,
there is a minimal one (with respect to division). This finite semigroup is called the syntactic
semigroup of X. It can be defined directly as the quotient of A* under the congruence ~x
defined by u ~x v if and only if, for every #,y € A* xuy € X < rzvy € X. Tt is also equal
to the transition semigroup of the minimal automaton of A. See [54] for more details.

2.6. w-semigroups

Tt is possible to extend the previous results to infinite words by replacing semigroups
by w-semigroups, which are, basically, algebras in which infinite products are defined. Al-
though these algebras do not have a finitary signature, standard results on algebras still hold
in this case. In particular, A® appears to be the free algebra on the set A and recognizable
sets can be defined, as before, as the sets recognized by finite algebras. However, a problem
arises since finite algebras have an infinitary signature and thus are not really finite! This
problem can be solved by a Ramsey type argument showing that the structure of these finite
algebras can be totally determined by only two operations of finite signature. This defines a
new type of algebra of finite signature, the Wilke algebras, that suffice to deal with infinite
products defined on finite sets. *)

We now come to the precise definitions. An w-semigroup is an algebra S = (S;, S.)
equipped with the following operations:

— A binary operation defined on S; and denoted multiplicatively,
— A mapping S; x S, — S., called mized product, that associates to each couple

(s,t) € Sy x S, an element of S, denoted st,

A mapping 7 : SfN — S, called mfinite product
These three operations should satisfy the following properties :

(1) S¢, equipped with the binary operation, is a semigroup,
(2) for every s,t € Sy and for every u € S, . s(tu) = (st)u,
(3) for every increasing sequence (k,),>o and for all (s,),en € ST,

7.‘-(5051 Skl—lasklskl-l—l Sk‘g—la "'):ﬂ-(SOaSlaSZa"')
(4) for every s € S; and for every (s,)nen € SfN
sw(sg, 81, 82,...) = 7(8, S0, 81,82, ...)

Conditions (1) and (2) can be thought of as an extension of associativity. Conditions (3)
et (4) show that one can replace the notation w(sg,s1,$2,...) without ambiguity by the
notation sgsyss- - . We shall use this simplified notation in the sequel. Intuitively, an
w-semigroup is a sort of semigroup in which infinite products are defined.

Example 2.5. We denote by A the w-semigroup (A"',AN) equipped with the usual
concatenation product.

(%) Actually, the chronology is a little bit different. Ramsey type arguments have been used for
a long time in semigroup theory [33], the Wilke algebras were introduced by Wilke in [83] under
the name of binowds to clarify the approach of Arnold [4], Pécuchet [45] and Perrin [46] and the
idea of using infinite products on semigroups came last [51].



Given two w-semigroups S = (5;,5,) and T' = (T}, T,), a morphism of w-semigroup
is a couple ¢ = (¢f, ¢ ) consisting of a semigroup morphism ¢; : Sy — Ty and of a mapping
Yw Sy — T, preserving the mixed product and the infinite product: for every sequence
(s$n)nemw of elements of S¢,

Pu(s0s152 ) = @p(s0)es(s1)eyp(sa)

and for every s € S§, 1 € S,
pr(s)pu(t) = pu(st)

In the sequel, we shall omit the subscripts, and use the simplified notation ¢ instead of ¢y
and ¢,.

Algebraic concepts like congruence, w-subsemigroup, quotient and division are easily
adapted to w-semigroups. The semigroup AT is called the free semuigroup on the set A
because it satisfies the following property (which defines free objects in the general setting
of category theory): every map from A into a semigroup S can be extended in a unigue way
into a semigroup morphism from AT into S. Similarly, it is not difficult to see that the free
w-semigroup on (A,0) is the w-semigroup A>.

A key result is that when S is finite, the infinite product is totally determined by the
elements of the form s¥ = sss .-, according to the following result

Theorem 2.4. (Wilke) Let S; be a finite semigroup and let S, be a finite set. Suppose
that there exists a mixed product S; x S, — S, and a map from S; into S, , denoted
s — s“, satisfying, for every s, € S}, the equations

s(ts)” = (st)*

(s")* =s“ for every n > 0

Then the couple S = (5;,5,) can be equipped, in a unique way, with a structure of w-
semigroup such that for every s € S, the product sss--- is equal to s.

This is a non trivial result, based on a consequence of Ramsey’s theorem which is
worth mentioning:

Theorem 2.5. let ¢ : AY — § be a morphism from AT into a finite semigroup S. For
every infinite word u € AN, there exist a couple (s,e) of elements of S such that se = s,
e? = ¢, and a factorization u = uguy - -- of u as a product of words of AT such that olug) = s

and p(uy,) = e for every n > 0.

A morphism of w-semigroups ¢ : A% — S recognizes a subset X of AN if, there exists a
subset P of S, such that X = ¢~1(P). By extension, a w-semigroup S recognizes X if there
exists a morphism of w-semigroup ¢ : A — S that recognizes X. As for finite words, the
following result holds:

Theorem 2.6. A subset of AV is recognizable if and only if it is recognized by a finite
w-semigroup.

We now give the construction to pass from a finite (Biichi) automaton to a finite
w-semigroup. This construction is much more involved than the corresponding construction
for finite words.
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Given a finite Biichi automaton A = (@, 4, E, I, F') recognizing a subset of X of AN,
we would like to obtain a finite w-semigroup recognizing X. Our construction makes use of
the semiring & = {—0o0,0, 1} in which addition is the maximum for the ordering —oo < 0 < 1
and multiplication is given in the following table

—00 0 1

—oc —0o0 —oc —0o0
0 —0o0 0 1
1 —0o0 1 1

To each letter a € A is associated a matrix p(a) with entries in & defined by

(
—oc if (p.a,q) ¢ E
p(a)pq =10 if (pa,q) € Fandpg¢ Fandgg¢ F
1 if(pag)€EEand (pe ForqgeF)

We have already used a similar technique to encode automata, but now we disecriminate paths
that go through a final state. We would like to extend p into a morphism of w-semigroup. It
is easy to extend p into a semigroup morphism from A% into the multiplicative semigroup
of @ x Q-matrices over k. If u is a finite word, one gets

—oc if there exists no path of label u from p to gq,
1 if there exists a path from p to ¢ with label u
w(u)p g = going through a final state,
0 if there exists a path from p to ¢ with label u
but no such path goes through a final state

However, trouble arises when one tries to equip k9*9 with a structure of w-semigroup. The
solution consists in coding infinite paths not by square matrices, but by column matrices,
in such a way that each coefficient p(u), codes the existence of an infinite path of label u
starting at p.

Let S = (S¢, Sw) where Sy = k9*€ is the set of square matrices of size Card @ with
entries in k and S, = k9 is the set of column matrices with entries in {—o0c, 1}.

In order to define the operation w on square matrices, we need a convenient definition.

If s is a matrix of Sy, we call infinite s-path starting at p a sequence p = pg.p1. ... of elements
of @ such that, for 0 <i<n—1,s,, 5., #—00.
The s-path is successful if sy, ., =1 for an infinite number of coefficients. Then s*

is the element of S, defined, for every p € @J, by

{ 1 if there exists a successful s-path of origin p,

—oo  otherwise
Note that the coefficients of this matrix can be effectively computed. Indeed, computing sy
amounts to check the existence of circuits containing a given edge in a finite graph. Then
one can verify that .S, equipped with these operations, 1s a w-semigroup. Furthermore, we

have the following result

Proposition 2.7. The morphism of w-semigroup from A* into S induced by p recognizes

the set LN(A).

The w-semigroup pu(A>) is called the w-semigroup associated with A.

Example 2.6. Let X = (a{b,c}* U{b})*. This set is recognized by the Biichi automaton
represented below:
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a,bg b, c

Figure 2.4.

The w-semigroup associated with this automaton contains 9 elements
. 1 1 b— 1 —0 [ —0o0 —o¢ ba — 1 1
T e —x 10 Tl T
1 U S
1 T\ -

_3
2
I
AN
|
g
|
g
~—
2
€
I
AN
8‘ -
~——
o>
5
I

As in the case of finite words, there exists a minimal finite w-semigroup (with respect to
division) recognizing a given recognizable set X. This w-semigroup is called the syntactic w-
semigroup of X. Tt can also be defined directly as the quotient of A% under the congruence
of w-semigroup ~x defined on AT by u ~x v if and only if, for every z,y € A* and for
every z € AT,

zuyz” € X <= zvyz” € X

2.1
r(uy)” € X <= z(vy)* € X 1)

and on AN by u ~x v if and only if, for every = € A*,
rueEX<=awwelX (2.2)

One can also compute the syntactic w-semigroup of a recognizable set given a finite Buchi
automaton A recognizing X. One first computes the finite w-semigroup S associated with
A and the image P of X in S. Then the syntactic w-semigroup is the quotient of S by the
congruence ~p defined on S; by u ~p v if and only if, for every r,s € S} and for every
t eSS

rust* € P <= rvst¥ € P

r(us)¥ € P <= r(vs)” € P

and on S, by u ~p v if and only if, for every r € S¥,
rue P<—=rveP~rP

This provides an algorithm to compute the syntactic w-semigroup of a recognizable set.
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For bilateral words, there is a corresponding notion of {-semigroup, obtained by con-
sidering infinite products indexed by intervals of Z instead of w-products. Formally, a
(-semigroup is a multisorted algebra S = (S}, S.,Ss,5:) where Sf, So, Sz, S¢ are sets
intuitively representing the finite products, the infinite products on the right, the infinite
product on the left and the biinfinite products. equipped with a product S; x Sy — 5} and
three mixed products S; x S, — S, Sz X S, — S¢, and S; x S; — 5 satisfying the
following axioms:

(1) For all s,t,u € S, (st)u = s(tu),

(2) For all s,t € Sp, u € S, (st)u = s(tu),

(3) Forall s € Sy, t,u € Sy, (st)u = s(tu),

(4) Forall s € Sy, t € Sp, u e S, (st)u = s(tu).
Theorem 2.4 can be adapted to {-semigroups as follows

Theorem 2.8. Let S; be a finite semigroup and let S,,, S; and S be finite sets. Suppose
that there exist three mixed products Sy x S, — S, So X S; — Sz and Sy x S, — S¢ and
two maps Sy — S, denoted s — s, and S} — S; denoted s — s¥ satisfying, for every
5.1 € S}, the equations

s(ts)” = (st)* (7‘,5)5) = (sj‘,)ws

(s") = s (5")‘5 = s foreveryn >0

Then the set S = (S;,S.,5:.5¢) can be equipped, in a unique way, with a structure of
(-semigroup such that for every s € S, the product sss--- is equal to s* and the product
- 558 1s equal to 5.

Then one can define the syntactic {-semigroup of a recognizable set. As in the case
of infinite words, one can effectively compute this finite object, for any given finite Biichi
automaton.

3. The sequential calculus

We now come to the major topic of this article, the definition of sets of words by
logical formulee.

3.1. Definitions

For each letter a € A, let R, denote a unary predicate. In the sequential calculus, a
word u 1s represented as a structure of the form

(T)()m(u)7 (Ra)aca, S, <)7

where
{0,...,Jul — 1} if u is a non empty finite word,
Dom(u) = ¢ N if « is an infinite word,
7 if w1s a biinfinite word,

and where

R, = {i € Dom(u) | u(¢) = a}.

Thus, if u = abbaab, then Dom(u) = {0,1,...,5}, R, = {0,3,4} and Ry, = {1,2,5}. If
u = (aba)*, then

Ro={neN|n=0mod 3orn=2 mod 3} and Ry={neN|n=1 mod 3}.
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We shall also use two other non-logical symbols, the binary relation symbols < and S, which
are interpreted as the usual order and as the successor relation on Dom(w).

Now terms, atomic formulae, first order formulae and second order formulae are formed
in the usual way. In first order logic, all variables are element variables, while in second
order logic, relation variables are allowed. Monadic second order logic is the restriction
of second order logic in which only element variables and set variables are allowed. Weak
monadic second order logic is a variant of monadic second order logic in which set variables
are restricted to range over finife subsets of the domain.

We shall use the notations Fy(<), MFy(<), WM Fy(<), Fa(<), for the set of first
order, monadic second order, weak monadic second order and second order formulse with
signature {<, (Rg)aea}. Similarly, F1(S), MF3(S), WM F5(S), Fa(S), denote the same sets
of formula with signature {S, (R4)aca}- Tf we need to specify the domain, we shall use the
notations F7(N,S), F4(Z,S), etc. In fact, the distinction between the signatures S and <
is irrelevant for second order theories according to the following lemma.

Lemma 3.1.  The relation S can be expressed in F1(<), and the relation < can be

expressed in WM Fy(S) and in M F»(S).

Proof. We give the proof for the monadic second order theory in Z and leave the other
cases as exercises. First, S(i.7) can he defined by the formula

(i < j) AVk ((i<k)—>((j=/€)V(j<k)))

which says that j = i+ 1 if 7 1s smaller than j and if there is no element between 7 and j.
Conversely, ¢ < j can be expressed in M Fy(S) as follows:

ax ([VxVy <((x € X) A S(x,y)) H(yEX))} A e X) /\(ngX))

which intuitively means there is an interval of the form [k, +oc[ containing j but not i. The
relation < can also be expressed in WM F5(S) (left as an exercise), but not in Fy(S). ©

To each sentence ¢, one associates the sets of words that satisfy ¢:

Lt(p) = {u € A" | u satisfies ¢}
LN(p) = {u € AV | u satisfies ¢}
L% (p) = {u € A | u satisfies ¢}

This last definition requires a justification: normally, one should define the set of infinite
words satisfying a given formula. But since this set is always shift invariant, it naturally
defines a set of bilateral words.

Example 3.1. Let ¢ = 3¢ R4i. Then

It (e) = Aad™, LN(p) = A"aA¥, L7(g) = A%aA*.
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Example 3.2. Let ¢ = 3min Vi min < ¢ A R, min. Then, according to intuition, min is
interpreted as the minimum of the domain and thus

LY (g)=ad*, L%g)=ad®, L%p)=0.

Example 3.3. Let

¢ =3Jmin Vi (min <{) A Imax Vi (¢ < max)
A3X (min € X Amax ¢ X AViVj (S(i,j) = (i € X = j ¢ X)))

Again, min and max have their natural interpretation and the set X can be informally
described as a set containing the minimum of the domain, not containing the maximum and
such that ¢ € X if and only if i + 1 ¢ X. Thus X is interpreted as the empty set over the
domains N and Z (because these domains don’t have any maximum). On a finite domain,
X represents a set of even numbers of the form {0,2,4,6...}. Since X does not contain
the maximum (that is, |u| — 1), this number is odd, and thus |u] is even. Tt follows that

LY¥(¢) =0, L%(p) = 0 and LT (y) is the set of finite words of even length.

Two sentences ¢ and ¢ are said to be equivalent (resp. N-equivalent, Z-equivalent) if
LH(p) = LF () (vesp. LN(p) = LN(W). L7 (g) = L7(¥)).

3.2. Full second order

As we have already pointed out, there i1s no difference between the second order
theories of < and of S. The full second order theory defines the polynomial hierarchy. This
hierarchy is often defined in terms of Turing machines with oracles, but a direct definition
is also possible. Let A be an alphabet. A polynomial relation on A* is a relation which
is accepted in polynomial time by a deterministic Turing machine on the alphabet A. For
every k > 0, we define the set ©F(A*) as follows. A subset L of A* belongs to XX (A*) if
and only if there exist & polynomials p;, ..., p; and a polynomial (k 4 1)-ary relation R
such that

r € L <= Ty, € A" such that |y1| < p1(J=|)
Vys € A™ such that |y»| < pa(|z])

Jys € A* such that |ys| < ps(|z])

Qyur, € A" such that |yz| < pr(|=])
R($ay1:"'ayk)

where ) is an universal quantifier if £ 1s even and an existential quantifier if & is odd.
In particular, £f = P, the class of sets recognized by deterministic Turing machines in
polynomial time, and XX = NP, the class of sets recognized by non deterministic Turing
machines in polynomial time. Finally, the set ¥ = Uk>025 is the polynomial hierarchy
(sometimes also denoted by PH). -

Theorem 3.2. (Stockmeyer 1977) A subset of A™ is definable in F2(<) if and only if it
belongs to the class PH.

Restricting to the set X; Fy(<) of existential (second order) formulae defines the class

NP.
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Theorem 3.3. (Fagin 1974) A subset of A% is definable in ¥y F5(<) if and only if it belongs
to the class NP.

The question whether the class NP is strictly contained in PH is a famous open
problem of complexity theory. Therefore it is not known whether existential second order
formulae are less expressive than full second order formulae. At this point it is tempting
to give a logical description of other complexity classes. The four results below give the
flavor of this theory. The reader is referred to the original article of Immerman [31] for more
information on this topic. Let L (resp. NL, PSPACE) be the class of sets accepted by
a deterministic Turing machine in logarithmic space (resp. by a non deterministic Turing
machine in logarithmic space, by a deterministic Turing machine in polynomial space). The
following inclusions are well-known:

LCNLCPCNPCPHCPSPACFE

Denote by RT'C the operator that computes the reflexive and transitive closure of a relation.
For instance, if S(z, y) is the successor relation, RT'C[S(z, y)](u, v) is the relation u < v and
RTC[S(x1,27) A S(xa, 25)](0.y, 2, z) is the relation 2 +y = z. Given a set of formule F'
we denote by F'+ RTC the set of formula expressible using F' plus the operator RTC'.

Theorem 3.4. (Immerman 1987) A subset of AT is definable in F»(<)+ RTC if and only
if it belongs to the class PSPACE.

The characterization of the class N L, also due to Immerman, was originally stated in a
slightly more complicated way, but can be simplified since N L is closed under complement

[32,72).

Theorem 3.5. (Tmmerman 1987) A subset of AT is definable in F{(S)+ RTC' if and only
if it belongs to the class N L.

To obtain the class L, we need a deterministic version of the operator RT'C. Given a first
order binary relation R, the deterministic part of R is the relation R4 defined by

Ri(z,y) = R(z,y) A (Vz R(e,z) = 2z = y)

Now define DRTC(R) as the reflexive transitive closure of Ry. For instance, S = S on
words since every position has at most one successor, so that <= DRTC[S(x,y)]. Given a
set of formulee F', we denote by F' 4+ DRTC the set of formule expressible using F' plus the
operator DRTC'.

Theorem 3.6. (Immerman 1987, Vardi) A subset of At is definable in F\(S)+ DRTC' if
and only if it belongs to the class L.

We conclude this section with the class P, for which we introduce the least fixpoint operator
LFP. Given a monotone operator ¢ on relations (that is, such that R C S implies ¢(R) C
©(9)), define

LFEP(p)= (] R
¢(R)=R
For instance, if ¢(R) = (z = y) V (F2(S(x,2) A R(z,y)), then LFP(p)[R] is the reflexive
and transitive closure of R. Tn particular, LFP is more powerful than RTC. As for RTC
and DRTC, given a set of formulee F'| we denote by F'+ LF P the set of formula expressible
using F' plus the operator LFP.
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Theorem 3.7. (Immerman 1987) A subset of A% is definable in F\(S)+ LF P if and only
if it belongs to the class P.

These results are stated when formulee are interpreted on finite words only. For an
extension of these results to finite structures see Immerman [31] and the beautiful survey of

Fagin [25].

3.3. Monadic second order

Considering only monadic second order formule on words is a much more drastic
restriction.

Theorem 3.8. (Biichi [12], Elgot [22]) Let L be a subset of AT (resp. AN, A%). The
following conditions are equivalent:

(1) L is definable in WM Fa(<),

(2) L is definable in M Fa(<),

(3) L is a rational (resp. N-rational, Z-rational) set.
Furthermore there exists an effective algorithm to pass from a formula to a rational (resp.N-
rational, Z-rational) expression and vice-versa.

It 1s fair to say that this effective algorithm is not very efficient. Indeed, it is shown
in [41] that there is no elementary time bounded decision procedure for deciding whether a
given sentence of WM Fy(S) is true or not.

Corollary 3.9. The theories M Fy2(N,S), MFy(Z,S), MF3(N,<), MF3(Z,<), and the

corresponding weak monadic second order theories are decidable.

Proof. We give the proof for M F»(N, <), but the other cases are similar. Let ¢ be a sentence
of MF5(N, <). Take an empty alphabet. Then theorem 3.8 gives an effective algorithm to
compute LY(p). Then ¢ is true on N if and only if L¥(p) # 0. O

It i1s amusing to obtain Presburger’s result from Biuchi’s theorem. The nice paper of
Hodgson [28] contains other interesting decidability results derived from Biichi’s theorem.

Corollary 3.10. (Presburger) The theory F1(N,+,0) is decidable.

Proof. The idea is to code the integers by finite subsets of N and then to interpret the
addition within weak monadic second order logic. If

n:2i1+2i2+~~~+2ik with i1 <19 < ... < 1}

is the binary expansion of an integer n, then n is coded by the set {iy,i9, ... ,ig}. Thus
the coding of an integer n is the set of positions of the bits 1 in the binary expansion of
n. For instance, 13, whose binary expansion is 1101, is coded by the set {3,2,0}, and 20,
whose binary expansion is 10100 is coded by {4,2}.

Now, let z, y, and z be three integers, coded by the sets X, Y, and Z, respectively.
Then one can code the equality # + y = z by introducing a second order variable R, which
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codes the positions of carries in the addition. For instance, the addition of the binary
expansions of 13 and 20 is represented below.

R={5,4.3} 111000
X={4,2) TT10100
Y=1{3,20} 4+ 01101
Z=1{5,0} 100001

Now, i belongs to Z if and only if one or three of the sets X, Y, and R contains i. Similarly,
t+ 1 € R if and only if ¢ belongs to at least two of the three sets X, Y, and R. This can be
easily coded into the following formula:

dR (0 ¢ R) AVa Yy {S(z,y)—>
[(ZUER)H((IEX)/\(JEEY))\/((JL‘EX)/\(JEER))\/((xER)/\(xEY))]}/\

{(m67)<—> (reRA(TeX)AN(eY)V(EERA(xEgX)A(zgY))V

(E R AGEX)AEN) V(g RAEEN)AEeY)]]

We now arrive to first order theory. There, the theory branches into two different directions.
We first consider the first order theory of the linear ordering and later (section 3.6) the first
order theory of successor.

3.4. First order theory of the linear ordering

In this section, we present the results which connect first order logic, star-free sets
and aperiodic semigroups. These statements, given the proper definitions, hold for finite,
infinite and bilateral words. They summarize a series of deep results of Schiitzenberger [58],
McNaughton and Papert [40], Ladner [34], Thomas [74], Perrin [47] and Perrin-Pin [50]. We
first define the key concepts of this statement : star-free sets and aperiodic semigroups.

Boolean operations comprise union, intersection, complementation and set difference.
It can be shown that the rational subsets of A* are closed under finite boolean operations.
The set of star-free subsets of A* is the smallest set of subsets of A* containing the finite
sets and closed under finite boolean operations and product. For instance, if X¢ denotes
the complement, of a set X, one has A* = (1°, showing that the set A* is star-free, since the
empty set is a finite set. More generally, if B is a subset of the alphabet A, the set B* is
also star-free since B* is the complement of the set of words that contain at least one letter
of B = A\ B. This leads to the following star-free expression

B* = A*\ A*(A\ B)A* = (0°(A\ B)0°)*

Tt A = {a,b}, the set (ab)* is star-free, since (ab)* is the set of words not beginning with
b, not finishing by @ and containing neither the factor aa, nor the factor bb. This gives the
star-free expression

(ab)* = A"\ (bA" U A*a U A%aaA* U A*bbA™) = 0°\ (b0° U 0°a U 0°aald® U 0°bb0°)

Readers may convince themselves that the sets {ab,ba}* and (a(ab)*b)* are also star-free
but may also wonder whether there exist any non star-free rational sets. In fact, there are
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some, for instance the sets (aa)* and {b, aba}*, or similar examples that can be derived from
the algebraic approach presented below.

The star-free subsets of AY (resp A”) are defined in a way similar to the rational
subsets of AN (resp A”). The set of star-free subsets of A is the smallest set S of subsets
of AY closed under finite boolean operations and such that if X is a star-free subset of At
and Y € 8, then XY € 8. The set of star-free subsets of A% is the smallest set S of subsets
of A% closed under finite boolean operations and such that if Y is a star-free subset of At
and X, Z are star-free subsets of AY, then XYZesS.

A finite semigroup S is aperiodic if and only if it ultimately satisfies the equations
= 2"t!. This notion is in some sense “orthogonal” to the notion of groups. Indeed, one
can show that a semigroup is aperiodic if and only if it 18 H-trivial, or, equivalently, if it
contains no non-trivial subgroup. Note that any finite monoid M satisfies an equation of the
form z”*P = 2", The two extremal cases are n = (0 and p = 1. The first case corresponds
to groups (if M is a group, then M satisfies the equation g Card(M) — 1), the second case
to aperiodic monoids. The connection between aperiodic semigroups and star-free sets was
established by Schiitzenberger [58] for finite words and by Perrin [47,48] for infinite and
bilateral words:

:L,Tl

Theorem 3.11. A recognizable subset of At (resp. AN, AZ) is star-free if and only if its
syntactic semigroup (resp. w-semigroup, {-semigroup) is aperiodic.

Example 3.4. Let A = {a,b} and consider the set L = (ab)*. Tts minimal automaton is
represented below:

(2)

b

Figure 3.1. The minimal automaton of (ab)*

The transitions and the relations defining the syntactic semigroup S of L are given in the
following tables

1 2
a |2 —
a? =5 =0
b | — 1
aba = a
adi= = bab = b
ab |1 —
ba | — 2

Since a? = @3, b = b3, (ab)? = ab and (ba)? = ba, S is aperiodic and thus L is star-free.
Consider now the set L’ = (aa)*. Its minimal automaton is represented below:
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Figure 3.2. The minimal automaton of (aa)*

The transitions and the relations defining the syntactic semigroup S’ of L’ are given in the
following tables

2
N
-
Q
w
I

<=
|
|
<=
I
o =

Thus S’ is not aperiodic and hence I’ is not star-free.

The complexity of star-freeness is analyzed in [15,64]. Given a finite automaton, it
is a PSPACE-complete problem to know whether this automaton accepts a star-free set of
finite words.

Finally, the connection with first order was established by McNaughton and Papert
for finite words [40], by Thomas [74] for infinite words and by Perrin and the author [50] for
bilateral words.

Theorem 3.12. Let X be a recognizable subset of AT (resp. AN, A7), Then the following
conditions are equivalent:

(1) X is definable in Fy(<),
(2) X is star-free,

(3) the syntactic semigroup (resp. w-semigroup, ¢-semigroup) of X is aperiodic.

Since the characterization by syntactic semigroups is effective, one gets the following
decidability result.

Corollary 3.13. It is decidable whether a given sentence of M Fy(<) Is equivalent (resp.
N-equivalent, Z-equivalent) to some formula of F(<).
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3.5. A hierarchy of first order formulz of the linear ordering

An extension of Theorem 3.12 was discovered by Thomas [76] for finite words and
later extended to infinite and bilateral words [50]. Tt turns out that the hierarchy of star-free
sets obtained by counting the number of alternations between concatenation and boolean
operations coincides with the hierarchy of first order formulae in terms of quantifiers alter-
nations. In this section, we give a refined version of this beautiful result and we discuss
related problems.

We first define the logical hierarchy. Any first order formula is equivalent to a formula
in normal prenex form, that is to say, of the form ¢ = Q(z1,..., x5)y where Q(z1, ..., 21)
is a sequence of existential or universal quantifiers on the variables x1, ... 2z, and where ¢ 1s
quantifier free. If Q(z1, ..., x) is formed of n blocks of quantifiers such that the first block
contains only existential quantifiers (note that this first block may be empty), the second
block universal quantifiers, etc., we say that ¢ is a X, -formula. We denote by X, the set of
the X,-formule and by BY,; the set of boolean combinations™®) of X,,-formulee.

We now turn to the hierarchy of recognizable sets. Tet A be an alphabet. The
definition of star-free subsets of A* makes use of two different types of operations: boolean
operations and concatenation product. By alternating the use of these two operations, one
gets a hierarchy, called the concatenation hierarchy, defined as follows.

(1) The sets of level 0 are the empty set § and A*,
(2) For every integer n > 0, the sets of level n 4 1/2 are the finite unions of sets of the
form

LoayLyas ---apLy

where Lg, L1, ..., L are sets of level n and ay, ..., ap are letters
(3) For every integer n > 0, the sets of level n 4 1 are the finite boolean combinations of
sets of level n+ 1/2.
Note that a set of level m 1s also a set of level n for every n > m. The next result summarizes
several results relative to this hierarchy.

Theorem 3.14. (Brzozowski and Knast [10], Perrin and Pin [50])

(1) For every n > 0, the sets of level n are closed under union, intersection, and comple-
ment.

(2) For every n > 0, the sets of level n+ 1/2 are closed under union, intersection, and
concatenation product,

(3) The hierarchy is strict: if A contains at least two letters, then for every n, there exist
some sets of level n + 1 that are not of level n 4+ 1/2 and some sets of level n + 1/2
that are not of level n.

The concatenation hierarchy can be extended to infinite and bilateral words as follows.

(1) The sets of level 0 are the empty set § and AN (vesp. A%),

(2) For every integer n > 0, the sets of level n + 1/2 are the finite unions of sets of the
form XaY, where X is a set of A* (resp. A~ M) of level n + 1/2, Y is a subset of A"
of level n and a is a letter.

(3) For every n > 0, the sets of level n + 1 are the finite boolean combinations of sets of
level n+1/2.

Here is the announced connection between the two hierarchies.

) boolean operations on formulae comprise conjunction, disjunction and negation.
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Theorem 3.15. (Thomas [76], Perrin and Pin [50]) A subset of AT (resp. AN, A%)is of
level n (resp. n+1/2) if and only if it is BX.,-definable (resp. X, y1-definable).

We now describe in more details the first levels of this hierarchy. By definition, the
sets of level 1/2 are the finite unions of sets of the form A*a; A*as - - a A*, where the a;’s
are letters, and the sets of level 1 are the finite boolean combinations of the same sets. In
particular, finite sets are of level 1. The sets of level 3/2 and 2 have a similar description,
but this is not a direct consequence of the definition.

Theorem 3.16. (Pin and Straubing [55], Arfi [2,3]) The sets of level 3/2 of A* are the
finite unions of sets of the form Afa;Ajas - --ay A}, where the a;’s are letters and the A;’s
are subsets of A. The sets of level 2 are the finite boolean combinations of the same sets.

The sets of level 1 have a nice algebraic characterization.

Theorem 3.17. (Simon [61]) A subset of AT has level 1 if and only if its syntactic
semigroup Is J-trivial, or, equivalently, if it ultimately satisfies the equations " = z"t!
and (zy)" = (yx)".

There exist several proofs of this deep result [1,61,69,63].

Example 3.5. Let A = {a,b,c} and let L = A*abA*. The minimal automaton of L is

represented below
b, c a a ab,c
Y "
—> >
Cc

Figure 3.3. The minimal automaton of L.

The transitions and the relations defining the syntactic semigroup S of L are given in the
following tables
2

a = a
1tz ab=0
a |2 2 3 ac=c
b |13 3 b> = b
¢ 113 be =
ab|3 3 3 ca=a
ba|2 3 3 cb=

CzIC

The J-class structure of S is represented in the following diagram.
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Figure 3.4. The J-classes of S

In particular, a J ¢ and thus S is not J-trivial. Therefore L has level greater than 1 (in
fact 2). Consider now the set L' = A*abA* on the alphabet A = {a,b}. Then the minimal
automaton of L’ is obtained from that of I by erasing the transitions with label c.

b c ab
B S R

Figure 3.5. The minimal automaton of /.

The transitions and the relations defining the syntactic semigroup S’ of L’ are given in the
following tables

123
0_223 a’=a
b |1 3 3 ab=10
ab|3 3 3 b =b
ba|2 3 3

The J-class structure of 5’ is represented in the following diagram.
* *
*

Figure 3.6. The J-classes of 5.
Thus S’ is J-trivial and L’ has level 1. In fact L' = A*aA*bA*.

Theorem 3.17 gives an algorithm to decide whether a given recognizable set (*) is of
level 1. The complexity of this algorithm is analyzed in [15,64]. Given a finite automaton,
the problem to know whether it recognizes a set of finite words of level 1 15 in P and is
logspace-complete for N1.. Tevels 1/2 and 3/2 are also decidable. This is relatively easy to
show for the level 1/2, but relies on a deep result of Hashiguchi for the level 3/2.

) A recognizable set can be given either by a finite automaton or by a finite semigranp or by
a rational expression since there are standard algorithms to pass from one representation to the
other.
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Theorem 3.18. (Arfi [2,3]) One can effectively decide whether a given recognizable set of
A* is of level 1/2, 1 or 3/2.

Corollary 3.19. It is decidable whether a given sentence of M Fs(<) is equivalent to a
formula of 1 (resp. BXq, Xa).

The decidability problem for levels 2 and beyond is still open, although much progress
has been made on level 2 in the recent years [55,68,81,71,82,19]. Little is known beyond level
2: a semigroup theoretic description of each level of the hierarchy is known [53], but it is not
an effective one. Tn other words, each level admits a description by ultimate equations similar
to Theorem 3.17, but these ultimate equations are not known for n > 2. Furthermore, even
if these equations were known, this would not necessarily lead to a decision process for the
corresponding variety.

It is not known whether similar results hold for infinite and bilateral words.

3.6. First order theory of successor

We now turn to the first order theory of successor, the characterization of which is
more involved than that of the linear ordering. It seems that in this theory, the poorer the
logic, the more sophisticated the results!

We need to introduce some new classes of recognizable sets. We first treat the case
of finite words. Let z € At and k> 0. We let

F(z,k) = {u € AT | u contains at least k occurrences of z}

For instance, F'(x,1) = A*zA* and F(aba,2) = A*abaA*abaA* U A*ababaA*. A set of
words of A% is strongly locally testable (SLT) if it is a boolean combination of sets of the
form F(z,1) where x € AT, Tt is locally testable (LT) if it is a boolean combination of sets
of the form uA*, A*v or A*xA* where u,v,2z € At. TFor instance, if A = {a,b}, the set
(ab)™ is locally testable since

(ab)t = (@A™ N A*b) \ (A*aaA* U A*bbAY)

More generally, we say that a set of words of AT is strongly locally threshold testable (SLTT)
if it is a boolean combination of sets of the form F'(z,k) where x € AT and k > 0. Tt is
locally threshold testable (LTT) if it is a boolean combination of sets of the form uA*, A*v
or F(z, k) where u,v,z € At and k > 0. These families of sets are deeply related to the
first order theory of successor.

Theorem 3.20. (Thomas [76]) A recognizable subset of A1 is definable in F(S) if and
only if it is locally threshold testable.

Theorem 3.21. (Beauquier and Pin [9]) A recognizable subset of A% is definable by a
boolean combination of existential formule of Fy(S) if and only if it is strongly locally
threshold testable.

In fact, these results are particular instances of the general fact that first order for-
mulas can express only local properties [26,78,79].

We now give some effective characterizations of the families of sets introduced above.
In order to keep a standard notation in subsequent statements, we shall denote by L a
recognizable subset of A% by S(L) the syntactic semigroup of L, by ¢ : AT — S(L) the
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syntactic morphism of L, and by P(L) = (L) the syntactic image of L. A finite semigroup
S 1s said to be locally idempotent and commutative if, for every idempotent e of S| the
subsemigroup eSe = {ese | s € S} is idempotent and commutative. Equivalently, S is
locally idempotent and commutative if, for every e, s, € S such that e = €2, (ese)? = (ese)
and (ese)(ete) = (ete)(ese). We can now state

Theorem 3.22. (Brzozowski and Simon[11], MeNaughton[39]) A recognizable subset I of
A™T is locally testable if and only if S(L) is locally idempotent and commutative.

Let S be a finite semigroup and let P be a subset of S. We say that P safurates the
J-classes of S if, for every J-class J of S, s € P and s J ¢t imply t € P.

Theorem 3.23. (Beauquier and Pin [9]) Let L be a recognizable subset of A*. Then L
is strongly locally testable if and only if S(L) is locally idempotent and commutative and
P(IL) saturates the J-classes of S(I).

Example 3.6. Tet A = {a,b, ¢}, and let L = c¢(ab)* Uc(ab)*a. Then I is recognized by the

following automaton.
a
c
s
b

Figure 3.7. An automaton recognizing L.

The transitions and the relations defining the syntactic semigroup S of L are given in the
following tables

1 2 3
a |— 3 —
b - = 2 (1,2:})2:(32:(],(3:})(3:(3}):0
c |12 — — aba = a
aal — — — bab=1">
abl— o _ cab=c
ba |— — 3
ca |3 — —

The J-class structure is represented in the following diagram, where the grey box is the
image of L.
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*ab a
*
b ba
c ca
*
0

Figure 3.8. The J-class structure.

Thus P(L) saturates the J-classes, and L is SLT. In fact, L = A*cA*\ (A" aaA* U A acA* U
A*bbA* U A*be A U A*cbA* U A*ccA¥).

The syntactic characterization of locally threshold testable sets 1s more involved and
depends on a deep result of Thérien and Weiss [73]. Given a semigroup .S, form a graph
((S) as follows: the vertices are the idempotents of S and the edges from e to f are the
elements of the form esf.

Theorem 3.24. (Beauquier and Pin [8]) Let L be a recognizable subset of AT. Then L is
locally threshold testable if and only if S(L) is aperiodic and its graph satisfies the following
condition: if p and r are edges from e to f and if q is an edge from f to e, then pgr = rqp.

Figure 3.9. The condition pgr = rqp.

Example 3.7. Let A = {a,b} and let L = a*ba*. Then L is recognized by the automaton
shown in figure 3.7.

Figure 3.10. The minimal automaton of a*ba*.

The transitions and the relations defining the syntactic semigroup S of L are given in the
following tables
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Thus S = {a,b,0}, where a = 1 is the identity and FE(S) = {1,0}. The local semigroups
are 0S0 = {0} and 1S1 = S. This last local semigroups is not idempotent, since b # b.
Therefore, L is not locally testable. On the other hand, the graph of S(L), represented in
Figure 3.11, satisfies the condition pgr = r¢p.

0

160 -a‘c-
0

Figure 3.11. The graph of S(I.).
Therefore I is locally threshold testable.

We conjecture that an analogous result holds for SLTT subsets of A¥.

Corollary 3.25. It is decidable whether a given sentence of M F5(S) is equivalent to a
formula of Fy(S).

We now turn to bilateral words, for which similar classes of recognizable sets can be
defined. For each = € AT and let k& > 0, we set

F2(x, k) = {u € A% | u contains at least k occurrences of x}
R"(x,00) = {u € A" | u contains infinitely many occurrences of z on the right }

L% (x,00) = {u € A% | u contains infinitely many occurrences of  on the left }

Note that FZ(z,1) = A“zA“. A set of words of AZ is strongly locally threshold testable
(SLTT) if it is a boolean combination of sets of the form FZ%(x, k) where z € At and
k > 0. It is locally threshold testable (LTT) if it is a boolean combination of sets of the form
Rz, 0c), L7(x,00) or F7(x, k). In the case of bilateral words, the J,, hierarchy collapses.

Theorem 3.26. (Beauquier and Pin [9]) Let X be a recognizable subset of A”. Then the
following conditions are equivalent :

(1) X is strongly locally threshold testable,

(2) X is definable in Fi(S5),

(3) X is definable by a boolean combination of existential formulae of Iy (S).

Although Theorem 3.22 and 3.23 have been extended to bilateral words (Pécuchet
[45], Beauquier and Pin [9]), no effective characterization of the SLTT subsets of A% is
known.

Finally, we consider the case of infinite words. For each z € AT and let k > (), we set

FN(x, k) = {u € AV | u contains at least k occurrences of '}

RY(x,00) = {u € A" | u contains infinitely many occurrences of x on the right }

A set of words of A is strongly locally threshold testable (SLTT) if it is a boolean combination
of sets of the form FY(z, k) where = € A* and k > 0. It is locally threshold testable (LT'T)
if it is a boolean combination of sets of the form uAY, RY(x, 00) or FN(x, k). Finally, it is
left locally threshold testable (LLTT) if it is a boolean combination of sets of the form uA*
or F¥(z, k). The following results follow from the results of Thomas.
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Theorem 3.27. A recognizable subset of AV is definable by a boolean combination of
existential formulee of Fy(S) if and only if it is strongly locally threshold testable.

Theorem 3.28. (Thomas [76]) A recognizable subset of AY is definable in Fy(S) if and
only if it is left locally threshold testable.

Again these results are just variations on the theme that first order formulas can
express only local properties [26,78.79].

An effective characterization of this last class has been obtained by Wilke. First
Theorem 3.24 can be extended to infinite words as follows

Theorem 3.29. (Wilke [84,85]) A recognizable subset of AN is locally threshold testable
if and only if its syntactic w-semigroup is aperiodic and its graph satisfies the following
condition: if p and r are edges from e to f and if ¢ is an edge from f to e, then pqr = rqp.

The characterization of LLTT sets is more involved, but is effective. It relies on the
nice equality
LLTT = LTT N A

where A denotes the second level of the Borel hierarchy. The open sets of A are the sets
of the form X AN for some X C AT, A set is closed if its complement is open. The sets of
AY are at the same time countable unions of closed sets and countable intersection of open
sets. The recognizable sets of AJ are the sets which are accepted by a deterministic Biichi
automaton as well as their complement. This class is also decidable, leading to the following
conclusion.

Theorem 3.30. (Wilke [84,85]) One can effectively decide whether a given recognizable
subset of AN is LLTT.

Corollary 3.31. It is decidable whether a given sentence of M Fy(S) is N-equivalent to a
formula of Fy(S).

3.7. Modular quantifiers

An interesting extension of the first order theory is obtained by introducing modular
quantifiers of the form 3*7. For instance, the sentence 3%?zR,z is interpreted to mean
“there are exactly 2 mod 5 positions = such that the letter in position z is an a@”. Denote by
Fraop (<) (resp. Fiyamrop(<)) the set of formulae defined by using only modular quantifiers
(resp. by using both the ordinary quantifiers and the modular ones). The corresponding
classes of languages are decidable, according to the following result.

Theorem 3.32. (Straubing, Thérien and Thomas [T0]) A recognizable subset of A% is
definable in Fyron(<) (resp. Fiymron(<)) if and only if its syntactic semigroup is a solvable

group (resp. a semigroup in which every group is solvable).

These results can probably be extended in some way to infinite or biinfinite words.
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3.8. Elementary equivalence

Given a set of sentences .S, we say that two words u and v are S-equivalent if and only
if they satisfy exactly the same formulae of S. This equivalence has been especially studied
for bilateral words, for which the next two theorems give a rather exhaustive description.

Theorem 3.33. Perrin and Schupp [52] Let u,v be two words of A%, The following
conditions are equivalent:

(1) uw and v are either equal or recurrent with the same set of factors,

(2) u and v satisfy the same sentences of Fy(7., <),

(3) u and v satisfy the same sentences of Fa(Z,<).

For the theory of successor, the corresponding result, first conjectured by Parikh, is
even simpler.

Theorem 3.34. [8] Let u,v be two words of A”. The following conditions are equivalent:
(1) w and v have the same set of factors,
(2) uw and v satisfy the same sentences of F1(Z, S),
(3) u and v satisfy the same existential sentences of F(Z, S).

This also is an easy consequence of the results on first-order theory of local structure

mentioned above [26.78,79].

4. Temporal logic

An alternative way to define sets of words 1s to use propositional linear temporal logic,
a logic used for specifying and verifying correction of computer programs. This logic is
intended to represent the structure of time and the basic operators (next time, eventually
and until) refer to this intuitive interpretation. As for sequential calculus, to each finite
or infinite word is associated a totally ordered set, which represents the structure of time.
Thus, in this model, time is always discrete. We follow the notations of [23]. Let A be a
finite alphabet. The vocabulary consists of
(1) an atomic proposition p, for each letter a € A,
(2) connectives V, A and —,
(3) temporal operators X (“next”), F (“eventually”) and U (“until”)
and the formulae are constructed according to the rules
(1) for every a € A, p,q is a formula,
(2) if ¢ and ¢ are formulee, so are ¢ V ¢, o A, ~p, X, Fo, U
Semantics are defined by induction on the formation rules. Given a word w € AT and n €
{1,2,.... |w]}, we define the expression “w satisfies ¢ at the instant n” (denoted (w,n) = ¢)
as follows
(1) (w,n) = p, if the n-th letter of w is an a.
(2) (w,n) E ¢V (resp. o A, mg) if (w,n) = @ or (w,n) =1 (resp. if (w,n) E ¢ and
(w,n) |E 4, if (w,n) does not satisfy ).
(3 ) (w,n)
4) (w,n)
(

3

w

w,n) E X if (w n —+ 1) satisfies ¢.

w,n) = Fe if there exists m such that n < m < |w| and (w,m) = ¢.

w,n) | Uy if there exists m such that n < m < |w|, (w,m) = ¢ and, for every £k
such that n <k <m , (w, k) E ¢.

Note that, if w = wow; - - - wyy|, (w,n) = ¢ only depends on the word w = w,wp 41 - W)y

If ¢ is a temporal formula, we say that w satisfies ¢ if (w,0) | .



29

Example 4.1. Let w = abbababcba. Then (w,3) = p, since the fourth letter of w is an a,
(w, 3) | Xpy since the fifth letter of w is a b and (w,3) = F(p. A Xps) since cb is a factor
of babcba.

To each temporal formula ¢, one associates the sets of words that satisfy ¢:

Lt(p) = {u € A" | u satisfies ¢}
LN(p) = {u € AV | u satisfies o}

In fact, one can show [29,27] that linear temporal logic is equivalent to I (<). It follows that
one can effectively decide whether a given recognizable set i1s definable in linear temporal
logic. A direct proof of this result is given in [17] for finite words and in [16] for infinite
words.

Theorem 4.1. A subset of A" (resp. AY) is definable in linear temporal logic if and only
if its (w)-syntactic semigroup is aperiodic.

If we omit the “until” operator, we obtain a restricted linear temporal logic that was
considered in [27,29]. An effective description of the sets of words definable in this logic is
known in the case of finite words.

Proposition 4.2. [17] Let L be a subset of A*. The following conditions are equivalent:
(1) L is definable in restricted linear temporal logic,
(2) I belongs to the smallest boolean algebra of sets containing the langunages a A* and
closed under the operations . — A*L and L. — al for every a € A,
(3) the syntactic semigroup of L ultimately satisfies the sequence of equations "1 = z™
and uz™ (vauz™)? = (ux"va"™)".

There 1s a simple algebraic interpretation of these equations. Let S be a finite semi-
group. Then for every idempotent e, the set eSe = {ese | s € S} is a subsemigroup of 5,
called the local subsemaigroup associated with e. A semigroup satisfies locally a property P if
every local subsemigroup satisfies this property. Now a semigroup S satisfies the equations
2™t = 2" and wa™ (va"ua™)” = (ux"vae™)" if and only if it is locally £-trivial.

It remains to find an analogous characterization in the case of infinite words.

5. Conclusion

We have given several description of standard complexity classes in terms of logical
formulee. These results are summarized in the next table.

Formulas Complexity classes
F5(<)+ Reflexive Transitive Closure PSPACE
Fy(<) PH
Y Fa(<) NP
F1(S)+ Least Fixed Point P
Fl(S)—F Reflexive Transitive Closure NIT.
F1(S)+ Deterministic Reflexive Transitive Closure L




30

Logical characterizations of some standard complexity classes.

One enters the world of finite automata by considering the monadic second order case.

Formulas Finite words Infinite words Bilateral words
WM Fa(<) Rational N-Rational 7-Rational
MFy(<) Rational N-Rational 7-Rational

The first order hierarchy of the linear order has been studied intensively for finite words
although the decidability of levels 2 and beyond remains open.

The monadic second order.

Formulas Sets of words Algebraic characterization Decidable
(<) Star-free aperiodic syntactic semigroup Yes
BXg(<) 0, AT trivial syntactic semigroup Yes
(<) level 1/2 Yes (technical) Yes
BY (<) level 1 J-trivial syntactic semigroup Yes
Ta(<) level 3/2 Yes (very difficult) Yes
BX5(<) level 2 Yes (but non effective so far) ?

Definability in the first order theory of the successor is decidable for finite and infinite words,

The first order hierarchy of <.

but the case of bilateral words is not yet worked out.

Formulas Finite words Infinite words Bilateral words
F1(5) LTT (decidable) LLTT (decidable) SLTT (7)
BX1(S) SLTT (7) SLTT (7) SLTT (7)

The first order hierarchy of S.

We have also discussed the expressivity of linear temporal logic and of restricted linear
temporal logic.

Acknowledgements
I would like to thank Jean Goubault, Howard Straubing, Wolfgang Thomas, Pascal

Weil and an anonymous referee for comments and suggestions that greatly improved the
quality of this article.



31

6. References

[1]

[14]
[15]
[16]
[17]
18]
[19]
[20]
21]

[22]

J. Almeida, 1990, Implicit operations on finite J-trivial semigroups and a conjecture
of I. Simon, J. Pure Appl. Algebra 69, 205-218.

M. Arfi, 1987, Polynomials operations and relational languages, 4th STACS, Lecture
Notes in Computer Science 247, Springer, 198-206.

M. Arfi, 1991, Opérations polynomiales et hiérarchies de concaténation, Theoret.
Comput. Sci. 91, 71 84.

A. Arnold, 1985, A syntactic congruence for rational w-languages, Theoret. Comput.
Sci. 39, 333-335.

D. Beauquier, 1984, Bi-limites de langages reconnaissables, Theoret. Comput. Sci.
33, 335-342.

D. Beauquier, 1985, Ensembles reconnaissables de mots bi-infinis, in Automata on
Infinite Words, M. Nivat ed., Lecture Notes in Computer Science 192, 28-46, Springer.
D. Beauquier and M. Nivat, 1985, About rational sets of factors of a biinfinite word, in
Automata, Languages and Programming, (W.Brauer, ed.), Lecture Notes in Comput.
Sci., 194, Springer, 33-42.

D. Beauquier and J.E. Pin, 1989, Factors of words, in Automata, Languages and
Programming, (G. Ausiello, M. Dezani-Ciancaglini and S. Ronchi Della Rocca, eds.),
Lecture Notes in Comput. Sci., 372, Springer, 63-79.

D. Beauquier and J.E. Pin, 1991, Languages and scanners, Theoret. Comput. Sci.
84 3-21.

J.A. Brzozowski and R. Knast, 1978, The dot-depth hierarchy of star-free languages
is infinite, .J. Comput. System Sci. 16 37 5h.

J.A. Brzozowski and I. Simon, 1973, Characterizations of locally testable languages,
Discrete Math. 4, 243-271.

J.R. Buchi, 1960, Weak second-order arithmetic and finite automata, Z. Math. Logik
und Grundl. Math. 6, 66-92.

J.R. Buchi, 1962, On a decision method in restricted second-order arithmetic, in Proc.
1960 Int. Congr. for Logic, Methodology and Philosophy of Science, Stanford Univ.
Press, Standford, 1-11.

J.R. Buchi and L.H. Landweber, 1969, Definability in the monadic second-order the-
ory of successors, J. Symbolic Logic 34 166-170.

S. Cho and D.T. Huynh, 1991, Finite automaton aperiodicity is PSPACE-complete,
Theoret. Comput. Sci. 88 99 116.

J. Cohen, 1991, On the expressive power of temporal logic for infinite words, Theoret.
Comput. Sci. 83, 301-312.

J. Cohen, D. Perrin and J.-E. Pin, 1993, On the expressive power of temporal logic,
J. Comput. System Sci. 46, 271-294.

K. Compton, 1983, On rich words, in Combinatoric Words, Progress and Perspectives,
L. Cummings ed., Academic Press, 39-62.

D. Cowan, 1993, Inverse monoids of dot-depth 2, Int. Jour. Alg. and Comp., to
appear.

S. Eilenberg, 1974, Automata, languages and machines, Vol. A, Academic Press, New
York.

S. Eilenberg, 1976, Automata, languages and machines, Vol. B, Academic Press, New
York.

C.C. Elgot, 1961, Decision problems of finite automata design and related arithmetics,
Trans. Amer. Math. Soc. 98, 21-52.



32
(23]
[24]
[25]

[26]

E.A. Emerson, 1990, Temporal and modal logic, in Handbook of Theoretical Com-
puter Science, vol B, Formal models and semantics, Elsevier, 995-1072.

R. Fagin, 1974, Generalized first-order spectra and polynomial-time recognizable sets,
SIAM-AMS Proceedings 7, 43-73.

R. Fagin, 1993, Finite-model theory - a personal perspective Theoret. Comp. Seci.
116, 3-31.

H. Gaifman, 1982, On local and non-local properties, in Proc. of the Herbrandt Sym-
posium, Logic Colloquium’81 (J. Stern, ed.), Studies in Logic 107, North-Holland,
Amsterdam, 105-135.

D. Gabbay, A. Pnueli, S. Shelah and J. Stavi, 1980, On the temporal analysis of
fairness, Proc. 7th ACM Symp. Princ. Prog. Lang., 163 173.

B.R. Hodgson, 1983, Décidabilité par automate fini, Ann. Sc. Math. Québec 7 39-57.
J.A. Kamp, 1968, Tense logic and the theory of linear order, Ph. D. Thesis, Univ. of
California, Los Angeles.

S.C. Kleene, 1956, Representation of Events in nerve nets and finite automata, in ” Au-
tomata Studies” C.E. Shannon and J. McCarthy eds.), Princeton University Press,
Princeton, New Jersey, 3-42.

N. Immerman, 1987, Languages that capture complexity classes, SIAM J. Comput.
16, 760-778.

N. Immerman, 1988, Nondeterministic space is closed under complement, SIAM J.
Compnt. 17, 935 938.

J. Justin and G. Pirillo, 1986, On a natural extension of Jacob’s rank, J. Comb.
Theory 43, 205-218

R. Ladner, 1977, Application of model theoretic games to discrete linear orders and
finite automata, Information and Control, 33 281-303.

G. Lallement, 1979, Semigroups and combinatorial applications, Wiley, New York.
H. Landweber, 1967, Finite state games - A solvability algorithm for restricted second-
order arithmetic, Notices Amer. Math. Soc. 14, 129-130.

H. Landweber, 1969, Decision problems for w-automata, Math. Syst. Theor. 3
376-384.

R. McNaughton, 1966, Testing and generating infinite sequences by a finite automaton
Information and Control 9, 521 530.

R. McNaughton, 1974, Algebraic decision procedures for local testability, Math. Syst.
Theor. 8, 60-76.

R. McNaughton and S. Pappert, 1971, Counter-free Automata, MIT Press.

A.R. Meyer, 1975, Weak monadic second order theory of successor is not elementary
recursive, in Proc; Boston Univ. TLogic Colloguium, Lecture Notes in Mathematics
453, Springer-Verlag, Berlin Heidelberg, New-York, 132-154.

C. Michaux and F. Point, 1986, Les ensembles k-reconnaissables sont définissables
dans (N, +,V4), C. R. Acad. Sc. Paris 303, 939-942.

M. Nivat and D. Perrin, 1986, Ensembles reconnaissables de mots biinfinis, Canad.
J. Math. XXXVIIT, 513 53T7.

J.P. Pécuchet, 1986, Variétés de semigroupes et mots infinis, in B. Monien and G.
Vidal-Naquet eds., STACS 86, Lecture Notes in Comput. Sci. 210, Springer, 180-191.
J.P. Pécuchet, 1986, Etude syntaxique des parties reconnaissables de mots infinis, in
Proc. 13th ICALP, (L. Kott ed.) Lecture Notes in Comput. Sci. 226, 294-303.

D. Perrin, 1982, Variétés de semigroupes et mots infinis, C.R. Acad. Sci. Paris 295,
595 598.

bl



[47]

33

D. Perrin, 1984, Recent results on automata and infinite words, in Mathematical
Foundations of Computer Science, Lecture Notes in Comput. Sci. 176 Springer-
Verlag, New-York/Berlin, 134-148.

D. Perrin, 1984, An introduction to automata on infinite words, in Automata on
Infinite Words (Nivat, M. ed.), Lecture Notes in Comput. Sci. 192, Springer, 2 17.
D. Perrin, 1990, Automata, Chapter 1 in Handbook of Theoretical Computer Science
(Van Leeuwen, J. ed.), Vol B : Formal Models and Semantics, Elsevier.

D. Perrin and J.E. Pin, First order logic and star-free sets, J. Comput. System Sci.
32, 1986, 393-406.

D. Perrin and J.-E. Pin, Mots infinis, to appear (LTTP report 93 40).

D. Perrin and P.E. Schupp, 1986, Automata on the integers, recurrence distinguisha-
bility and the equivalence and decidability of monadic theories, Proc. 1st IEEE Symp.
on Logic in Computer Science, 301-304.

J-E. Pin, 1984, Hiérarchies de concaténation, RAIRO Informatique Théorique 18
23-46.

J.-E. Pin, 1984 Variétés de langages formels, Masson, Paris; English translation: 1986,
Varieties of formal languages, Plenum, New-York.

J-E. Pin and H. Straubing, 1981, Monoids of upper triangular matrices, Colloquia
Mathematica Societatis Janos Bolyai 39, Semigroups, Szeged, 259-272.

W.V. Quine, 1946, Concatenation as a basis for arithmetic, J. Symbolic Logic 11,
105 114.

F.D. Ramsey, 1929, On a problem of formal logic, Proc. of the London Math. Soc.
30, 338-384.

M.P. Schutzenberger, 1965, On finite monoids having only trivial subgroups, Infor-
mation and Control 8, 190-194.

A.T.. Semenov, 1980, On certain extensions of the arithmetic of addition of natural
numbers, Math. USSR Izvestiya 15 401 418.

D. Siefkes, 1970, Biichi’s monadic second order successor arithmetic, Lecture Notes
in Math. 120, Springer, Berlin.

I. Simon, 1975, Piecewise testable events, Proc. 2nd GI Conf., Lect. Notes in Comp.
Sci. 33, Springer, Berlin, 214-222.

I. Simon, 1990, Factorization forests of finite height, Theoret. Comput. Seci. 72,
65-94.

J. Stern, 1985, Characterization of some classes of regular events, Theoret. Comp.
Sci. 35, 17-42.

J. Stern, 1985, Complexity of some problems from the theory of automata, Inform.
and Control 66, 163 176.

L. Stockmeyer, 1977, The polynomial time hierarchy, Theoret. Comp. Sci. 3, 1-22.
L.J. Stockmeyer and A.R. Meyer, 1973, Word problems requiring exponential time:
preliminary report, in Proc. 5th Ann. ACM Symp. on the Theory of Computing,
1-9.

H. Straubing, 1979, Aperiodic homomorphisms and the concatenation product of
recognizable sets, Journal of Pure and Applied Algebra 15, 319 327.

H. Straubing, 1988, Semigroups and languages of dot-depth two, Theoret. Comp.
Sci. 58, 361-378.

H. Straubing and D. Thérien, 1985, Partially ordered finite monoids and a theorem
of 1. Simon, J. of Algebra 119, 393-399.



34

[70]

[71]
[72]
(73]
[74]
[75]
[76]
[77)
78]

[79]

[85]

H. Straubing, D. Thérien and W. Thomas, 1988, Regular Languages Defined with
Generalized Quantifiers, in Proc. 15th ICALP, Springer Lecture Notes in Computer
Science 317, 561-575.

H. Straubing and P. Weil, 1992, On a conjecture concerning dot-depth two languages,
Theoret. Comp. Sci. 104, 161 183.

R. Szelepcsényi, 1988, The method of foreced enumeration for nondeterministic au-
tomata, Acta Informatica 26, 279-284.

D. Thérien and A. Weiss, 1985, Graph congruences and wreath products, J. Pure
Applied Algebra 35, 205-215.

W. Thomas, 1979, Star-free regular sets of w-sequences, Information and Control 42
148 156.

W. Thomas, 1981, A combinatorial approach to the theory of w-automata, Informa-
tion and Control 48, 261-283.

W. Thomas, 1982, Classifying regular events in symbolic logic, J. Comput. Syst. Sci
25, 360-375.

W. Thomas, 1990, Automata on infinite objects, in Handbook of Theoretical Com-
puter Science, vol B, Formal models and semantics, Elsevier, 135-191.

W. Thomas, 1991, On logics, tilings, and automata, Proc. 18th ICALP, Madrid, (J.
Leach Albert et al., eds.), Lect. Notes in Comp. Sci. 510, Springer, Berlin, 441-454.
W. Thomas, 1993, On the Ehrenfeucht-Fraissé Game in Theoretical Computer Sci-
ence, TAPSOFT 93, M.C. Gaudel, J.P. Jonannaud (Eds.), Lect. Notes in Comp. Sci.
668, Springer, Berlin, 559-568.

P. Weil, 1988, Inverse monoids and the dot-depth hierarchy, Ph. D. Dissertation,
University of Nebraska, Lincoln.

P. Weil, 1989, Inverse monoids of dot-depth two, Theoret. Comp. Sci. 66, 233-245.
P. Weil, Some results on the dot-depth hierarchy, to appear in Semigroup Forum.
Wilke, T., 1991, An FEilenberg theorem for co-languages, Automata, Languages and
Programming, Proc. of 18th ICALP Conference, LNCS 510, Springer, Berlin, 588—
599.

Th. Wilke, 1992) An algebraic theory for regular languages of finite and infinite words,
International Journal of Algebra and Computation, to appear.

Th. Wilke, 1993, Tocally threshold testable languages of infinite words, in STACS
93, P. Enjalbert, A. Finkel, K.W. Wagner (Eds.), Lect. Notes in Comp. Sci. 665,
Springer, Berlin, 607-616.



