
Logic, semigroups and automata on words.
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Abstract This is a survey paper on the connections between formal logic andthe theory of automata. The logic we have in mind is the sequential calculusof Buchi, a system which allows to formalize properties of words. In this logic,there is a predicate for each letter and the unique extra non logical predicateis the relation symbol, which is interpreted as the usual order on the integers.Several famous classes have been classi�ed within this logic.We shall brie
y review the main results concerning second order, whichcovers classes like PH, NP, P, etc. and then study in more detail the resultsconcerning the monadic second order and the �rst order logic.

1. Introduction
The aim of this paper is to survey the connections between formal logic and the theoryof automata. The logic we have in mind is the \sequential calculus" of B�uchi, a system whichallows to formalize properties of words. A typical formula of this logic looks like

9x 9y �(x < y) ^ (Rax) ^ (Rby)�;
and can intuitively be interpreted on a word u by \there exist two integers x < y such that,in u, the letter in position x is an a and the letter in position y is a b".Thus, if A = fa; bg is the alphabet, the set of �nite words satisfying our formula is theset of all words containing an occurrence of a followed (but not necessarily immediately) byan occurrence of b, and can be described by the rational expression A�aA�bA�. Similarly, theset of in�nite (resp. biin�nite) words satisfying the formula is A�aA�bA! (resp. A~!aA�bA!).This example illustrates the logical point of view to de�ne a set of words, but thereare other approaches to do so, including automata, rational expressions and semigroups. Aswe shall see in this paper, these various points of view complement each other and are, tosome extent, equivalent. This leads to a remarkable theory and to numerous problems, someof which are still open.In this paper, we focus on the logical point of view. We shall classify the mostfundamental logical problems that arise in this framework into three categories:(1) Descriptive power. Given a set S of sentences (such as �rst order sentences, �1formul�, etc.,) characterize the sets of words that can be de�ned by a formula of S.(2) Decision problems. Given a set S of sentences and a rational set of words X, is itdecidable whether X can be de�ned by a sentence of S?(3) Elementary equivalence. Given a set S of sentences, two words are said to be S-equivalent if they satisfy exactly the same sentences of S. The problem is to describe these
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equivalence relations. The following question, proposed by Parikh, falls into this category:\if two biin�nite words u and v have the same factors, do they satisfy the same �rst orderformul� of the theory of successor?"But before we tackle such logical problems, we need to survey the three other ap-proaches: automata, semigroups and rational expressions.
2. Automata, semigroups and rational setsIn this section, we recall the basic de�nitions of the theory of �nite automata neededin this article. Most of them are quite standard, but the reader might not be familiar withsome of them, in particular those relative to biin�nite words and to semigroups.
2.1. WordsLet A be a �nite set called an alphabet, whose elements are letters. A �nite word isa �nite sequence of letters, that is, a function u from a �nite set of the form f0; 1; 2; : : : ; nginto A. If one puts u(i) = ai for 0 � i � n, the word u is usually denoted by a0a1 � � � an, andthe integer juj = n + 1 is the length of u. The unique word of length 0 is the empty word,denoted by 1. An in�nite word (on the right) is a function u from N into A, usually denotedby a0a1a2 � � � , where u(i) = ai for all i 2 N. An in�nite word on the left is a function u fromthe set of non positive integers into A, usually denoted by � � � a�2a�1a0, where a�i 2 Afor all i 2 N. Finally, a biin�nite word is a function u from Z into A, usually denoted by� � � a�2a�1a0a1a2 � � � . Two biin�nite words u : A ! Z and v : A ! Z are shift equivalentif there exists an integer n such that, for all i 2 Z, v(i) = u(i + n). A bilateral word is anequivalence class for the shift equivalence. It is usually denoted by � � � a�2a�1a0a1a2 � � � .A word is either a �nite word, an in�nite word on the right, an in�nite word on the left ora bilateral word.Intuitively, the concatenation or product of two words u and v is the word uv obtainedby writing u followed by v. More precisely, if u is �nite and v is �nite or in�nite on theright, then uv is the word de�ned by

(uv)(i) = �u(i) if i < jujv(i� juj) if i � juj
if u is in�nite on the left and v is �nite, then uv is the word de�ned by

(uv)(i) = �u(i) if i � 0v(i� 1) if i > 0
Finally, if u is in�nite on the left and v is in�nite on the right, then uv is the shift class ofthe biin�nite word uv de�ned by

(uv)(i) = �u(i) if i � 0v(i� 1) if i > 0
We denote respectively by A�, A+, AN, A�N and AZ the set of all �nite words, �nite non-empty words, in�nite words (on the right), in�nite words on the left and bilateral words.A word x is a factor of a word w if there exist two words u and v (possibly empty) suchthat w = uxv. A factor x of a biin�nite word u = � � � a�2a�1a0a1a2 � � � occurs \in�nitelyoften on the right" (respectively left) of u if for every n, x is a factor of the in�nite wordanan+1an+2 � � � (resp. � � � an+2an+1an). A biin�nite word u is recurrent if every factor of uoccurs in�nitely often on the right and on the left. Since these notions are invariant undershift, they can be extended to bilateral words.For every �nite word u = a0a1 � � � an, we set ~u = anan�1 � � � a0. Similarly, for everyin�nite word on the right u, we denote by ~u the in�nite word on the left de�ned by ~u�n = un.
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2.2. Rational sets
The rational operations are the three operations union, product and star, de�ned onthe set of subsets of A� as follows

L1 [ L2 = fu j u 2 L1 or u 2 L2g(1) Union :
L1L2 = fu1u2 j u1 2 L1 and u2 2 L2g(2) Product :
L� = fu1 � � �un j n � 0 and u1; : : : ; un 2 Lg(3) Star :

It is also convenient to introduce the operator
L+ = LL� = fu1 � � �un j n > 0 and u1; : : : ; un 2 Lg

The set of rational subsets of A� is the smallest set of subsets of A� containing the �nite setsand closed under �nite union, product and star. For instance, (a [ ab)�ab [ (ba�b)� denotesa rational set. The rational subsets of A+ are the rational subsets of A� that do not containthe empty word.It is possible to generalize the concept of rational sets to in�nite words as follows. First, theproduct can be extended to A� �AN, by setting, for X � A� and Y � AN,
XY = fxy j x 2 X and y 2 Y g:

Next, we de�ne an in�nite iteration ! by setting, for every subset X of A+
X! = fx0x1 � � � j for all i � 0; xi 2 Xg

Equivalently, X! is the set of in�nite words obtained by concatenating an in�nite sequenceof words of X. In particular, if u = a0a1 � � � an, we set
u! = a0a1 � � � ana0a1 � � � ana0a1 � � � ana0a1 � � �

By de�nition, a subset of AN is N-rational if and only if it can be written as a �nite unionof subsets of the form XY ! where X and Y are non-empty rational subsets of A+.For biin�nite words, we �rst extend the product to A�N�AN, by setting, for X � A�Nand Y � AN, XY = fxy j x 2 X and y 2 Y g:
Next, in�nite iteration on the left is de�ned by

X ~! = fu 2 A�N j ~u 2 ( ~X)!g
where ~X = f~x j x 2 Xg. By de�nition, a subset of AZ is Z-rational if and only if it can bewritten as a �nite union of subsets of the form X ~!Y Z! where X, Y and Z are non-emptyrational subsets of A+.
Example 2.1. The set of in�nite words on the alphabet fa; bg having only a �nite numberof b's is given by the expression fa; bg�a!. The set of biin�nite words on the alphabet fa; bghaving only a �nite number of b's is given by the expression a~!fa; bg�a!.
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2.3. Finite automata and recognizable setsA �nite (non deterministic) automaton is a triple A = (Q;A;E) where Q is a �niteset (the set of states), A is an alphabet, and E is a subset of Q � A � Q, called the set oftransitions. Two transitions (p; a; q) and (p0; a0; q0) are consecutive if q = p0. A path in A isa �nite sequence of consecutive transitions

e0 = (q0; a0; q1); e1 = (q1; a1; q2); : : : ; en = (qn; an; qn+1)
also denoted q0 a0�! q1 a1�! q2 � � � qn an�! qn+1The state q0 is the origin of the path, the state qn+1 is its end, and the word x = a0a1 � � � anis its label.An N-path in A is a sequence p of consecutive transitions indexed by N,

e0 = (q0; a0; q1); e1 = (q1; a1; q2); : : :
also denoted q0 a0�! q1 a1�! q2 � � �
The state q0 is the origin of the in�nite path and the in�nite word a0a1 � � � is its label. Astate q occurs in�nitely often in p if qn = q for in�nitely many n. Similarly, a Z-path in Ais a sequence p of consecutive transitions indexed by Z. A state q occurs in�nitely often onthe right (respectively on the left) in p if qn = q for in�nitely many positive (respectivelynegative) n.
Example 2.2. Let A = (Q;A;E) where

Q = f1; 2g; A = fa; bg and E = f(1; a; 1); (2; b; 1); (1; a; 2); (2; b; 2)g
be the automaton represented below.

Figure 2.1.
Then (1; a; 2)(2; b; 2)(2; b; 1)(1; a; 2)(2; b; 2)(2; b; 1)(1; a; 2)(2; b; 2)(2; b; 1) � � � is an in�nite pathof A.
A �nite B�uchi automaton is a quintuple A = (Q;A;E; I; F ) where(1) (Q;A;E) is a �nite automaton,(2) I and F are subsets of Q, called the set of initial and �nal states, respectively.A �nite path in A is successful if its origin is in I and its end is in F . An N-path p issuccessful if its origin is in I and if some state of F occurs in�nitely often in p. A Z-path pis successful if some state of I occurs in�nitely often on the left in p and if some state of Foccurs in�nitely often on the right in p.The set of �nite (respectively in�nite, bilateral) words recognized by A is the set,denoted L+(A) (respectively LN(A), LZ(A)), of the labels of all successful �nite (respectivelyN-, Z-) paths of A. A set of �nite (respectively in�nite, bilateral) words X is recognizableif there exists a �nite B�uchi automaton A such that X = L+(A) (respectively X = LN(A),X = LZ(A)).
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Example 2.3. Let A be the B�uchi automaton obtained from example 2.1 by taking I = f1gand F = f2g. Initial states are represented by an incoming arrow and �nal states by anarrow going out.

Figure 2.2. A B�uchi automaton.
Then L+(A) = afa; bg� is the set of all �nite words whose �rst letter is an a, LN(A) =a(a�b)! is the set of in�nite words whose �rst letter is an a and containing an in�nitenumber of b's and LZ(A) = (ab�)~!(a�b)! is the set of in�nite words containing in�nitelymany a's on the left and in�nitely many b's on the right.

The relationship between rational and recognizable sets of �nite words is given by thefamous theorem of Kleene.
Theorem 2.1. A subset of A� is rational if and only if it is recognizable.

The counterpart of Kleene's theorem for in�nite words is due to B�uchi [12] and forbilateral words to Nivat and Perrin [43].
Theorem 2.2. A subset of AN (resp. AZ) is N-rational (resp. Z-rational) if and only if itis recognizable.

2.4. Semigroups
A semigroup is a set equipped with an internal associative operation which is usuallywritten in a multiplicative form. A monoid is a semigroup with identity (usually denoted by1). If S is a semigroup, S1 denotes the monoid equal to S if S has an identity and to S[f1gotherwise. In the latter case, the multiplication on S is extended by setting s1 = 1s = sfor every s 2 S1. An element e of a semigroup S is idempotent if e2 = e. A zero is anelement 0 such that, for every s 2 S, s0 = 0s = 0. Given two semigroups, S and T , a(semigroup) morphism ' : S ! T is an application of S into T such that for all x; y 2 S,'(xy) = '(x)'(y). A semigroup S is a quotient of a semigroup T if there exists a surjectivemorphism from T onto S. A semigroup S divides a semigroup T if S is a quotient of asubsemigroup of T . Division is a quasi-order on �nite semigroups (up to an isomorphism).A semiring is a set K equipped with two operations, called respectively addition andmultiplication, denoted (s; t)! s+ t and (s; t)! s � t, and an element, denoted 0, such that:(1) (K;+; 0) is a commutative monoid,(2) (K; :) is a semigroup,(3) for all s; t1; t2 2 K, s(t1 + t2) = st1 + st2 and (t1 + t2)s = t1s+ t2s,(4) for all s 2 K, 0s = s0 = 0.
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Thus the only di�erence with a ring is that inverses with respect to addition may not exist.We denote by B the boolean semiring de�ned by the following operations

+ 0 1
0 0 1
1 1 1

� 0 1
0 0 0
1 0 1

Given a semiring K, the set Kn�n of n � n matrices over K is naturally equipped with astructure of semiring. In particular, Kn�n is a monoid under multiplication de�ned by
(rs)i;j = X

1�k�n ri;ksk;j
Let � be a countable alphabet. Given two words u, v of �+ (resp. ��), a semigroup (resp.monoid) S satis�es the equation u = v if, for every semigroup (monoid) morphism ' from�+ (��) into S, '(u) = '(v). For instance, a semigroup is commutative if and only if itsatis�es the equation xy = yx. Let (un = vn)n2N be a sequence of equations. A semigroup(resp. monoid) S ultimately satis�es the sequence of equations (un = vn)n2N if there existsan integer nS such that, for all n � nS , S satis�es the equation un = vn. For instance, onecan show that a �nite monoid is a group if and only if it ultimately satis�es the equations(un! = 1)n>0.Green's relations on a semigroup S are de�ned as follows. If s and t are elements ofS, we note

s L t if there exist x; y 2 S1 such that s = xt and t = ys,
s R t if there exist x; y 2 S1 such that s = tx and t = sy,
s J t if there exist x; y; u; v 2 S1 such that s = xty and t = usv.
s H t if s R t and s L t.

For �nite semigroups, these four equivalence relations can be represented as follows. Theelements of a given R-class (resp. L-class) are represented in a row (resp. column). Theintersection of an R-class and a L-class is an H-class. Each J -class is a union of R-classes(and also of L-classes). It is not obvious to see that this representation is consistent : itrelies in particular on the non-trivial fact that, in �nite semigroups, the relations R andL commute. An idempotent is represented by a star. One can show that each H-classcontaining an idempotent e is a subsemigroup of S, which is in fact a group with identitye. Furthermore, all R-classes (resp. L-classes) of a given J -class have the same number ofelements.

Each row is an R-class
8<
:

Each column is an L-classz }| {� a1; a2 � a3; a4 a5; a6
a7; a8 � a9; a10 �a11; a12

A J -class.
A semigroup S is L-trivial (resp. R-trivial, J -trivial, H-trivial) if two element of S whichare L-equivalent (resp. R-equivalent, J -equivalent, H-equivalent) are equal.
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2.5. Semigroups and recognizable sets
In this section, we turn to a more algebraic de�nition of the recognizable sets, usingsemigroups in place of automata. Although this de�nition is more abstract than the de�-nition using automata, it is more suitable to handle the �ne structure of recognizable sets.Indeed, as discovered by Eilenberg [21], semigroups provide a powerful and systematic toolto classify recognizable sets. We will see in particular that most of the classes of recognizablesets associated with standard classes of formul� (�rst order, existential, etc.) admit somesimple algebraic characterizations.The abstract de�nition of recognizable sets is based on the following observation.Let A = (Q;A;E; I; F ) be a �nite automaton. To each word u 2 A�, there corresponds aboolean square matrix of size Card(Q), denoted �(u), and de�ned by

�(u)p;q = n 1 if there exists a path from p to q with label u0 otherwise
Example 2.4. Let A = (Q;A;E; I; F ) be the automaton represented below

Figure 2.3. A non deterministic automaton.
Then Q = f1; 2g, A = fa; bg and E = f(1; a; 1); (1; a; 2); (2; a; 2); (2; b; 1); (2; b; 2)g, I = f1g,F = f2g, whence

�(a) = � 1 10 1
� �(b) = � 0 01 1

� �(aa) = �(a)
�(ab) = � 1 11 1

� �(ba) = �(bb) = �(b)

It is not di�cult to see that � is a semigroup morphism from A+ into the multiplicativesemigroup of square boolean matrices of size Card(Q). Furthermore, a word u is recognizedby A if and only if there exists a successful path from 1 to 2 with label u, that is, if�(u)1;2 = 1. Therefore, a word is recognized by A if and only if �(u)1;2 = 1. The semigroup�(A+) = f�0 01 1�; �1 10 1�; �1 11 1�g is called the transition semigroup of A.Let us now give the formal de�nitions. Let ' : A+ ! S be a semigroup morphism. Asubset X of A+ is recognized by ' if there exists a subset P of S such that X = '�1(P ). Asshown by the previous example, a set recognized by a �nite automaton is recognized by thetransition semigroup of this automaton. Conversely, given a �nite semigroup recognizing asubset X of A+, one can build a �nite automaton recognizing X. Therefore, the two notionsof recognizable sets (by �nite automata and by �nite semigroups) are equivalent:
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Theorem 2.3. A subset of A+ is recognizable if and only if it is recognized by a �nitesemigroup.

Let X be a recognizable set of A+. Amongst the �nite semigroups that recognize X,there is a minimal one (with respect to division). This �nite semigroup is called the syntacticsemigroup of X. It can be de�ned directly as the quotient of A+ under the congruence �Xde�ned by u �X v if and only if, for every x; y 2 A�, xuy 2 X , xvy 2 X. It is also equalto the transition semigroup of the minimal automaton of A. See [54] for more details.
2.6. !-semigroups

It is possible to extend the previous results to in�nite words by replacing semigroupsby !-semigroups, which are, basically, algebras in which in�nite products are de�ned. Al-though these algebras do not have a �nitary signature, standard results on algebras still holdin this case. In particular, A1 appears to be the free algebra on the set A and recognizablesets can be de�ned, as before, as the sets recognized by �nite algebras. However, a problemarises since �nite algebras have an in�nitary signature and thus are not really �nite! Thisproblem can be solved by a Ramsey type argument showing that the structure of these �nitealgebras can be totally determined by only two operations of �nite signature. This de�nes anew type of algebra of �nite signature, the Wilke algebras, that su�ce to deal with in�niteproducts de�ned on �nite sets. (�)
We now come to the precise de�nitions. An !-semigroup is an algebra S = (Sf ; S!)equipped with the following operations:| A binary operation de�ned on Sf and denoted multiplicatively,| A mapping Sf � S! ! S!, called mixed product, that associates to each couple(s; t) 2 Sf � S! an element of S! denoted st,| A mapping � : SNf ! S!, called in�nite productThese three operations should satisfy the following properties :(1) Sf , equipped with the binary operation, is a semigroup,(2) for every s; t 2 Sf and for every u 2 S!, s(tu) = (st)u,(3) for every increasing sequence (kn)n>0 and for all (sn)n2N 2 SNf ,

�(s0s1 � � � sk1�1; sk1sk1+1 � � � sk2�1; : : :) = �(s0; s1; s2; : : :)
(4) for every s 2 Sf and for every (sn)n2N 2 SNf

s�(s0; s1; s2; : : :) = �(s; s0; s1; s2; : : :)
Conditions (1) and (2) can be thought of as an extension of associativity. Conditions (3)et (4) show that one can replace the notation �(s0; s1; s2; : : :) without ambiguity by thenotation s0s1s2 � � � . We shall use this simpli�ed notation in the sequel. Intuitively, an!-semigroup is a sort of semigroup in which in�nite products are de�ned.
Example 2.5. We denote by A1 the !-semigroup (A+; AN) equipped with the usualconcatenation product.

(�) Actually, the chronology is a little bit di�erent. Ramsey type arguments have been used fora long time in semigroup theory [33], the Wilke algebras were introduced by Wilke in [83] underthe name of binoids to clarify the approach of Arnold [4], P�ecuchet [45] and Perrin [46] and theidea of using in�nite products on semigroups came last [51].
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Given two !-semigroups S = (Sf ; S!) and T = (Tf ; T!), a morphism of !-semigroupis a couple ' = ('f ; '!) consisting of a semigroup morphism 'f : Sf ! Tf and of a mapping'! : S! ! T! preserving the mixed product and the in�nite product: for every sequence(sn)n2N of elements of Sf ,

'!(s0s1s2 � � �) = 'f (s0)'f (s1)'f (s2) � � �
and for every s 2 Sf , t 2 S!, 'f (s)'!(t) = '!(st)
In the sequel, we shall omit the subscripts, and use the simpli�ed notation ' instead of 'fand '!.Algebraic concepts like congruence, !-subsemigroup, quotient and division are easilyadapted to !-semigroups. The semigroup A+ is called the free semigroup on the set Abecause it satis�es the following property (which de�nes free objects in the general settingof category theory): every map from A into a semigroup S can be extended in a unique wayinto a semigroup morphism from A+ into S. Similarly, it is not di�cult to see that the free!-semigroup on (A; ;) is the !-semigroup A1.A key result is that when S is �nite, the in�nite product is totally determined by theelements of the form s! = sss � � �, according to the following result
Theorem 2.4. (Wilke) Let Sf be a �nite semigroup and let S! be a �nite set. Supposethat there exists a mixed product Sf � S! ! S! and a map from Sf into S!, denoteds! s!, satisfying, for every s; t 2 Sf , the equations

s(ts)! = (st)!
(sn)! = s! for every n > 0

Then the couple S = (Sf ; S!) can be equipped, in a unique way, with a structure of !-semigroup such that for every s 2 S, the product sss � � � is equal to s!.
This is a non trivial result, based on a consequence of Ramsey's theorem which isworth mentioning:

Theorem 2.5. Let ' : A+ ! S be a morphism from A+ into a �nite semigroup S. Forevery in�nite word u 2 AN, there exist a couple (s; e) of elements of S such that se = s,e2 = e, and a factorization u = u0u1 � � � of u as a product of words of A+ such that '(u0) = sand '(un) = e for every n > 0.
A morphism of !-semigroups ' : A1 ! S recognizes a subset X of AN if, there exists asubset P of S! such that X = '�1(P ). By extension, a !-semigroup S recognizes X if thereexists a morphism of !-semigroup ' : A1 ! S that recognizes X. As for �nite words, thefollowing result holds:
Theorem 2.6. A subset of AN is recognizable if and only if it is recognized by a �nite!-semigroup.

We now give the construction to pass from a �nite (B�uchi) automaton to a �nite!-semigroup. This construction is much more involved than the corresponding constructionfor �nite words.
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Given a �nite B�uchi automaton A = (Q;A;E; I; F ) recognizing a subset of X of AN,we would like to obtain a �nite !-semigroup recognizing X. Our construction makes use ofthe semiring k = f�1; 0; 1g in which addition is the maximum for the ordering �1 < 0 < 1and multiplication is given in the following table

�1 0 1
�1 �1 �1 �1
0 �1 0 1
1 �1 1 1

To each letter a 2 A is associated a matrix �(a) with entries in k de�ned by
�(a)p;q =

8<
:
�1 if (p; a; q) =2 E0 if (p; a; q) 2 E and p =2 F and q =2 F1 if (p; a; q) 2 E and (p 2 F or q 2 F )

We have already used a similar technique to encode automata, but now we discriminate pathsthat go through a �nal state. We would like to extend � into a morphism of !-semigroup. Itis easy to extend � into a semigroup morphism from A+ into the multiplicative semigroupof Q�Q-matrices over k. If u is a �nite word, one gets

�(u)p;q =
8>>><
>>>:

�1 if there exists no path of label u from p to q,1 if there exists a path from p to q with label ugoing through a �nal state,0 if there exists a path from p to q with label ubut no such path goes through a �nal state
However, trouble arises when one tries to equip kQ�Q with a structure of !-semigroup. Thesolution consists in coding in�nite paths not by square matrices, but by column matrices,in such a way that each coe�cient �(u)p codes the existence of an in�nite path of label ustarting at p.Let S = (Sf ; S!) where Sf = kQ�Q is the set of square matrices of size CardQ withentries in k and S! = kQ is the set of column matrices with entries in f�1; 1g.In order to de�ne the operation ! on square matrices, we need a convenient de�nition.If s is a matrix of Sf , we call in�nite s-path starting at p a sequence p = p0; p1; : : : of elementsof Q such that, for 0 � i � n� 1, spi;pi+1 6= �1.The s-path is successful if spi;pi+1 = 1 for an in�nite number of coe�cients. Then s!is the element of S! de�ned, for every p 2 Q, by

s!p = n 1 if there exists a successful s-path of origin p,�1 otherwiseNote that the coe�cients of this matrix can be e�ectively computed. Indeed, computing s!pamounts to check the existence of circuits containing a given edge in a �nite graph. Thenone can verify that S, equipped with these operations, is a !-semigroup. Furthermore, wehave the following result
Proposition 2.7. The morphism of !-semigroup from A1 into S induced by � recognizesthe set LN(A).

The !-semigroup �(A1) is called the !-semigroup associated with A.
Example 2.6. Let X = (afb; cg� [ fbg)!. This set is recognized by the B�uchi automatonrepresented below:
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Figure 2.4.
The !-semigroup associated with this automaton contains 9 elements

a = � 1 1�1 �1
� b = � 1 �11 0

� c = ��1 �11 0
� ba = � 1 11 1

�

ca = ��1 �11 1
� a! = � 1�1

� b! = � 11
� c! = ��1�1

�

(ca)! = ��11
�

It is de�ned by the following relations:
a2 = a ab = a ac = a b2 = b bc = c cb = c
c2 = c c! = 0 (ba)! = b! aa! = a! ab! = a! a(ca)! = a!

ba! = b! bb! = b! b(ca)! = (ca)! ca! = (ca)! cb! = (ca)! c(ca)! = (ca)!

As in the case of �nite words, there exists a minimal �nite !-semigroup (with respect todivision) recognizing a given recognizable set X. This !-semigroup is called the syntactic !-semigroup of X. It can also be de�ned directly as the quotient of A1 under the congruenceof !-semigroup �X de�ned on A+ by u �X v if and only if, for every x; y 2 A� and forevery z 2 A+, xuyz! 2 X () xvyz! 2 X
x(uy)! 2 X () x(vy)! 2 X (2:1)

and on AN by u �X v if and only if, for every x 2 A�,
xu 2 X () xv 2 X (2:2)

One can also compute the syntactic !-semigroup of a recognizable set given a �nite B�uchiautomaton A recognizing X. One �rst computes the �nite !-semigroup S associated withA and the image P of X in S. Then the syntactic !-semigroup is the quotient of S by thecongruence �P de�ned on Sf by u �P v if and only if, for every r; s 2 S1f and for everyt 2 Sf rust! 2 P () rvst! 2 P
r(us)! 2 P () r(vs)! 2 P

and on S! by u �P v if and only if, for every r 2 S1f ,
ru 2 P () rv 2 P

This provides an algorithm to compute the syntactic !-semigroup of a recognizable set.
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For bilateral words, there is a corresponding notion of �-semigroup, obtained by con-sidering in�nite products indexed by intervals of Z instead of !-products. Formally, a�-semigroup is a multisorted algebra S = (Sf ; S!; S~!; S�) where Sf , S!, S~!, S� are setsintuitively representing the �nite products, the in�nite products on the right, the in�niteproduct on the left and the biin�nite products, equipped with a product Sf �Sf ! Sf andthree mixed products Sf � S! ! S!, S~! � S! ! S� , and S~! � Sf ! S~! satisfying thefollowing axioms:(1) For all s; t; u 2 Sf , (st)u = s(tu),(2) For all s; t 2 Sf , u 2 S!, (st)u = s(tu),(3) For all s 2 S~!, t; u 2 Sf , (st)u = s(tu),(4) For all s 2 S~!, t 2 Sf , u 2 S!, (st)u = s(tu).Theorem 2.4 can be adapted to �-semigroups as follows

Theorem 2.8. Let Sf be a �nite semigroup and let S!, S~! and S� be �nite sets. Supposethat there exist three mixed products Sf �S! ! S!, S~! �Sf ! S~! and S~! �S! ! S� andtwo maps Sf ! S!, denoted s ! s!, and Sf ! S~! denoted s ! s~! satisfying, for everys; t 2 Sf , the equations
s(ts)! = (st)! (ts)~! = (st)~!s
(sn)! = s! (sn)~! = s~! for every n > 0

Then the set S = (Sf ; S!; S~!; S�) can be equipped, in a unique way, with a structure of�-semigroup such that for every s 2 S, the product sss � � � is equal to s! and the product� � � sss is equal to s~!.
Then one can de�ne the syntactic �-semigroup of a recognizable set. As in the caseof in�nite words, one can e�ectively compute this �nite object, for any given �nite B�uchiautomaton.

3. The sequential calculus
We now come to the major topic of this article, the de�nition of sets of words bylogical formul�.

3.1. De�nitions
For each letter a 2 A, let Ra denote a unary predicate. In the sequential calculus, aword u is represented as a structure of the form

�Dom(u); (Ra)a2A; S;<�;
where

Dom(u) =
8<
:
f0; : : : ; juj � 1g if u is a non empty �nite word,N if u is an in�nite word,Z if u is a biin�nite word,

and where Ra = fi 2 Dom(u) j u(i) = ag:
Thus, if u = abbaab, then Dom(u) = f0; 1; : : : ; 5g, Ra = f0; 3; 4g and Rb = f1; 2; 5g. Ifu = (aba)!, then

Ra = fn 2 N j n � 0 mod 3 or n � 2 mod 3g and Rb = fn 2 N j n � 1 mod 3g:
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We shall also use two other non-logical symbols, the binary relation symbols < and S, whichare interpreted as the usual order and as the successor relation on Dom(u).Now terms, atomic formul�, �rst order formul� and second order formul� are formedin the usual way. In �rst order logic, all variables are element variables, while in secondorder logic, relation variables are allowed. Monadic second order logic is the restrictionof second order logic in which only element variables and set variables are allowed. Weakmonadic second order logic is a variant of monadic second order logic in which set variablesare restricted to range over �nite subsets of the domain.We shall use the notations F1(<), MF2(<), WMF2(<), F2(<), for the set of �rstorder, monadic second order, weak monadic second order and second order formul� withsignature f<; (Ra)a2Ag. Similarly, F1(S),MF2(S), WMF2(S), F2(S), denote the same setsof formul� with signature fS; (Ra)a2Ag. If we need to specify the domain, we shall use thenotations F1(N; S), F1(Z; S), etc. In fact, the distinction between the signatures S and <is irrelevant for second order theories according to the following lemma.
Lemma 3.1. The relation S can be expressed in F1(<), and the relation < can beexpressed in WMF2(S) and in MF2(S).
Proof. We give the proof for the monadic second order theory in Z and leave the othercases as exercises. First, S(i; j) can be de�ned by the formula

(i < j) ^ 8k �(i < k)! ((j = k) _ (j < k))�

which says that j = i + 1 if i is smaller than j and if there is no element between i and j.Conversely, i < j can be expressed in MF2(S) as follows:
9X

 �8x8y ��(x 2 X) ^ S(x; y)�! (y 2 X)�� ^ (j 2 X) ^ (i =2 X)
!

which intuitively means there is an interval of the form [k;+1[ containing j but not i. Therelation < can also be expressed in WMF2(S) (left as an exercise), but not in F1(S).

To each sentence ', one associates the sets of words that satisfy ':
L+(') = fu 2 A+ j u satis�es 'g
LN(') = fu 2 AN j u satis�es 'g
LZ(') = fu 2 AZ j u satis�es 'g

This last de�nition requires a justi�cation: normally, one should de�ne the set of in�nitewords satisfying a given formula. But since this set is always shift invariant, it naturallyde�nes a set of bilateral words.
Example 3.1. Let ' = 9i Rai. Then

L+(') = A�aA�; LN(') = A�aA!; LZ(') = A~!aA!:
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Example 3.2. Let ' = 9min 8i min � i ^ Ramin. Then, according to intuition, min isinterpreted as the minimum of the domain and thus

L+(') = aA�; LN(') = aA!; LZ(') = ;:

Example 3.3. Let
' = 9min 8i (min � i) ^ 9max 8i (i � max)

^ 9X �min 2 X ^ max =2 X ^ 8i8j (S(i; j)! (i 2 X $ j =2 X))�
Again, min and max have their natural interpretation and the set X can be informallydescribed as a set containing the minimum of the domain, not containing the maximum andsuch that i 2 X if and only if i + 1 =2 X. Thus X is interpreted as the empty set over thedomains N and Z (because these domains don't have any maximum). On a �nite domain,X represents a set of even numbers of the form f0; 2; 4; 6 : : :g. Since X does not containthe maximum (that is, juj � 1), this number is odd, and thus juj is even. It follows thatLN(') = ;, LZ(') = ; and L+(') is the set of �nite words of even length.

Two sentences ' and  are said to be equivalent (resp. N-equivalent, Z-equivalent) ifL+(') = L+( ) (resp. LN(') = LN( ), LZ(') = LZ( )).
3.2. Full second order

As we have already pointed out, there is no di�erence between the second ordertheories of < and of S. The full second order theory de�nes the polynomial hierarchy. Thishierarchy is often de�ned in terms of Turing machines with oracles, but a direct de�nitionis also possible. Let A be an alphabet. A polynomial relation on A� is a relation whichis accepted in polynomial time by a deterministic Turing machine on the alphabet A. Forevery k > 0, we de�ne the set �Pk (A�) as follows. A subset L of A� belongs to �Pk (A�) ifand only if there exist k polynomials p1, : : : , pk and a polynomial (k + 1)-ary relation Rsuch that x 2 L () 9y1 2 A� such that jy1j � p1(jxj)8y2 2 A� such that jy2j � p2(jxj)9y3 2 A� such that jy3j � p3(jxj). . .
Qyk 2 A� such that jykj � pk(jxj)R(x; y1; : : : ; yk)

where Q is an universal quanti�er if k is even and an existential quanti�er if k is odd.In particular, �P0 = P , the class of sets recognized by deterministic Turing machines inpolynomial time, and �P1 = NP , the class of sets recognized by non deterministic Turingmachines in polynomial time. Finally, the set �P� = Sk�0 �Pk is the polynomial hierarchy(sometimes also denoted by PH).
Theorem 3.2. (Stockmeyer 1977) A subset of A+ is de�nable in F2(<) if and only if itbelongs to the class PH.

Restricting to the set �1F2(<) of existential (second order) formul� de�nes the classNP .
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Theorem 3.3. (Fagin 1974) A subset of A+ is de�nable in �1F2(<) if and only if it belongsto the class NP .

The question whether the class NP is strictly contained in PH is a famous openproblem of complexity theory. Therefore it is not known whether existential second orderformul� are less expressive than full second order formul�. At this point it is temptingto give a logical description of other complexity classes. The four results below give the
avor of this theory. The reader is referred to the original article of Immerman [31] for moreinformation on this topic. Let L (resp. NL, PSPACE) be the class of sets accepted bya deterministic Turing machine in logarithmic space (resp. by a non deterministic Turingmachine in logarithmic space, by a deterministic Turing machine in polynomial space). Thefollowing inclusions are well-known:
L � NL � P � NP � PH � PSPACE

Denote by RTC the operator that computes the re
exive and transitive closure of a relation.For instance, if S(x; y) is the successor relation, RTC[S(x; y)](u; v) is the relation u � v andRTC[S(x1; x01) ^ S(x2; x02)](0; y; x; z) is the relation x + y = z. Given a set of formul� F ,we denote by F +RTC the set of formul� expressible using F plus the operator RTC.
Theorem 3.4. (Immerman 1987) A subset of A+ is de�nable in F2(<) +RTC if and onlyif it belongs to the class PSPACE.
The characterization of the class NL, also due to Immerman, was originally stated in aslightly more complicated way, but can be simpli�ed since NL is closed under complement[32,72].
Theorem 3.5. (Immerman 1987) A subset of A+ is de�nable in F1(S) +RTC if and onlyif it belongs to the class NL.
To obtain the class L, we need a deterministic version of the operator RTC. Given a �rstorder binary relation R, the deterministic part of R is the relation Rd de�ned by

Rd(x; y) � R(x; y) ^ (8z R(x; z) =) z = y)
Now de�ne DRTC(R) as the re
exive transitive closure of Rd. For instance, S = Sd onwords since every position has at most one successor, so that <= DRTC[S(x; y)]. Given aset of formul� F , we denote by F +DRTC the set of formul� expressible using F plus theoperator DRTC.
Theorem 3.6. (Immerman 1987, Vardi) A subset of A+ is de�nable in F1(S) +DRTC ifand only if it belongs to the class L.
We conclude this section with the class P , for which we introduce the least �xpoint operatorLFP . Given a monotone operator ' on relations (that is, such that R � S implies '(R) �'(S)), de�ne LFP (') = \

'(R)=RR
For instance, if '(R) = (x = y) _ (9z(S(x; z) ^ R(z; y)), then LFP (')[R] is the re
exiveand transitive closure of R. In particular, LFP is more powerful than RTC. As for RTCand DRTC, given a set of formul� F , we denote by F +LFP the set of formul� expressibleusing F plus the operator LFP .
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Theorem 3.7. (Immerman 1987) A subset of A+ is de�nable in F1(S) +LFP if and onlyif it belongs to the class P .

These results are stated when formul� are interpreted on �nite words only. For anextension of these results to �nite structures see Immerman [31] and the beautiful survey ofFagin [25].
3.3. Monadic second order

Considering only monadic second order formul� on words is a much more drasticrestriction.
Theorem 3.8. (B�uchi [12], Elgot [22]) Let L be a subset of A+ (resp. AN, AZ). Thefollowing conditions are equivalent:(1) L is de�nable in WMF2(<),(2) L is de�nable in MF2(<),(3) L is a rational (resp. N-rational, Z-rational) set.Furthermore there exists an e�ective algorithm to pass from a formula to a rational (resp.N-rational, Z-rational) expression and vice-versa.

It is fair to say that this e�ective algorithm is not very e�cient. Indeed, it is shownin [41] that there is no elementary time bounded decision procedure for deciding whether agiven sentence of WMF2(S) is true or not.
Corollary 3.9. The theories MF2(N; S), MF2(Z; S), MF2(N; <), MF2(Z; <), and thecorresponding weak monadic second order theories are decidable.
Proof. We give the proof forMF2(N; <), but the other cases are similar. Let ' be a sentenceof MF2(N; <). Take an empty alphabet. Then theorem 3.8 gives an e�ective algorithm tocompute LN('). Then ' is true on N if and only if LN(') 6= ;.

It is amusing to obtain Presburger's result from B�uchi's theorem. The nice paper ofHodgson [28] contains other interesting decidability results derived from B�uchi's theorem.
Corollary 3.10. (Presburger) The theory F1(N;+; 0) is decidable.
Proof. The idea is to code the integers by �nite subsets of N and then to interpret theaddition within weak monadic second order logic. If

n = 2i1 + 2i2 + � � �+ 2ik with i1 < i2 < : : : < ik
is the binary expansion of an integer n, then n is coded by the set fi1; i2; : : : ; ikg. Thusthe coding of an integer n is the set of positions of the bits 1 in the binary expansion ofn. For instance, 13, whose binary expansion is 1101, is coded by the set f3; 2; 0g, and 20,whose binary expansion is 10100 is coded by f4; 2g.Now, let x, y, and z be three integers, coded by the sets X, Y , and Z, respectively.Then one can code the equality x+ y = z by introducing a second order variable R, which
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codes the positions of carries in the addition. For instance, the addition of the binaryexpansions of 13 and 20 is represented below.

R= f5; 4; 3g 1 1 1 0 0 0X= f4; 2g 1 0 1 0 0Y = f3; 2; 0g + 0 1 1 0 1Z= f5; 0g 1 0 0 0 0 1
Now, i belongs to Z if and only if one or three of the sets X, Y , and R contains i. Similarly,i+ 1 2 R if and only if i belongs to at least two of the three sets X, Y , and R. This can beeasily coded into the following formula:
9R (0 =2 R) ^ 8x 8y �S(x; y)!

h(y 2 R)$ �(x 2 X) ^ (x 2 Y )� _ �(x 2 X) ^ (x 2 R)� _ �(x 2 R) ^ (x 2 Y )�i� ^�(x 2 Z)$ h�(x 2 R) ^ (x 2 X) ^ (x 2 Y )� _ �(x 2 R) ^ (x =2 X) ^ (x =2 Y )� _
�(x =2 R) ^ (x 2 X) ^ (x =2 Y )� _ �(x =2 R) ^ (x =2 X) ^ (x 2 Y )�i�

We now arrive to �rst order theory. There, the theory branches into two di�erent directions.We �rst consider the �rst order theory of the linear ordering and later (section 3.6) the �rstorder theory of successor.
3.4. First order theory of the linear ordering

In this section, we present the results which connect �rst order logic, star-free setsand aperiodic semigroups. These statements, given the proper de�nitions, hold for �nite,in�nite and bilateral words. They summarize a series of deep results of Sch�utzenberger [58],McNaughton and Papert [40], Ladner [34], Thomas [74], Perrin [47] and Perrin-Pin [50]. We�rst de�ne the key concepts of this statement : star-free sets and aperiodic semigroups.Boolean operations comprise union, intersection, complementation and set di�erence.It can be shown that the rational subsets of A� are closed under �nite boolean operations.The set of star-free subsets of A� is the smallest set of subsets of A� containing the �nitesets and closed under �nite boolean operations and product. For instance, if Xc denotesthe complement of a set X, one has A� = ;c, showing that the set A� is star-free, since theempty set is a �nite set. More generally, if B is a subset of the alphabet A, the set B� isalso star-free since B� is the complement of the set of words that contain at least one letterof B0 = A nB. This leads to the following star-free expression
B� = A� nA�(A nB)A� = (;c(A nB);c)c

If A = fa; bg, the set (ab)� is star-free, since (ab)� is the set of words not beginning withb, not �nishing by a and containing neither the factor aa, nor the factor bb. This gives thestar-free expression
(ab)� = A� n �bA� [A�a [A�aaA� [A�bbA�� = ;c n �b;c [ ;ca [ ;caa;c [ ;cbb;c�

Readers may convince themselves that the sets fab; bag� and �a(ab)�b�� are also star-freebut may also wonder whether there exist any non star-free rational sets. In fact, there are
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some, for instance the sets (aa)� and fb; abag�, or similar examples that can be derived fromthe algebraic approach presented below.

The star-free subsets of AN (resp AZ) are de�ned in a way similar to the rationalsubsets of AN (resp AZ). The set of star-free subsets of AN is the smallest set S of subsetsof AN closed under �nite boolean operations and such that if X is a star-free subset of A+
and Y 2 S, then XY 2 S. The set of star-free subsets of AZ is the smallest set S of subsetsof AZ closed under �nite boolean operations and such that if Y is a star-free subset of A+
and X, Z are star-free subsets of AN, then ~XY Z 2 S.

A �nite semigroup S is aperiodic if and only if it ultimately satis�es the equationsxn = xn+1. This notion is in some sense \orthogonal" to the notion of groups. Indeed, onecan show that a semigroup is aperiodic if and only if it is H-trivial, or, equivalently, if itcontains no non-trivial subgroup. Note that any �nite monoidM satis�es an equation of theform xn+p = xn. The two extremal cases are n = 0 and p = 1. The �rst case correspondsto groups (if M is a group, then M satis�es the equation xCard(M) = 1), the second caseto aperiodic monoids. The connection between aperiodic semigroups and star-free sets wasestablished by Sch�utzenberger [58] for �nite words and by Perrin [47,48] for in�nite andbilateral words:

Theorem 3.11. A recognizable subset of A+ (resp. AN, AZ) is star-free if and only if itssyntactic semigroup (resp. !-semigroup, �-semigroup) is aperiodic.

Example 3.4. Let A = fa; bg and consider the set L = (ab)+. Its minimal automaton isrepresented below:

Figure 3.1. The minimal automaton of (ab)+
The transitions and the relations de�ning the syntactic semigroup S of L are given in thefollowing tables

1 2
a 2 �
b � 1
aa � �
ab 1 �
ba � 2

a2 = b2 = 0
aba = a
bab = b

Since a2 = a3, b2 = b3, (ab)2 = ab and (ba)2 = ba, S is aperiodic and thus L is star-free.Consider now the set L0 = (aa)+. Its minimal automaton is represented below:
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Figure 3.2. The minimal automaton of (aa)+
The transitions and the relations de�ning the syntactic semigroup S0 of L0 are given in thefollowing tables

1 2
a 2 1
b � �
aa 1 2

a3 = a
b = 0

Thus S0 is not aperiodic and hence L0 is not star-free.
The complexity of star-freeness is analyzed in [15,64]. Given a �nite automaton, itis a PSPACE-complete problem to know whether this automaton accepts a star-free set of�nite words.Finally, the connection with �rst order was established by McNaughton and Papertfor �nite words [40], by Thomas [74] for in�nite words and by Perrin and the author [50] forbilateral words.

Theorem 3.12. Let X be a recognizable subset of A+ (resp. AN, AZ). Then the followingconditions are equivalent:(1) X is de�nable in F1(<),(2) X is star-free,(3) the syntactic semigroup (resp. !-semigroup, �-semigroup) of X is aperiodic.
Since the characterization by syntactic semigroups is e�ective, one gets the followingdecidability result.

Corollary 3.13. It is decidable whether a given sentence of MF2(<) is equivalent (resp.N-equivalent, Z-equivalent) to some formula of F1(<).
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3.5. A hierarchy of �rst order formul� of the linear ordering
An extension of Theorem 3.12 was discovered by Thomas [76] for �nite words andlater extended to in�nite and bilateral words [50]. It turns out that the hierarchy of star-freesets obtained by counting the number of alternations between concatenation and booleanoperations coincides with the hierarchy of �rst order formul� in terms of quanti�ers alter-nations. In this section, we give a re�ned version of this beautiful result and we discussrelated problems.We �rst de�ne the logical hierarchy. Any �rst order formula is equivalent to a formulain normal prenex form, that is to say, of the form ' = Q(x1; : : : ; xk) where Q(x1; : : : ; xk)is a sequence of existential or universal quanti�ers on the variables x1; : : : xk and where  isquanti�er free. If Q(x1; : : : ; xk) is formed of n blocks of quanti�ers such that the �rst blockcontains only existential quanti�ers (note that this �rst block may be empty), the secondblock universal quanti�ers, etc., we say that ' is a �n-formula. We denote by �n the set ofthe �n-formul� and by B�n the set of boolean combinations(�) of �n-formul�.We now turn to the hierarchy of recognizable sets. Let A be an alphabet. Thede�nition of star-free subsets of A� makes use of two di�erent types of operations: booleanoperations and concatenation product. By alternating the use of these two operations, onegets a hierarchy, called the concatenation hierarchy, de�ned as follows.(1) The sets of level 0 are the empty set ; and A�,(2) For every integer n � 0, the sets of level n + 1=2 are the �nite unions of sets of theform L0a1L1a2 � � � akLk
where L0, L1, : : : , Lk are sets of level n and a1, : : : , ak are letters(3) For every integer n � 0, the sets of level n+ 1 are the �nite boolean combinations ofsets of level n+ 1=2.Note that a set of level m is also a set of level n for every n � m. The next result summarizesseveral results relative to this hierarchy.

Theorem 3.14. (Brzozowski and Knast [10], Perrin and Pin [50])(1) For every n � 0, the sets of level n are closed under union, intersection, and comple-ment.(2) For every n � 0, the sets of level n + 1=2 are closed under union, intersection, andconcatenation product.(3) The hierarchy is strict: if A contains at least two letters, then for every n, there existsome sets of level n + 1 that are not of level n + 1=2 and some sets of level n + 1=2that are not of level n.
The concatenation hierarchy can be extended to in�nite and bilateral words as follows.(1) The sets of level 0 are the empty set ; and AN (resp. AZ),(2) For every integer n � 0, the sets of level n + 1=2 are the �nite unions of sets of theform XaY , where X is a set of A� (resp. A�N) of level n+ 1=2, Y is a subset of ANof level n and a is a letter.(3) For every n � 0, the sets of level n+ 1 are the �nite boolean combinations of sets oflevel n+ 1=2.Here is the announced connection between the two hierarchies.

(�) boolean operations on formul� comprise conjunction, disjunction and negation.
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Theorem 3.15. (Thomas [76], Perrin and Pin [50]) A subset of A+ (resp. AN, AZ) is oflevel n (resp. n+ 1=2) if and only if it is B�n-de�nable (resp. �n+1-de�nable).

We now describe in more details the �rst levels of this hierarchy. By de�nition, thesets of level 1=2 are the �nite unions of sets of the form A�a1A�a2 � � � akA�, where the ai'sare letters, and the sets of level 1 are the �nite boolean combinations of the same sets. Inparticular, �nite sets are of level 1. The sets of level 3=2 and 2 have a similar description,but this is not a direct consequence of the de�nition.
Theorem 3.16. (Pin and Straubing [55], Ar� [2,3]) The sets of level 3=2 of A� are the�nite unions of sets of the form A�0a1A�1a2 � � � akA�k, where the ai's are letters and the Ai'sare subsets of A. The sets of level 2 are the �nite boolean combinations of the same sets.

The sets of level 1 have a nice algebraic characterization.
Theorem 3.17. (Simon [61]) A subset of A+ has level 1 if and only if its syntacticsemigroup is J -trivial, or, equivalently, if it ultimately satis�es the equations xn = xn+1
and (xy)n = (yx)n.

There exist several proofs of this deep result [1,61,69,63].
Example 3.5. Let A = fa; b; cg and let L = A�abA�. The minimal automaton of L isrepresented below

Figure 3.3. The minimal automaton of L.
The transitions and the relations de�ning the syntactic semigroup S of L are given in thefollowing tables

1 2 3
a 2 2 3
b 1 3 3
c 1 1 3
ab 3 3 3
ba 2 3 3

a2 = a
ab = 0
ac = c
b2 = b
bc = b
ca = a
cb = c
c2 = c

The J -class structure of S is represented in the following diagram.
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� a � c
ba � b
�0

Figure 3.4. The J -classes of S
In particular, a J c and thus S is not J -trivial. Therefore L has level greater than 1 (infact 2). Consider now the set L0 = A�abA� on the alphabet A = fa; bg. Then the minimalautomaton of L0 is obtained from that of L by erasing the transitions with label c.

Figure 3.5. The minimal automaton of L0.
The transitions and the relations de�ning the syntactic semigroup S0 of L0 are given in thefollowing tables

1 2 3
a 2 2 3
b 1 3 3
ab 3 3 3
ba 2 3 3

a2 = a
ab = 0
b2 = b

The J -class structure of S0 is represented in the following diagram.
�a �b

ba
�0

Figure 3.6. The J -classes of S0.
Thus S0 is J -trivial and L0 has level 1. In fact L0 = A�aA�bA�.

Theorem 3.17 gives an algorithm to decide whether a given recognizable set (�) is oflevel 1. The complexity of this algorithm is analyzed in [15,64]. Given a �nite automaton,the problem to know whether it recognizes a set of �nite words of level 1 is in P and islogspace-complete for NL. Levels 1=2 and 3=2 are also decidable. This is relatively easy toshow for the level 1=2, but relies on a deep result of Hashiguchi for the level 3=2.
(�) A recognizable set can be given either by a �nite automaton or by a �nite semigroup or bya rational expression since there are standard algorithms to pass from one representation to theother.
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Theorem 3.18. (Ar� [2,3]) One can e�ectively decide whether a given recognizable set ofA� is of level 1=2, 1 or 3=2.
Corollary 3.19. It is decidable whether a given sentence of MF2(<) is equivalent to aformula of �1 (resp. B�1, �2).

The decidability problem for levels 2 and beyond is still open, although much progresshas been made on level 2 in the recent years [55,68,81,71,82,19]. Little is known beyond level2: a semigroup theoretic description of each level of the hierarchy is known [53], but it is notan e�ective one. In other words, each level admits a description by ultimate equations similarto Theorem 3.17, but these ultimate equations are not known for n � 2. Furthermore, evenif these equations were known, this would not necessarily lead to a decision process for thecorresponding variety.It is not known whether similar results hold for in�nite and bilateral words.
3.6. First order theory of successor

We now turn to the �rst order theory of successor, the characterization of which ismore involved than that of the linear ordering. It seems that in this theory, the poorer thelogic, the more sophisticated the results!We need to introduce some new classes of recognizable sets. We �rst treat the caseof �nite words. Let x 2 A+ and k � 0. We let
F (x; k) = fu 2 A+ j u contains at least k occurrences of xg

For instance, F (x; 1) = A�xA� and F (aba; 2) = A�abaA�abaA� [ A�ababaA�. A set ofwords of A+ is strongly locally testable (SLT) if it is a boolean combination of sets of theform F (x; 1) where x 2 A+. It is locally testable (LT) if it is a boolean combination of setsof the form uA�, A�v or A�xA� where u; v; x 2 A+. For instance, if A = fa; bg, the set(ab)+ is locally testable since
(ab)+ = (aA� \A�b) n (A�aaA� [A�bbA�)

More generally, we say that a set of words of A+ is strongly locally threshold testable (SLTT)if it is a boolean combination of sets of the form F (x; k) where x 2 A+ and k > 0. It islocally threshold testable (LTT) if it is a boolean combination of sets of the form uA�, A�vor F (x; k) where u; v; x 2 A+ and k > 0. These families of sets are deeply related to the�rst order theory of successor.
Theorem 3.20. (Thomas [76]) A recognizable subset of A+ is de�nable in F1(S) if andonly if it is locally threshold testable.
Theorem 3.21. (Beauquier and Pin [9]) A recognizable subset of A+ is de�nable by aboolean combination of existential formul� of F1(S) if and only if it is strongly locallythreshold testable.

In fact, these results are particular instances of the general fact that �rst order for-mulas can express only local properties [26,78,79].We now give some e�ective characterizations of the families of sets introduced above.In order to keep a standard notation in subsequent statements, we shall denote by L arecognizable subset of A+, by S(L) the syntactic semigroup of L, by ' : A+ ! S(L) the
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syntactic morphism of L, and by P (L) = '(L) the syntactic image of L. A �nite semigroupS is said to be locally idempotent and commutative if, for every idempotent e of S, thesubsemigroup eSe = fese j s 2 Sg is idempotent and commutative. Equivalently, S islocally idempotent and commutative if, for every e; s; t 2 S such that e = e2, (ese)2 = (ese)and (ese)(ete) = (ete)(ese). We can now state
Theorem 3.22. (Brzozowski and Simon[11], McNaughton[39]) A recognizable subset L ofA+ is locally testable if and only if S(L) is locally idempotent and commutative.

Let S be a �nite semigroup and let P be a subset of S. We say that P saturates theJ -classes of S if, for every J -class J of S, s 2 P and s J t imply t 2 P .
Theorem 3.23. (Beauquier and Pin [9]) Let L be a recognizable subset of A+. Then Lis strongly locally testable if and only if S(L) is locally idempotent and commutative andP (L) saturates the J -classes of S(L).
Example 3.6. Let A = fa; b; cg, and let L = c(ab)� [ c(ab)�a. Then L is recognized by thefollowing automaton.

Figure 3.7. An automaton recognizing L.
The transitions and the relations de�ning the syntactic semigroup S of L are given in thefollowing tables

1 2 3
a � 3 �
b � � 2
c 2 � �
aa � � �
ab � 2 �
ba � � 3
ca 3 � �

a2 = b2 = c2 = ac = bc = cb = 0
aba = a
bab = b
cab = c

The J -class structure is represented in the following diagram, where the grey box is theimage of L.
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Figure 3.8. The J -class structure.
Thus P (L) saturates the J -classes, and L is SLT. In fact, L = A�cA� n (A�aaA�[A�acA�[A�bbA� [A�bcA� [A�cbA� [A�ccA�).

The syntactic characterization of locally threshold testable sets is more involved anddepends on a deep result of Th�erien and Weiss [73]. Given a semigroup S, form a graphG(S) as follows: the vertices are the idempotents of S and the edges from e to f are theelements of the form esf .
Theorem 3.24. (Beauquier and Pin [8]) Let L be a recognizable subset of A+. Then L islocally threshold testable if and only if S(L) is aperiodic and its graph satis�es the followingcondition: if p and r are edges from e to f and if q is an edge from f to e, then pqr = rqp.

Figure 3.9. The condition pqr = rqp.
Example 3.7. Let A = fa; bg and let L = a�ba�. Then L is recognized by the automatonshown in �gure 3.7.

Figure 3.10. The minimal automaton of a�ba�.
The transitions and the relations de�ning the syntactic semigroup S of L are given in thefollowing tables

1 2
a 1 2
b 2 �
bb � �

a = 1
b2 = 0
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Thus S = fa; b; 0g, where a = 1 is the identity and E(S) = f1; 0g. The local semigroupsare 0S0 = f0g and 1S1 = S. This last local semigroups is not idempotent, since b2 6= b.Therefore, L is not locally testable. On the other hand, the graph of S(L), represented inFigure 3.11, satis�es the condition pqr = rqp.

Figure 3.11. The graph of S(L).
Therefore L is locally threshold testable.
We conjecture that an analogous result holds for SLTT subsets of A+.
Corollary 3.25. It is decidable whether a given sentence of MF2(S) is equivalent to aformula of F1(S).

We now turn to bilateral words, for which similar classes of recognizable sets can bede�ned. For each x 2 A+ and let k � 0, we set
FZ(x; k) = fu 2 AZ j u contains at least k occurrences of xg
RZ(x;1) = fu 2 AZ j u contains in�nitely many occurrences of x on the right g
LZ(x;1) = fu 2 AZ j u contains in�nitely many occurrences of x on the left g

Note that FZ(x; 1) = A~!xA!. A set of words of AZ is strongly locally threshold testable(SLTT) if it is a boolean combination of sets of the form FZ(x; k) where x 2 A+ andk > 0. It is locally threshold testable (LTT) if it is a boolean combination of sets of the formRZ(x;1), LZ(x;1) or FZ(x; k). In the case of bilateral words, the �n hierarchy collapses.
Theorem 3.26. (Beauquier and Pin [9]) Let X be a recognizable subset of AZ. Then thefollowing conditions are equivalent :(1) X is strongly locally threshold testable,(2) X is de�nable in F1(S),(3) X is de�nable by a boolean combination of existential formul� of F1(S).

Although Theorem 3.22 and 3.23 have been extended to bilateral words (P�ecuchet[45], Beauquier and Pin [9]), no e�ective characterization of the SLTT subsets of AZ isknown.
Finally, we consider the case of in�nite words. For each x 2 A+ and let k � 0, we set

FN(x; k) = fu 2 AN j u contains at least k occurrences of xg
RN(x;1) = fu 2 AN j u contains in�nitely many occurrences of x on the right g

A set of words of AN is strongly locally threshold testable (SLTT) if it is a boolean combinationof sets of the form FN(x; k) where x 2 A+ and k > 0. It is locally threshold testable (LTT)if it is a boolean combination of sets of the form uAN, RN(x;1) or FN(x; k). Finally, it isleft locally threshold testable (LLTT) if it is a boolean combination of sets of the form uA!or FN(x; k). The following results follow from the results of Thomas.
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Theorem 3.27. A recognizable subset of AN is de�nable by a boolean combination ofexistential formul� of F1(S) if and only if it is strongly locally threshold testable.
Theorem 3.28. (Thomas [76]) A recognizable subset of AN is de�nable in F1(S) if andonly if it is left locally threshold testable.

Again these results are just variations on the theme that �rst order formulas canexpress only local properties [26,78,79].An e�ective characterization of this last class has been obtained by Wilke. FirstTheorem 3.24 can be extended to in�nite words as follows
Theorem 3.29. (Wilke [84,85]) A recognizable subset of AN is locally threshold testableif and only if its syntactic !-semigroup is aperiodic and its graph satis�es the followingcondition: if p and r are edges from e to f and if q is an edge from f to e, then pqr = rqp.

The characterization of LLTT sets is more involved, but is e�ective. It relies on thenice equality LLTT = LTT \�02
where �02 denotes the second level of the Borel hierarchy. The open sets of AN are the setsof the form XAN for some X � A+. A set is closed if its complement is open. The sets of�02 are at the same time countable unions of closed sets and countable intersection of opensets. The recognizable sets of �02 are the sets which are accepted by a deterministic B�uchiautomaton as well as their complement. This class is also decidable, leading to the followingconclusion.
Theorem 3.30. (Wilke [84,85]) One can e�ectively decide whether a given recognizablesubset of AN is LLTT.
Corollary 3.31. It is decidable whether a given sentence of MF2(S) is N-equivalent to aformula of F1(S).

3.7. Modular quanti�ers
An interesting extension of the �rst order theory is obtained by introducing modularquanti�ers of the form 9k;r. For instance, the sentence 95;2xRax is interpreted to mean\there are exactly 2 mod 5 positions x such that the letter in position x is an a". Denote byFMOD(<) (resp. F1+MOD(<)) the set of formul� de�ned by using only modular quanti�ers(resp. by using both the ordinary quanti�ers and the modular ones). The correspondingclasses of languages are decidable, according to the following result.

Theorem 3.32. (Straubing, Th�erien and Thomas [70]) A recognizable subset of A+ isde�nable in FMOD(<) (resp. F1+MOD(<)) if and only if its syntactic semigroup is a solvablegroup (resp. a semigroup in which every group is solvable).
These results can probably be extended in some way to in�nite or biin�nite words.
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3.8. Elementary equivalence

Given a set of sentences S, we say that two words u and v are S-equivalent if and onlyif they satisfy exactly the same formul� of S. This equivalence has been especially studiedfor bilateral words, for which the next two theorems give a rather exhaustive description.
Theorem 3.33. Perrin and Schupp [52] Let u; v be two words of AZ. The followingconditions are equivalent:(1) u and v are either equal or recurrent with the same set of factors,(2) u and v satisfy the same sentences of F1(Z; <),(3) u and v satisfy the same sentences of F2(Z; <).

For the theory of successor, the corresponding result, �rst conjectured by Parikh, iseven simpler.
Theorem 3.34. [8] Let u; v be two words of AZ. The following conditions are equivalent:(1) u and v have the same set of factors,(2) u and v satisfy the same sentences of F1(Z; S),(3) u and v satisfy the same existential sentences of F1(Z; S).

This also is an easy consequence of the results on �rst-order theory of local structurementioned above [26,78,79].
4. Temporal logic

An alternative way to de�ne sets of words is to use propositional linear temporal logic,a logic used for specifying and verifying correction of computer programs. This logic isintended to represent the structure of time and the basic operators (next time, eventuallyand until) refer to this intuitive interpretation. As for sequential calculus, to each �niteor in�nite word is associated a totally ordered set, which represents the structure of time.Thus, in this model, time is always discrete. We follow the notations of [23]. Let A be a�nite alphabet. The vocabulary consists of(1) an atomic proposition pa for each letter a 2 A,(2) connectives _, ^ and :,(3) temporal operators X (\next"), F (\eventually") and U (\until")and the formul� are constructed according to the rules(1) for every a 2 A, pa is a formula,(2) if ' and  are formul�, so are ' _  , ' ^  , :', X', F', 'U .Semantics are de�ned by induction on the formation rules. Given a word w 2 A+, and n 2f1; 2; :::; jwjg, we de�ne the expression \w satis�es ' at the instant n" (denoted (w; n) j= ')as follows(1) (w; n) j= pa if the n-th letter of w is an a.(2) (w; n) j= '_ (resp. '^ , :') if (w; n) j= ' or (w; n) j=  (resp. if (w; n) j= ' and(w; n) j=  , if (w; n) does not satisfy ').(3) (w; n) j= X' if (w; n+ 1) satis�es '.(4) (w; n) j= F' if there exists m such that n � m � jwj and (w;m) j= '.(5) (w; n) j= 'U if there exists m such that n � m � jwj, (w;m) j=  and, for every ksuch that n � k < m , (w; k) j= '.Note that, if w = w0w1 � � �wjwj, (w; n) j= ' only depends on the word w = wnwn+1 � � �wjwj.If ' is a temporal formula, we say that w satis�es ' if (w; 0) j= '.
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Example 4.1. Let w = abbababcba. Then (w; 3) j= pa since the fourth letter of w is an a,(w; 3) j= Xpb since the �fth letter of w is a b and (w; 3) j= F(pc ^Xpb) since cb is a factorof babcba.
To each temporal formula ', one associates the sets of words that satisfy ':

L+(') = fu 2 A+ j u satis�es 'g
LN(') = fu 2 AN j u satis�es 'g

In fact, one can show [29,27] that linear temporal logic is equivalent to F1(<). It follows thatone can e�ectively decide whether a given recognizable set is de�nable in linear temporallogic. A direct proof of this result is given in [17] for �nite words and in [16] for in�nitewords.
Theorem 4.1. A subset of A+ (resp. AN) is de�nable in linear temporal logic if and onlyif its (!)-syntactic semigroup is aperiodic.

If we omit the \until" operator, we obtain a restricted linear temporal logic that wasconsidered in [27,29]. An e�ective description of the sets of words de�nable in this logic isknown in the case of �nite words.
Proposition 4.2. [17] Let L be a subset of A+. The following conditions are equivalent:(1) L is de�nable in restricted linear temporal logic,(2) L belongs to the smallest boolean algebra of sets containing the languages aA� andclosed under the operations L! A�L and L! aL for every a 2 A,(3) the syntactic semigroup of L ultimately satis�es the sequence of equations xn+1 = xnand uxn(vxnuxn)n = (uxnvxn)n.

There is a simple algebraic interpretation of these equations. Let S be a �nite semi-group. Then for every idempotent e, the set eSe = fese j s 2 Sg is a subsemigroup of S,called the local subsemigroup associated with e. A semigroup satis�es locally a property P ifevery local subsemigroup satis�es this property. Now a semigroup S satis�es the equationsxn+1 = xn and uxn(vxnuxn)n = (uxnvxn)n if and only if it is locally L-trivial.It remains to �nd an analogous characterization in the case of in�nite words.
5. Conclusion

We have given several description of standard complexity classes in terms of logicalformul�. These results are summarized in the next table.
Formulas Complexity classes

F2(<)+ Re
exive Transitive Closure PSPACE
F2(<) PH

�1F2(<) NP
F1(S)+ Least Fixed Point P

F1(S)+ Re
exive Transitive Closure NL
F1(S)+ Deterministic Re
exive Transitive Closure L
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Logical characterizations of some standard complexity classes.

One enters the world of �nite automata by considering the monadic second order case.
Formulas Finite words In�nite words Bilateral words
WMF2(<) Rational N-Rational Z-Rational
MF2(<) Rational N-Rational Z-Rational

The monadic second order.
The �rst order hierarchy of the linear order has been studied intensively for �nite wordsalthough the decidability of levels 2 and beyond remains open.

Formulas Sets of words Algebraic characterization Decidable
F1(<) Star-free aperiodic syntactic semigroup Yes
B�0(<) ;; A+ trivial syntactic semigroup Yes
�1(<) level 1=2 Yes (technical) Yes
B�1(<) level 1 J -trivial syntactic semigroup Yes
�2(<) level 3=2 Yes (very di�cult) Yes
B�2(<) level 2 Yes (but non e�ective so far) ?

The �rst order hierarchy of <.
De�nability in the �rst order theory of the successor is decidable for �nite and in�nite words,but the case of bilateral words is not yet worked out.

Formulas Finite words In�nite words Bilateral words
F1(S) LTT (decidable) LLTT (decidable) SLTT (?)
B�1(S) SLTT (?) SLTT (?) SLTT (?)

The �rst order hierarchy of S.
We have also discussed the expressivity of linear temporal logic and of restricted lineartemporal logic.
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