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Abstract

We describe the two classes of languages recognized by the groups
D4 and Q8, respectively. Then we show that the formations of lan-
guages generated by these two classes are the same. We also prove that
these two formations are closed under inverses of morphisms, which
yields a language theoretic proof of the fact that the group formations
generated by D4 and Q8, respectively, are two equal varieties.

Most monoids and groups considered in this paper are finite. In particular,
we use the term variety of groups for variety of finite groups. Similarly, all
languages considered in this paper are regular languages and hence their
syntactic monoid is finite.

1 Introduction

A nontrivial question is to describe the regular languages corresponding to
well-studied families of finite groups. Only a few cases have been investigated
in the literature: abelian groups [6], p-groups [6, 20, 21, 22], nilpotent groups
[6, 19], soluble groups [17, 21] and supersoluble groups [4]. More recently
[2], the authors addressed the following question: is it possible to obtain a
reasonable description of the languages corresponding to a given formation
of groups? Recall that a formation of groups is a class of finite groups closed
under taking quotients and subdirect products.

This question was motivated by the importance of formations in finite
group theory, notably in the development of a generalised Sylow’s theory.
The theory of formations was born with the seminal paper [7] of Gaschütz in
1963, where a broad extension of Sylow’s and Hall’s theories was presented.
The new theory was not arithmetic, that is, based on the orders of subgroups.
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It was concerned instead with group classes sharing certain properties, the
so-called formations of groups, which have played a fundamental role in the
study of groups since then [5, 1].

In [2], the authors extended Eilenberg’s correspondence theorem between
varieties of monoids and varieties of languages [6] to the setting of forma-
tions. More precisely, they spotted a bijective correspondence between for-
mations of finite monoids and the so-called formations of languages. Using
this “formation theorem” the authors not only recovered the previously men-
tioned results on nilpotent groups, soluble groups and supersoluble groups,
but, relying on the local definition of a saturated formation [5], they exhib-
ited new examples, like the class of groups having a Sylow tower [3].

The present paper focuses on the language interpretation of two results
dealing with the dihedral group D4 and the quaternion group Q8. The first
result asserts that D4 and Q8 generate the same formation [5, Exercise 9,
p. 344]. The second one states that this formation is a variety of groups,
that is, is closed under taking subgroups. This latter result is actually an
instance of a more general result, due to Neumann [10], which states that
any formation generated by a single nilpotent group is a variety (see [5,
IV.1.16, p. 342] for an alternative proof).

The main result of this paper provides a purely language theoretic proof
of these two results on D4 and Q8. To do so, we first translate them in
terms of languages: the formations of languages F1 and F2 associated to
D4 and Q8, respectively, are the same (first result) and they form a variety
of languages (second result). The main difficulty in proving these results
by pure language theoretic means is to establish the inclusion F1 ⊆ F2.
The lengthy proof of Theorem 5.1 should convince the reader that it is a
nontrivial property.

Our proofs rely on a systematic use of the binomial coefficients of two
words. This is not really a surprise, since binomial coefficients modulo p are
the main tool for describing languages recognized by p-groups, and D4 and
Q8 are 2-groups. In this paper, we present two explicit formulas with an
algorithmic flavour. First, we discuss the behaviour of binomial coefficients
under morphisms (Formula 3.4). Next, we show that a language of A∗ is
recognized by a p-group if and only if it is a finite union of languages defined
by linear algebraic constraints involving the binomial coefficients. Finally,
we give an algorithm to obtain such a decomposition when the p-group is a
group of unitriangular matrices over Fp.

Our paper is organised as follows. In order to keep the paper self-
contained, prerequisites (Section 2) include formations and varieties, syntac-
tic monoids and the Formation Theorem. Section 3 is devoted to binomial
coefficients on words. We present in Section 4 various descriptions of the
languages recognized by p-groups and the corresponding algorithms. Section
5 contains the proof of our main theorem.
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2 Prerequisites

2.1 Formations and varieties

A formation of groups is a class of groups F satisfying the two conditions:

(1) any quotient of a group of F also belongs to F,

(2) the subdirect product of any finite family of groups of F is also in F.

Formations of finite algebras can be defined in the same way [14, 16, 15]. In
particular, a formation of monoids is a class of finite monoids closed under
taking quotients and subdirect products. If S is a set of finite monoids, the
formation generated by S is the smallest formation containing S. It is also
the set of quotients of subdirect products of members of S (see [5, II.2.2, p.
272] for group formations, [15, Chapter I, Theorem 2.2] and [8, Lemma 3.2]
for general algebraic systems and [2, Proposition 1.4] for a self-contained
proof for monoid formations).

A variety of groups is a class of groups V satisfying the three conditions:

(1) any subgroup of a group of V also belongs to V,

(2) any quotient of a group of V also belongs to V,

(3) the direct product of any finite family of groups of V is also in V.

Varieties of monoids are defined in the same way. It follows from the defi-
nition that a formation of groups [monoids] is a variety if and only if it is
closed under taking subgroups [submonoids]. Note that a formation is not
necessarily a variety. For instance, the formation of groups generated by the
alternating group A5 is known to be the class of all direct products of copies
of A5, which is not a variety [1, Lemma 2.2.3, p. 91], [5, II.2.13].

2.2 Regular languages

A language is regular if it is representable by a regular expression. According
to Kleene’s theorem, a language is regular if and only if it is recognizable,
that is, recognized by some finite automaton.

There is an equivalent definition in terms of monoids. A language L of
A∗ is recognized by a monoid morphism ϕ : A∗ → M if there exists a subset
P of the monoid M such that L = ϕ−1(P ). By extension, L is said to be
recognized by a monoid M if there exists a monoid morphism ϕ : A∗ → M
that recognizes L. The equivalence mentioned above can now be stated as
follows: a language is recognizable if and only if it is recognized by a finite
monoid (see for instance [11, p. 15]).

Let L be a language of A∗ and let u be a word of A∗. Then the language

u−1L = {v | uv ∈ L}

is the left quotient of L by u.
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The Nerode automaton of L is the deterministic automaton A(L) =
(Q,A, · , L, F ) where Q = {u−1L | u ∈ A∗}, F = {u−1L | u ∈ L} and the
transition function is defined, for each a ∈ A, by the formula

(u−1L)· a = a−1(u−1L) = (ua)−1L.

Each state of A(L) is a left quotient of L by a word, and hence is a language
of A∗. The initial state is the language L, and the set of final states is the
set of all left quotients of L by a word of L.

Proposition 2.1. A language L is recognizable if and only if the set {u−1L |
u ∈ A∗} is finite. In this case, L is recognized by its Nerode automaton.

2.3 Syntactic monoids

Let L be a language and let x and y be words. The quotient x−1Ly−1 of L
by x and y is defined by the formula

x−1Ly−1 = {u ∈ A∗ | xuy ∈ L}

The syntactic monoid of a language L of A∗ is the monoid obtained as the
quotient of A∗ by the syntactic congruence of L, defined on A∗ as follows:
u ∼L v if and only if, for every x, y ∈ A∗,

xvy ∈ L ⇐⇒ xuy ∈ L

The natural morphism η : A∗ → A∗/∼L is the syntactic morphism of L.
The syntactic monoid is the smallest monoid recognizing a language. In
particular, a language is regular if and only if its syntactic monoid is finite.

A class of regular languages C associates with each finite alphabet A a
set C(A∗) of regular languages of A∗. It is closed under quotients if for each
language L ∈ C(A∗) and for each pair of words (x, y) of A∗, the language
x−1Ly−1 belongs to C.

2.4 The Formation Theorem

Just as formations of finite monoids extend the notion of a variety of fi-
nite monoids, formations of languages are more general than varieties of
languages. Like varieties, formations are classes of regular languages closed
under Boolean operations and quotients. But while varieties are closed un-
der inverse of morphisms, formations of languages only enjoy a weak version
of this property — Property (F2) below — and thus comprise more general
classes of languages than varieties.

The following definition was first given in [2]. A formation of languages
is a class of regular languages F satisfying the following conditions:

(F1) for each alphabet A, F(A∗) is closed under Boolean operations and
quotients,
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(F2) if L is a language of F(B∗) and η : B∗ → M denotes its syntactic
morphism, then for each monoid morphism α : A∗ → B∗ such that
η ◦ α is surjective, the language α−1(L) belongs to F(A∗).

Observe that a formation of languages is closed under inverse of surjective
morphisms, but this condition is not equivalent to (F2).

To each formation of monoids F, let us associate the class of languages
F(F) defined as follows: for each alphabet A, F(F)(A∗) is the set of lan-
guages of A∗ whose syntactic monoid belongs to F.

Given a formation of languages F , let F(F) denote the formation of
monoids generated by the syntactic monoids of the languages of F . The
following statement is the main result of [2].

Theorem 2.2 (Formation Theorem). The correspondences F → F(F) and
F → F(F) are two mutually inverse, order preserving, bijections between
formations of monoids and formations of languages.

3 Binomial coefficients on words

Binomial coefficients on words were first defined in [6, p. 238]. Useful
references include [9, Chapter 6] and [12].

3.1 Definition of binomial coefficients on words

A word u = a1a2 · · · an (where a1, . . . , an are letters) is a subword of a word
v if v can be factored as v = v0a1v1 · · · anvn. For instance, ab is a subword
of cacbc. Given two words u and v, we denote by

(

v
u

)

the number of distinct
ways to write u as a subword of v.

More formally, if u = a1a2 · · · an, then

(

v

u

)

= Card{(v0, v1, . . . , vn) | v0a1v1 · · · anvn = v}

Observe that if u is a letter a, then
(

v
a

)

is simply the number of occurrences
of the letter a in v, also denoted by |v|a. These binomial coefficients satisfy
the following recursive formula, where u, v ∈ A∗ and a, b ∈ A:























(

u
1

)

= 1
(

1
u

)

= 0 if u 6= 1

(

va
ub

)

=

{

(

v
ub

)

if a 6= b
(

v
ub

)

+
(

v
u

)

if a = b

(3.1)

An alternative definition of the binomial coefficients is given below in For-
mula (3.3). We shall later use the following elementary result.
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Proposition 3.1. Let u ∈ {a, b}∗. Then the following formula holds

(

u

a

)(

u

b

)

+
(

u

ab

)

+
(

u

ba

)

≡ 0 mod 2 (3.2)

Proof. Let us prove (3.2) by induction on |u|. The result is trivial if |u| = 0.
For the induction step, it suffices to prove the result for ua, the case ub
being symmetrical.

(

ua

a

)(

ua

b

)

+
(

ua

ab

)

+
(

ua

ba

)

=
((

u

a

)

+ 1
)(

u

b

)

+
(

u

ab

)

+
(

u

ba

)

+
(

u

b

)

≡
(

u

a

)(

u

b

)

+
(

u

ab

)

+
(

u

ba

)

≡ 0 mod 2.

3.2 Binomial coefficients and morphisms

Let Z〈A〉 be the ring of noncommutative polynomials with coefficients in Z

and variables in A (see [9, Chapter 6] or [12]). Given a polynomial P ∈ Z〈A〉
and a word x, we let 〈P, x〉 denote the coefficient of x in P . Thus all but a
finite number of these coefficients are null and P =

∑

x∈A∗〈P, x〉x.
In this section, we study the behaviour of binomial coefficients under

monoid morphisms. More precisely, given a monoid morphism ϕ : A∗ → B∗

and words u ∈ A∗ and x ∈ B∗, we give a formula to compute
(

ϕ(u)

x

)

.

The proof of this result relies on properties of the Magnus automorphism
of the ring Z〈A〉. This automorphism µA is defined, for each letter a ∈ A,
by µA(a) = 1 + a. Its inverse is defined by µ−1

A (a) = a − 1. The following
binomial identity [9, Formula 6.3.4]

for all u ∈ A∗, µA(u) =
∑

x∈A∗

(

u

x

)

x (3.3)

can be used to give an alternative definition of the binomial coefficients.
If ϕ : A∗ → B∗ is a monoid morphism, then ϕ can be extended by

linearity to a ring morphism from Z〈A〉 to Z〈B〉. Let γ : Z〈A〉 → Z〈B〉 be
the ring morphism defined by γ = µB ◦ ϕ ◦ µ−1

A .
We are now ready to present the announced formula:

Proposition 3.2. Let ϕ : A∗ → B∗ be a morphism and let u ∈ A∗ and
x ∈ B∗. Then

(

ϕ(u)

x

)

=
∑

|s|6|x|

(

u

s

)

〈γ(s), x〉 (3.4)

Proof. Observing that µ−1
A (a) = a− 1 for each letter a ∈ A, one gets

γ(a) = µB(ϕ(a)− 1) = µB(ϕ(a))− 1 =
(

∑

x∈B∗

(

ϕ(a)

x

)

x
)

− 1 =
∑

x∈B+

(

ϕ(a)

x

)

x
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and thus 〈γ(a), 1〉 = 0. It follows that 〈γ(s), x〉 = 0 if |x| < |s|. Furthermore,
for each u ∈ A∗, one gets on the one hand from (3.3)

µB(ϕ(u)) =
∑

x∈B∗

(

ϕ(u)

x

)

x

and on the other hand, using (3.3),

γ(µA(u)) = γ
(

∑

s∈A∗

(

u

s

)

s
)

=
∑

s∈A∗

(

u

s

)

γ(s) =
∑

s∈A∗

∑

x∈B∗

(

u

s

)

〈γ(s), x〉x

Now since γ ◦ µA = µB ◦ ϕ, the polynomials µB(ϕ(u)) and γ(µA(u)) have
the same coefficients, which gives (3.4).

Example 3.1. To illustrate the use of (3.4), let us show how to compute
(

ϕ(u)

ab

)

. Let A = {a, b, c}, B = {a, b} and let ϕ : A∗ → B∗ be the morphism

defined by ϕ(a) = a, ϕ(b) = ab and ϕ(c) = a2b. First, γ = µB ◦ ϕ ◦ µ−1
A is

defined as follows:

γ(a) = µB(ϕ(a− 1)) = µB(a− 1) = µB(a)− µB(1) = (a+ 1)− 1 = a

γ(b) = µB(ϕ(b− 1)) = µB(ab− 1) = (1 + a)(1 + b)− 1 = a+ b+ ab

γ(c) = µB(ϕ(c− 1)) = µB(a
2b− 1) = µB(a

2b)− 1

= (1 + a)(1 + a)(1 + b)− 1 = 2a+ aa+ b+ 2ab+ aab

Thus we get by (3.4)

(

ϕ(u)

ab

)

=
∑

s∈A∗

(

u

s

)

〈γ(s), ab〉 =
∑

|s|62

(

u

s

)

〈γ(s), ab〉

We now need to compute the coefficients 〈γ(s), ab〉 for |s| 6 2. The non-zero
coefficients are the following:

〈γ(b), ab〉 = 1 〈γ(c), ab〉 = 2 〈γ(ab), ab〉 = 1 〈γ(ac), ab〉 = 1

〈γ(bb), ab〉 = 1 〈γ(bc), ab〉 = 1 〈γ(cb), ab〉 = 2 〈γ(cc), ab〉 = 2

and finally

(

ϕ(u)

ab

)

=
(

u

b

)

+ 2
(

u

c

)

+
(

u

ab

)

+
(

u

ac

)

+
(

u

bb

)

+
(

u

bc

)

+ 2
(

u

cb

)

+ 2
(

u

cc

)

.

4 Languages recognized by p-groups

Let p be a prime number. A p-group is a group whose order is a power of
p. A p-group language is a language whose syntactic monoid is a p-group.
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4.1 Two descriptions of the p-group languages

The following result is credited to Eilenberg and Schützenberger in [6].

Proposition 4.1. A language of A∗ is a p-group language if and only if it
is a Boolean combination of languages of the form

L(x, r, p) = {u ∈ A∗ |
(

u

x

)

≡ r mod p}, (4.5)

where 0 6 r < p and x ∈ A∗.

We now give another characterization. A function f : A∗ → Z is said to
be a linear combination of binomial coefficients if there exist c1, . . . , cn ∈ Z

and x1, . . . , xn ∈ A∗ such that, for all u ∈ A∗,

f(u) = c1

(

u

x1

)

+ · · · + cn

(

u

xn

)

(4.6)

Since the function f(u) = c
(

u

1

)

maps every word to the constant c, every

constant function is a linear combination of binomial coefficients.

Proposition 4.2. A language of A∗ is a p-group language if and only if it
is a finite union of languages of the form

L(f1, . . . , fr, p) = {u ∈ A∗ | f1(u) ≡ · · · ≡ fr(u) ≡ 0 mod p} (4.7)

where f1, . . . , fr are linear combinations of binomial coefficients.

Proof. Let Gp be the Boolean algebra generated by the languages of the
form L(x, r, p) and let Sp be the set of languages that are finite unions of
languages of the form L(f1, . . . , fr, p).

Step 1. Sp is a Boolean algebra. First, Sp is closed under union by defini-
tion. It is also closed under intersection since

L(f1, . . . , fr, p) ∩ L(g1, . . . , gs, p) = L(f1, . . . , fr, g1, . . . , gs, p). (4.8)

In particular,

L(f1, . . . , fr, p) = L(f1, p) ∩ · · · ∩ L(fr, p). (4.9)

It remains to show that Sp is closed under complementation. Since Sp is
closed under union and intersection, it suffices to prove that the complement
of each language of the form L(f, p), where f is a linear combination of
binomial coefficients, belongs Sp. Now

L(f, p)c = {u ∈ A∗ | f(u) 6≡ 0 mod p}

=
⋃

c∈Fp\{0}

{u ∈ A∗ | f(u) ≡ c mod p}

=
⋃

c∈Fp\{0}

{u ∈ A∗ | (f − c)(u) ≡ 0 mod p}
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It remains to observe that f−c is a linear combination of binomial coefficients
to conclude.

Step 2: Sp ⊆ Gp. It suffices to show that every language of the form L(f, p)
belongs to Gp. Now if f is given by (4.6), one gets

L(f, p) =
⋃

{(r1,...,rn)|c1r1+···+cnrn≡0 mod p}

(

L(x1, r1, p) ∩ · · · ∩ L(xn, rn, p)
)

(4.10)
and thus L(f, p) ∈ Gp as required. Thus Sp ⊆ Gp.

Step 3: Gp ⊆ Sp. This immediately follows from the formula

L(x, r, p) = L(f, p) where f(u) = −r
(

u

1

)

+
(

u

x

)

.

Thus Gp = Sp and it now suffices to apply Proposition 4.1 to conclude the
proof.

As explained in Section 2.2, one can compute the minimal automaton of a
language of the form L(f1, . . . , fr, p) by computing its derivatives as follows:

u−1L = {x ∈ A∗ | f1(ux) = f2(ux) = · · · = fn(ux) ≡ 0 mod p} .

4.2 An algorithm for p-group languages

Let p be a prime number and let Un(Fp) be the group of unitriangular1 n×n-
matrices with coefficients in Fp, the finite field of order p. Then Un(Fp) is
a p-group and it is a well-known fact that every p-group is isomorphic to a
subgroup of some Un(Fp), for a suitable choice of n. See for instance [13, p.
276, Corollary 5.48].

Let π : A → Un+1(Fp) be a map2 and let G be the subgroup of Un+1(Fp)
generated by π(A). Then π extends to a surjective monoid morphism
π : A∗ → G which maps every word a1 · · · ak ∈ A∗ to the matrix π(a1) · · ·π(ak).
For 1 6 i < j 6 n + 1, we let πi,j : A∗ → Fp be the map defined, for all
u ∈ A∗, by

πi,j(u) = (π(u))i,j (4.11)

By definition, a language K is recognized by π if there exists a subset S of G
such that K = π−1(S). According to Proposition 4.2, K is a finite union of
languages of the form L(f1, . . . , fr, p). We now give an algorithm to obtain
this representation explicitly.

1An n× n-matrix is unitriangular if its diagonal coefficients are all equal to 1 and all
its coefficients below the diagonal are equal to 0.

2The switch from n to n+ 1 will be justified later on.
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Setting, for each s ∈ S, Ks = π−1(s), one gets

K =
⋃

s∈S

Ks and

Ks = {u ∈ A∗ | for 1 6 i < j 6 n+ 1, πi,j(u) = si,j }

It just remains to verify that the languagesKs are of the form L(f1, . . . , fr, p).
But this follows immediately from the following result:

Proposition 4.3. Each function πi,j is a linear combination of binomial
coefficients.

Proof. Let θ : A → Un+1(Fp) be the map defined by θ(a) = π(a)− 1 for all
a ∈ A. Then θ extends to a ring morphism θ : Z〈A〉 → Un+1(Fp) and for
1 6 i < j 6 n + 1, the maps θi,j : A∗ → Fp are defined as in (4.11). Since
θ(a) is a strictly triangular matrix for all a ∈ A, it follows that θ(x) = 0 for
all words x of length > n. Note however that θ(x) is not in general equal to
π(x)− 1.

Let also µ : A∗ → Z〈A〉 be the monoid morphism defined by µ(a) = 1+a
for all a ∈ A. Thus µ is the restriction to A∗ of the Magnus automorphism
introduced in Section 3.2. Since the formula θ(µ(a)) = θ(1+a) = 1+θ(a) =
π(a) holds for all a ∈ A, one has π = θ ◦ µ.

A∗ Z〈A〉 Un+1(Fp)

π

µ θ

It follows by (3.3) that

π(u) = θ(µ(u)) = θ
(

∑

x∈A∗

(

u

x

)

x
)

=
∑

x∈A∗

(

u

x

)

θ(x) =
∑

|x|6n

(

u

x

)

θ(x)

and hence

πi,j(u) =
∑

|x|6n

θi,j(x)
(

u

x

)

(4.12)

which shows that πi,j is a linear combination of binomial coefficients.

An interesting special case occurs if the language is defined by constraints
on the first row of the matrix, for instance for a language of the form

L = {u ∈ A∗ | π1,2(u) = · · · = π1,n(u) = 0 }

Observing that L can also be written as

L = {u ∈ A∗ | (1, 0, . . . , 0)π(u) = (1, 0, . . . , 0) }
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one can directly obtain a deterministic automaton for L by taking F
n
p as set

of states, the state (0, . . . , 0) as initial and unique final state and by defining
the transitions, for each (z1, . . . , zn) ∈ F

n
p and each letter a, by setting

(z1, . . . , zn)· a = (z′1, . . . , z
′
n),

where (1, z1, . . . , zn)π(a) = (1, z′1, . . . , z
′
n), (4.13)

that is,

z′1 = π1,2(a) + z1,

z′2 = π1,3(a) + π2,3(a)z1 + z2,

z′3 = π1,4(a) + π2,4(a)z1 + π3,4(a)z2 + z3, etc.

This algorithm is illustrated by the examples presented in Section 4.3.

4.3 Three examples

These examples will be used in Section 5. The languages of the first two
examples were also considered by Thérien [19].

Example 4.1. The subgroup of U3(F2) generated by the two matrices

a =

(

1 1 0
0 1 0
0 0 1

)

and b =

(

1 0 0
0 1 1
0 0 1

)

is isomorphic to D4. A confluent rewriting system for this group is a2 → 1,
b2 → 1 and baba → abab. The group consists of the matrices

1 =

(

1 0 0
0 1 0
0 0 1

)

a =

(

1 1 0
0 1 0
0 0 1

)

b =

(

1 0 0
0 1 1
0 0 1

)

ab =

(

1 0 1
0 1 0
0 0 1

)

ba =

(

1 1 0
0 1 1
0 0 1

)

aba =

(

1 0 1
0 1 1
0 0 1

)

bab =

(

1 1 1
0 1 0
0 0 1

)

abab =

(

1 0 1
0 1 0
0 0 1

)

Let π : A∗ → D4 be the natural morphism and let

L1 = {u ∈ A∗ | π1,2(u) = π1,3(u) = 0}.

To obtain a deterministic automaton for L1, we take F
2
2 as the set of states

and define the transitions, for all (z1, z2) ∈ F
2
2, by setting

{

(z1, z2) · a = (1 + z1, z2)

(z1, z2) · b = (z1, z1 + z2)

(4.14)

(4.15)

The resulting automaton, which turns out to be minimal, is the following:
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0, 0 1, 0 1, 1 0, 1

a

a b

b a

a

b b

Figure 4.1: The minimal automaton of L1.

The syntactic monoid of L1 is the group D4 presented by the relations
a2 = 1, b2 = 1 and (ba)2 = (ab)2. Its syntactic image is {1, b}.

1 2 3 4

∗ 1 1 2 3 4

a 2 1 4 3

b 1 3 2 4

ab 3 1 4 2

1 2 3 4

ba 2 4 1 3

aba 4 2 3 1

bab 3 4 1 2

abab 4 3 2 1

Applying (4.12) with n = 2 one gets

π1,2(u) =
∑

|x|62

(

u

x

)

θ1,2(x) =
(

u

1

)

θ1,2(1) +
(

u

a

)

θ1,2(a) +
(

u

b

)

θ1,2(b)

+
(

u

aa

)

θ1,2(aa) +
(

u

ab

)

θ1,2(ab) +
(

u

ba

)

θ1,2(ba) +
(

u

bb

)

θ1,2(bb)

=
(

u

a

)

π1,3(u) =
∑

|x|62

(

u

x

)

x1,3 =
(

u

1

)

θ1,3(1) +
(

u

a

)

θ1,3(a) +
(

u

b

)

θ1,3(b)

+
(

u

aa

)

θ1,3(aa) +
(

u

ab

)

θ1,3(ab) +
(

u

ba

)

θ1,3(ba) +
(

u

bb

)

θ1,3(bb)

=
(

u

ab

)

It follows that

L1 =
{

u ∈ {a, b}∗ |
(

u

a

)

≡
(

u

ab

)

≡ 0 mod 2
}

(4.16)

Moreover, for all u ∈ {a, b}∗,

(0, 0)·u =

(

(

u

a

)

,
(

u

ab

)

)

where the binomial coefficients are computed modulo 2. Thus the states
of the minimal automaton of L1 encode the possible values modulo 2 of
these two binomial coefficients. Now, one can recover (4.14) and (4.15) by
observing that, if

(0, 0)·u =
(

z1, z2
)

=

(

(

u

a

)

,
(

u

ab

)

)

then
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(0, 0)·ua =
(

z1, z2
)

· a =

(

(

ua

a

)

,
(

ua

ab

)

)

=

(

(

u

a

)

+ 1,
(

u

ab

)

)

= (z1 + 1, z2)

and

(0, 0)·ub = (z1, z2) · b =

(

(

ub

a

)

,
(

ub

ab

)

)

=

(

(

u

a

)

,
(

u

ab

)

+
(

u

a

)

)

= (z1, z1 + z2) .

Example 4.2. The group D4 is also generated by the two matrices

a =

(

1 1 0
0 1 1
0 0 1

)

and b =

(

1 1 1
0 1 0
0 0 1

)

A confluent rewriting system for this group is b2 → 1, aba → b, ba2 → a2b,
bab → a3, a4 → 1 and a3b → ba. The group consists of the matrices

1 =

(

1 0 0
0 1 0
0 0 1

)

a =

(

1 1 0
0 1 1
0 0 1

)

b =

(

1 1 1
0 1 0
0 0 1

)

a2 =

(

1 0 1
0 1 0
0 0 1

)

ab =

(

1 0 1
0 1 1
0 0 1

)

ba =

(

1 0 0
0 1 1
0 0 1

)

a3 =

(

1 1 1
0 1 1
0 0 1

)

a2b =

(

1 1 0
0 1 0
0 0 1

)

Let π : A∗ → D4 be the natural morphism and let

L2 = {u ∈ A∗ | π1,2(u) = π1,3(u) = 0}.

To obtain a deterministic automaton for L2, we take F
2
2 as the set of states

and define the transitions, for all (z1, z2) ∈ F
2
2, by setting

{

(z1, z2) · a = (1 + z1, z1 + z2)

(z1, z2) · b = (1 + z1, 1 + z2)

(4.17)

(4.18)

The resulting automaton, which turns out to be minimal, is the following:

0, 0 1, 0

0, 11, 1

a

a, b

a

a, b b b

Figure 4.2: The minimal automaton of L2.
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Applying (4.12) with n = 2 one gets3

π1,2(u) =
∑

|x|62

(

u

x

)

θ1,2(x) =
(

u

1

)

θ1,2(1) +
(

u

a

)

θ1,2(a) +
(

u

b

)

θ1,2(b)

+
(

u

aa

)

θ1,2(aa) +
(

u

ab

)

θ1,2(ab) +
(

u

ba

)

θ1,2(ba) +
(

u

bb

)

θ1,2(bb)

=
(

u

a

)

+
(

u

b

)

π1,3(u) =
∑

|x|62

(

u

x

)

θ1,3(x) =
(

u

1

)

θ1,3(1) +
(

u

a

)

θ1,3(a) +
(

u

b

)

θ1,3(b)

+
(

u

aa

)

θ1,3(aa) +
(

u

ab

)

θ1,3(ab) +
(

u

ba

)

θ1,3(ba) +
(

u

bb

)

θ1,3(bb)

=
(

u

b

)

+
(

u

aa

)

+
(

u

ba

)

It follows that

L2 =
{

u ∈ {a, b}∗ |
(

u

a

)

+
(

u

b

)

≡
(

u

aa

)

+
(

u

ab

)

≡ 0 mod 2
}

(4.19)

Moreover, for all u ∈ {a, b}∗,

(0, 0)·u =

(

(

u

a

)

+
(

u

b

)

,
(

u

b

)

+
(

u

aa

)

+
(

u

ba

)

)

where the binomial coefficients are computed modulo 2. Thus the states of
the minimal automaton of L1 encode the possible values modulo 2 of these
two linear combinations of binomial coefficients. Now, one can recover (4.17)
and (4.18) by observing that, if

(0, 0)·u =
(

z1, z2
)

=

(

(

u

a

)

+
(

u

b

)

,
(

u

b

)

+
(

u

aa

)

+
(

u

ba

)

)

then

(0, 0)·ua =
(

z1, z2
)

· a =

(

(

ua

a

)

+
(

ua

b

)

,
(

ua

b

)

+
(

ua

aa

)

+
(

ua

ba

)

)

=

(

(

u

a

)

+ 1 +
(

u

b

)

,
(

u

b

)

+
(

u

aa

)

+
(

u

a

)

+
(

u

ba

)

+
(

u

b

)

)

= (z1 + 1, z1 + z2)

and

(0, 0)·ub = (z1, z2) · b =

(

(

ub

b

)

+
(

ub

a

)

,
(

ub

b

)

+
(

ub

aa

)

+
(

ub

ba

)

)

=

(

(

u

a

)

+
(

u

b

)

+ 1,
(

u

b

)

+ 1 +
(

u

aa

)

+
(

u

ba

)

)

= (z1 + 1, z2 + 1) .

3It is easy to make mistakes in this computation. Recall that in general θ(x) 6= π(x)−1.

Thus for instance θ(ba) = θ(b)θ(a) =
(

0 0 1
0 0 0
0 0 0

)

and π(ba)−1 =
(

0 0 0
0 0 1
0 0 0

)

, whence θ1,3(ba) = 1.
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The syntactic monoid of L2 is the group D4, but this time presented by the
group relations b2 = 1, a4 = 1 and a3b = ba. Its syntactic image is {1, ba}.

1 2 3 4

∗ 1 1 2 3 4

a 2 3 4 1

b 4 3 2 1

a2 3 4 1 2

1 2 3 4

ab 3 2 1 4

ba 1 4 3 2

a3 4 1 2 3

a2b 2 1 4 3

Example 4.3. The subgroup of U4(F2) generated by the two matrices

a =





1 1 0 0
0 1 0 1
0 0 1 0
0 0 0 1



 b =





1 0 1 0
0 1 0 1
0 0 1 1
0 0 0 1





is isomorphic to Q8. A confluent rewriting system for this group is b2 → a2,
aba → b, ba2 → a2b, bab → a, a4 → 1 and a3b → ba. The group consists of
the matrices of the following form, where ε1, ε2, ε3 ∈ F2.





1 ε1 ε2 ε3
0 1 0 ε1 + ε2
0 0 1 ε2
0 0 0 1





Let π : A∗ → Q8 be the natural morphism and let

L3 = {u ∈ A∗ | π1,2(u) = π1,3(u) = π1,4(u) = 0}.

To obtain a deterministic automaton for L2, we take F
3
2 as the set of states

and define the transitions, for all (z1, z2, z3) ∈ F
3
2, by setting

{

(z1, z2, z3) · a = (z1 + 1, z2, z1 + z3)

(z1, z2, z3) · b = (z1, z2 + 1, z1 + z2 + z3)

(4.20)

(4.21)
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0, 0, 0 1, 0, 0

0, 0, 11, 0, 1

1, 1, 1 0, 1, 0

1, 1, 00, 1, 1

a

a

a

a

a

a

a

a

bb

b b

b b

bb

Figure 4.3: The minimal automaton of L3.

Applying (4.12) with n = 3 one gets

π1,2(u) =
∑

|x|63

(

u

x

)

θ1,2(x) =
(

u

1

)

θ1,2(1) +
(

u

a

)

θ1,2(a) +
(

u

b

)

θ1,2(b)

+
(

u

aa

)

θ1,2(aa) +
(

u

ab

)

θ1,2(ab) +
(

u

θ

)

(ba)1,2ba+
(

u

bb

)

θ1,2(bb)

=
(

u

a

)

π1,3(u) =
∑

|x|63

(

u

x

)

θ1,3(x) =
(

u

1

)

θ1,3(1) +
(

u

a

)

θ1,3(a) +
(

u

b

)

θ1,3(b)

+
(

u

aa

)

θ1,3(aa) +
(

u

ab

)

θ1,3(ab) +
(

u

ba

)

θ1,3(ba) +
(

u

bb

)

θ1,3(bb)

=
(

u

b

)

π1,4(u) =
∑

|x|63

(

u

x

)

θ1,4(x) =
(

u

1

)

θ1,4(1) +
(

u

a

)

θ1,4(a) +
(

u

b

)

θ1,4(b)

+
(

u

aa

)

θ1,4(aa) +
(

u

ab

)

θ1,4(ab) +
(

u

ba

)

θ1,4(ba) +
(

u

bb

)

θ1,4(bb)

=
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

It follows that

L3 =

{

u ∈ {a, b}∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

≡ 0 mod 2

}

(4.22)
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Moreover, for all u ∈ {a, b}∗,

(0, 0, 0)·u =

(

(

u

a

)

,
(

u

b

)

,
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

)

where the binomial coefficients are computed modulo 2. Thus the states of
the minimal automaton of L1 encode the possible values modulo 2 of these
two linear combinations of binomial coefficients. Now, one can recover (4.20)
and (4.21) by observing that, if

(0, 0, 0)·u =
(

z1, z2, z3
)

=

(

(

u

a

)

,
(

u

b

)

,
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

)

then

(0, 0, 0)·ua =
(

z1, z2, z3
)

· a =

(

(

ua

a

)

,
(

ua

b

)

,
(

ua

aa

)

+
(

ua

ab

)

+
(

ua

bb

)

)

=

(

(

u

a

)

+ 1,
(

u

b

)

,
(

u

aa

)

+
(

u

a

)

+
(

u

ab

)

+
(

u

bb

)

)

= (z1 + 1, z2, z1 + z3)

and

(0, 0, 0)·ub =
(

z1, z2, z3
)

· b =

(

(

ub

a

)

,
(

ub

b

)

,
(

ub

aa

)

+
(

ub

ab

)

+
(

ub

bb

)

)

=

(

(

u

a

)

,
(

u

b

)

+ 1,
(

u

aa

)

+
(

u

ab

)

+
(

u

a

)

+
(

u

bb

)

+
(

u

b

)

)

= (z1, z2 + 1, z1 + z2 + z3)

The syntactic monoid of L3 is the group Q8 presented by the group relations
a4 = 1, b2 = a2 and a3b = ba. Its syntactic image is {1}.

1 2 3 4 5 6 7 8

∗ 1 1 2 3 4 5 6 7 8

a 2 3 4 1 6 7 8 5

b 6 5 8 7 4 3 2 1

a2 3 4 1 2 7 8 5 6

1 2 3 4 5 6 7 8

ab 5 8 7 6 3 2 1 4

ba 7 6 5 8 1 4 3 2

a3 4 1 2 3 8 5 6 7

a2b 8 7 6 5 2 1 4 3

The Cayley graph of this group is represented in Figure 4.4. As one can
see, this is exactly the same automaton as in Figure 4.3, up to the following
renaming of the states:

(0, 0, 0) ↔ 1 (1, 0, 0) ↔ a (0, 0, 1) ↔ a2 (1, 0, 1) ↔ a3

(0, 1, 0) ↔ b (1, 1, 0) ↔ ba (0, 1, 1) ↔ a2b (1, 1, 1) ↔ ab
(4.23)
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1 a

a2a3

ab b

baa2b

a

a

a

a

a

a

a

a

bb

b b

b b

bb

Figure 4.4: The Cayley graph of Q8.

4.4 The varieties of languages Vc,p

In this section, we revisit the congruences first introduced in [6, p. 240] and
also studied in [19]. Let c be a nonnegative integer. For each alphabet A,
let ∼p,c be the congruence on A∗ defined by u ∼p,c v if and only if, for all
words x such that 0 6 |x| 6 c,

(

u

x

)

≡
(

v

x

)

mod p

This congruence has finite index and the languages which are saturated for
this congruence form a Boolean algebra Vc,p(A

∗), which is also the Boolean
algebra generated by the languages L(x, r, p) for 0 6 r < p and |x| 6 c.

Let us first show that the class Vc,p is closed under inverses of morphisms.
This result is due to Thérien [18], but for the convenience of the reader, we
give a self-contain proof. This relies on the following result.

Proposition 4.4. Let ϕ : A∗ → B∗ be a morphism. Let u and v be two
words of A∗ such that u ∼p,c v. Then ϕ(u) ∼p,c ϕ(v).

Proof. If u ∼p,c v, one has, for 0 6 |s| 6 c,
(

u
s

)

≡
(

v
s

)

mod p. Therefore by
(3.4) we obtain for |x| 6 c,

(

ϕ(u)

x

)

−
(

ϕ(v)

x

)

=
∑

|s|6|x|

(

(

u

s

)

−
(

v

s

)

)

〈γ(s), x〉 ≡ 0 mod p

Thus ϕ(u) ∼p,c ϕ(v).

We can now state:
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Proposition 4.5. Let ϕ : A∗ → B∗ be a morphism and L a language of
Vc,p(B

∗). Then ϕ−1(L) belongs to Vc,p(A
∗).

Proof. Let L be a language of Vc,p(B
∗). Let u ∈ ϕ−1(L) and let v be a

word such that u ∼p,c v. Then ϕ(u) ∼p,c ϕ(v) by Proposition 4.4, and since
u ∈ L and L is saturated by ∼p,c, we get ϕ(v) ∈ L, that is, v ∈ ϕ−1(L).
This proves that ϕ−1(L) is saturated by ∼p,c and therefore ϕ−1(L) belongs
to Vc,p(A

∗).

Proposition 4.6 ([18]). For each c, the class Vc,p is a variety of languages.

Proof. Proposition 4.5 shows that the class Vc,p is closed under inverses
of morphisms. Furthermore, Vc,p(A

∗) is by definition a Boolean algebra,
generated by the languages of the form L(x, r, p). We claim that it is closed
under left quotient by a word u. Arguing on induction on the length of u, it
suffices to consider the case where u is a letter a. Now, since left quotients
commute with Boolean operations, it suffices to prove that any left quotient
of the form a−1

(

L(x, r, p)
)

belongs to Vc,p(A
∗). If x is the empty word, then

L(x, r, p) is either empty or equal to A∗ and the result is trivial. Suppose
that x is nonempty. Then, we get by (3.1):

a−1
(

L(x, r, p)
)

=

{

u ∈ A∗ |
(

au

x

)

≡ r mod p

}

=

{

{u ∈ A∗ |
(

u
x

)

+
(

u
s

)

≡ r mod p} if x = as for some s

{u ∈ A∗ |
(

u
x

)

≡ r mod p} otherwise

=

{

∪r1+r2≡r mod p

(

L(x, r1, p) ∩ L(s, r2, p)
)

if x = as

L(x, r, p) otherwise

which proves the claim. A dual argument proves that Vc,p(A
∗) is closed

under right quotient. Thus Vc,p is a variety of languages.

5 The formation generated by D4 and by Q8

We are now ready to prove our main result.

Theorem 5.1. The groups D4 and Q8 generate the same formation and the
associated formation of languages is the variety V2,2.

Proof. Let F1 [F2] be the formation generated by D4 [Q8] and let F1 [F2]
be the associated formation of languages. Let V = V2,2 and let V be the
associated group formation, which is actually a variety. For each alphabet
A, V(A∗) is by definition the Boolean algebra generated by the languages
L(x, r, 2) for 0 6 r < 2 and |x| 6 2. Proposition 4.6 shows that V is a
variety. We shall prove successively the following properties:
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(1) D4 and Q8 belong to V, and hence F1 and F2 are contained in V ,

(2) for each alphabet A, for 0 6 r < 2 and |x| 6 1, the language L(x, r, 2)
belongs to F1(A

∗) and to F2(A
∗),

(3) V is contained in F1 and hence V = F1,

(4) F1 is contained in F2.

In the sequel, the languages L1, L2 and L3 refer to the examples discussed
in Section 4.3.

Step 1. The syntactic monoid of L1 is equal to D4 and that of L3 is equal
to Q8. Formula (4.16) shows that L1 belongs to V({a, b}∗) and thus D4

belongs to V. Moreover, Formula (4.22) shows that L3 can be written as

L(a, 0, 2) ∩ L(b, 0, 2) ∩
(

⋃

i+j+k≡0 mod 2

(L(ab, i, 2) ∩ L(aa, j, 2) ∩ L(bb, k, 2))
)

and thus L3 belongs to V({a, b}∗). It follows that Q8 belongs to V.

Step 2. If x = 1, the result is trivial. If x = a, where a is a letter, the
syntactic monoid of L(a, r, 2) is the cyclic group C2. Since C2 is a quotient
of both D4 and Q8, it belongs to F1 and to F2 and thus L(a, r, 2) belongs
to F1(A

∗) and to F2(A
∗).

Step 3. Let A be an alphabet. It suffices to prove that, for |x| 6 2 and
r = 0 or r = 1, the language L(x, r, 2) belongs to F1(A

∗). Let c(x) be the set
of all letters occurring in x. In the minimal automaton of L(x, r, 2), every
letter of A \ c(x) acts as the identity on the set of states. It follows that the
languages L(x, r, 2) and the language

{

u ∈ c(x)∗ |
(

u

x

)

≡ r mod 2

}

have the same syntactic monoid. Therefore, we may assume without loss of
generality that A = {a, b}.

Suppose first that x = ab with a 6= b. It already follows from (2) that
for |x| 6 1, L(x, r, 2) belongs to F1(A

∗). Then the minimal automaton of
L(ab, 0, 2) is obtained from the automaton of Figure 4.1 by taking (0, 0) and
(1, 0) as final states. Indeed in this way the parameter z2 =

(

u
ab

)

will be
equal to zero modulo 2. Thus the syntactic monoid of L(ab, 0, 2) is D4 and
since D4 belongs to F1, the language L(ab, 0, 2) belongs to F1(A

∗) and so
does its complement L(ab, 1, 2).

Consider now the case x = aa. The automaton obtained from the au-
tomaton of Figure 4.2 by taking (0, 0) and (1, 0) as final states recognizes
the language

K =

{

u ∈ {a, b}∗ |
(

u

b

)

+
(

u

ba

)

+
(

u

aa

)

≡ 0 mod 2

}
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The syntactic monoid of K is also D4 and thus K ∈ F1(A
∗). Now since

L(aa, 0, 2) = (K ∩ L(b, 0, 2) ∩ L(ba, 0, 2)) ∪ (K ∩ L(b, 1, 2) ∩ L(ba, 1, 2))

∪ (Kc ∩ L(b, 0, 2) ∩ L(ba, 1, 2)) ∪ (Kc ∩ L(b, 1, 2) ∩ L(ba, 0, 2))

the language L(aa, 0, 2) and its complement L(aa, 1, 2) belong to F1({a, b}
∗).

Since the languages L(bb, r, 2) and L(aa, r, 2) have the same syntactic monoid,
we also have L(bb, r, 2) ∈ F1({a, b}

∗) for r = 0 and r = 1.

Step 4. We will show that some language L having D4 as syntactic monoid
belongs to F2. By the Formation Theorem, this will show that D4 belongs
to F2 and hence that F1 is contained in F2 as required. We choose for L
the language of Example 4.2:

L = ϕ−1(1) =

{

u ∈ {a, b}∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

aa

)

+
(

u

ab

)

≡ 0 mod 2

}

Let us now view D4 as the group {1, a, b, a2, ab, ba, a3, a2b} presented by
the group relations b2 = 1, a4 = 1 and a3b = ba and Q8 as the group
{1, a, b, a2, ab, ba, a3, a2b} presented by the group relations a4 = 1, b2 = a2

and a3b = ba.
Let B = {a, b} and C = {a, b, c}. Consider the following diagram,

B∗

D4 Q8

B∗C∗

ϕ κ

α

νi

αi

κi ϕi

in which the morphisms are defined by

ϕ(a) = a ϕ(b) = b α(a) = c α(b) = a

ϕ1(a) = a ϕ1(b) = b ϕ2(a) = a ϕ2(b) = b

ν1(a) = a2b ν1(b) = a ν2(a) = 1 ν2(b) = a

and

α1(a) = a α1(b) = b α1(c) = a2b

α2(a) = a α2(b) = b α2(c) = 1

κ1(a) = a κ1(b) = b κ1(c) = a2b

κ2(a) = a κ2(b) = b κ2(c) = 1

κ(a) = b κ(b) = 1 κ(c) = a
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Note that ϕ1 = ϕ2, but we keep two distinct names to preserve homogeneity
of the notation. All these morphisms make the diagram commutative. Let

R1 = ϕ−1
1 (1) = ϕ−1

2 (1) Rb = ϕ−1
1 (b) = ϕ−1

2 (b)

Ra2 = ϕ−1
1 (a2) = ϕ−1

2 (a2) Ra2b = ϕ−1
1 (a2b) = ϕ−1

2 (a2b)

By construction, the languages R1, Rb, Ra2 and Ra2b are all recognized by
Q8 and hence belong to F2(B

∗).
Using the state renaming described in (4.23), one sees that R1, Rb, Ra2

and Ra2b are also accepted by the automaton represented in Figure 4.3
by taking as final state (0, 0, 0), (0, 1, 0), (0, 0, 1) and (0, 1, 1) respectively.
Coming back to the interpretation of these states as linear combinations of
binomial coefficients, as described in Example 4.3, one gets the following
explicit descriptions:

R1 =
{

u ∈ B∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

≡ 0 mod 2
}

Rb =
{

u ∈ B∗ |
(

u

a

)

≡
(

u

b

)

+ 1 ≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

≡ 0 mod 2
}

Ra2 =
{

u ∈ B∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

+ 1 ≡ 0 mod 2
}

Ra2b =
{

u ∈ B∗ |
(

u

a

)

≡
(

u

b

)

+ 1 ≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

+ 1 ≡ 0 mod 2
}

Let

R =
(

α−1
1 (R1) ∩ α−1

2 (R1)
)

∪
(

α−1
1 (Rb) ∩ α−1

2 (Rb)
)

∪
(

α−1
1 (Ra2) ∩ α−1

2 (Ra2)
)

∪
(

α−1
1 (Ra2b) ∩ α−1

2 (Ra2b)
)

We claim that

R =
{

u ∈ C∗ |
(

u

a

)

≡
(

u

c

)

≡
(

u

ac

)

+
(

u

bc

)

+
(

u

cb

)

+
(

u

cc

)

≡ 0 mod 2
}
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Indeed, Formula (3.4) leads to the following computations:

α−1
1 (R1) =

{

u ∈ C∗ |
(

u

a

)

≡
(

u

b

)

+
(

u

c

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

ac

)

+
(

u

bb

)

+
(

u

bc

)

+
(

u

cb

)

+
(

u

cc

)

≡ 0 mod 2
}

α−1
2 (R1) =

{

u ∈ C∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

≡ 0 mod 2
}

α−1
1 (Rb) =

{

u ∈ C∗ |
(

u

a

)

≡
(

u

b

)

+
(

u

c

)

+ 1

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

ac

)

+
(

u

bb

)

+
(

u

bc

)

+
(

u

cb

)

+
(

u

cc

)

≡ 0 mod 2
}

α−1
2 (Rb) =

{

u ∈ C∗ |
(

u

a

)

≡
(

u

b

)

+ 1 ≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

≡ 0 mod 2
}

α−1
1 (Ra2) =

{

u ∈ C∗ |
(

u

a

)

≡
(

u

b

)

+
(

u

c

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

ac

)

+
(

u

bb

)

+
(

u

bc

)

+
(

u

cb

)

+
(

u

cc

)

+ 1 ≡ 0 mod 2
}

α−1
2 (Ra2) =

{

u ∈ C∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

+ 1 ≡ 0 mod 2
}

α−1
1 (Ra2b) =

{

u ∈ C∗ |
(

u

a

)

≡
(

u

b

)

+
(

u

c

)

+ 1

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

ac

)

+
(

u

bb

)

+
(

u

bc

)

+
(

u

cb

)

+
(

u

cc

)

+ 1 ≡ 0 mod 2
}

α−1
2 (Ra2b) =

{

u ∈ C∗ |
(

u

a

)

≡
(

u

b

)

+ 1 ≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

+ 1 ≡ 0 mod 2
}

It follows that

α−1
1 (R1) ∩ α−1

2 (R1) =
{

u ∈ C∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

c

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

≡
(

u

ac

)

+
(

u

bc

)

+
(

u

cb

)

+
(

u

cc

)

≡ 0 mod 2
}

α−1
1 (Rb) ∩ α−1

2 (Rb) =
{

u ∈ C∗ |
(

u

a

)

≡
(

u

b

)

+ 1 ≡
(

u

c

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

≡
(

u

ac

)

+
(

u

bc

)

+
(

u

cb

)

+
(

u

cc

)

≡ 0 mod 2
}

α−1
1 (Ra2) ∩ α−1

2 (Ra2) =
{

u ∈ C∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

c

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

+ 1

≡
(

u

ac

)

+
(

u

bc

)

+
(

u

cb

)

+
(

u

cc

)

≡ 0 mod 2
}

α−1
1 (Ra2b) ∩ α−1

2 (Ra2b) =
{

u ∈ C∗ |
(

u

a

)

≡
(

u

b

)

+ 1 ≡
(

u

c

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

+ 1

≡
(

u

ac

)

+
(

u

bc

)

+
(

u

cb

)

+
(

u

cc

)

≡ 0 mod 2
}

Finally R is the union of these four languages and hence

R =
{

u ∈ C∗ |
(

u

a

)

≡
(

u

c

)

≡
(

u

ac

)

+
(

u

bc

)

+
(

u

cb

)

+
(

u

cc

)

≡ 0 mod 2
}
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Now, by (3.2), one gets
(

u

bc

)

+
(

u

cb

)

=
(

u

b

)(

u

c

)

and
(

u

ac

)

+
(

u

ca

)

=
(

u

a

)(

u

c

)

.

It follows that

R =
{

u ∈ C∗ |
(

u

a

)

≡
(

u

c

)

≡
(

u

ca

)

+
(

u

cc

)

≡ 0 mod 2
}

The syntactic monoid of R is D4 and is syntactic morphism is κ.

Lemma 5.2. The language R belongs to F2(C
∗).

Proof. For i = 1, 2, the morphism ϕi◦αi is equal to κi and thus is surjective.
By definition of a formation of languages, the languages α−1

i (R1), α
−1
i (Rb),

α−1
i (Ra2) and α−1

i (Ra2b) belong to F2(C
∗). It follows that R belongs to

F2(C
∗).

Lemma 5.3. The language α−1(R) belongs to F2(B
∗).

Proof. The syntactic morphism of R is κ. Then since κ ◦ α = ϕ, κ ◦ α is
surjective and by definition of a formation of languages, α−1(R) belongs to
F2(B

∗).

The last step consists in computing α−1(R).

Lemma 5.4. One has α−1(R) = L and thus L belongs to F2({a, b}
∗).

Proof. Since νi = αi ◦ α, one gets

α−1(R) =
(

ν−1
1 (R1) ∩ ν−1

2 (R1)
)

∪
(

ν−1
1 (Rb) ∩ ν−1

2 (Rb)
)

∪
(

ν−1
1 (Ra2) ∩ ν−1

2 (Ra2)
)

∪
(

ν−1
1 (Ra2b) ∩ ν−1

2 (Ra2b)
)

We claim that

α−1(R) =
(

ν−1
1 (R1) ∩ ν−1

2 (R1)
)

∪
(

ν−1
1 (Ra2) ∩ ν−1

2 (Ra2)
)

=
{

u ∈ B∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

aa

)

+
(

u

ba

)

≡ 0 mod 2
}
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Indeed, Formula (3.4) leads to the following computations:

ν−1
1 (R1) =

{

u ∈ B∗ |
(

u

b

)

≡
(

u

a

)

≡
(

u

bb

)

+
(

u

ba

)

+
(

u

aa

)

≡ 0 mod 2
}

ν−1
2 (R1) =

{

u ∈ B∗ |
(

u

b

)

≡
(

u

bb

)

≡ 0 mod 2
}

ν−1
1 (Rb) =

{

u ∈ B∗ |
(

u

b

)

≡
(

u

a

)

+ 1 ≡
(

u

bb

)

+
(

u

ba

)

+
(

u

aa

)

≡ 0 mod 2
}

ν−1
2 (Rb) =

{

u ∈ B∗ |
(

u

b

)

+ 1 ≡
(

u

bb

)

≡ 0 mod 2
}

ν−1
1 (Ra2) =

{

u ∈ B∗ |
(

u

b

)

≡
(

u

a

)

≡
(

u

bb

)

+
(

u

ba

)

+
(

u

aa

)

+ 1 ≡ 0 mod 2
}

ν−1
2 (Ra2) =

{

u ∈ B∗ |
(

u

b

)

≡
(

u

bb

)

+ 1 ≡ 0 mod 2
}

ν−1
1 (Ra2b) =

{

u ∈ B∗ |
(

u

b

)

≡
(

u

a

)

+ 1 ≡
(

u

bb

)

+
(

u

ba

)

+
(

u

aa

)

+ 1 ≡ 0 mod 2
}

ν−1
2 (Ra2b) =

{

u ∈ B∗ |
(

u

b

)

+ 1 ≡
(

u

bb

)

+ 1 ≡ 0 mod 2
}

It follows that

ν−1
1 (R1) ∩ ν−1

2 (R1) =
{

u ∈ B∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

bb

)

≡
(

u

aa

)

+
(

u

ba

)

≡ 0 mod 2
}

ν−1
1 (Rb) ∩ ν−1

2 (Rb) = ∅

ν−1
1 (Ra2) ∩ ν−1

2 (Ra2) =
{

u ∈ B∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

bb

)

+ 1 ≡
(

u

aa

)

+
(

u

ba

)

≡ 0 mod 2
}

ν−1
1 (Ra2b) ∩ ν−1

2 (Ra2b) = ∅

and thus

α−1(R) =
(

ν−1
1 (R1) ∩ ν−1

2 (R1)
)

∪
(

ν−1
1 (Ra2) ∩ ν−1

2 (Ra2)
)

=
{

u ∈ B∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

aa

)

+
(

u

ba

)

≡ 0 mod 2
}

Finally, Proposition 3.1 shows that when
(

u
a

)

≡
(

u
b

)

≡ 0 mod 2, then
(

u
ab

)

≡
(

u
ba

)

≡ 0 mod 2. It follows that α−1(R) = L.

This concludes the proof of Theorem 5.1.

Important remark. It is tempting to prove directly that the languages
ν−1
1 (R1), ν

−1
2 (R1), etc. belong to F2({a, b}

∗). However, the morphism ϕ2◦ν2
is not surjective and one cannot conclude directly.

6 Conclusion

We used language theory to prove that D4 and Q8 generate the same for-
mation and that this formation is a variety of groups. Our project for the
future would be to show, also by language theoretic means, that any forma-
tion generated by a single nilpotent group is a variety.
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