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Jean-Éric Pin1⋆

LIAFA, University Paris-Diderot and CNRS, France.

Abstract. The concatenation product is one of the most important op-
erations on regular languages. Its study requires sophisticated tools from
algebra, finite model theory and profinite topology. This paper surveys
research advances on this topic over the last fifty years.

The concatenation product plays a key role in two of the most important results
of automata theory: Kleene’s theorem on regular languages [23] and Schützen-
berger’s theorem on star-free languages [60].

This survey article surveys the most important results and tools related to the
concatenation product, including connections with algebra, profinite topology
and finite model theory. The paper is organised as follows: Section 1 presents
some useful algebraic tools for the study of the concatenation product. Section
2 introduces the main definitions on the product and its variants. The classical
results are summarized in Section 3. Sections 4 and 5 are devoted to the study of
two algebraic tools: Schützenberger products and relational morphisms. Closure
properties form the topic of Section 6. Hierarchies and their connection with
finite model theory are presented in Sections 7 and 8. Finally, new directions are
suggested in Section 9.

1 The instruments

This section is a brief reminder on the algebraic notions needed to study the con-
catenation product: semigroups and semirings, syntactic ordered monoids, free
profinite monoids, equations and identities, varieties and relational morphisms.
More information can be found in [1–3, 18, 35, 42, 45].

1.1 Semigroups and semirings

If S is a semigroup, the set P(S) of subsets of S is also a semiring, with union
as addition and multiplication defined, for every X, Y ∈ P(S), by

XY = {xy | x ∈ X, y ∈ Y }

In this semiring, the empty set is the zero and for this reason, is denoted by 0.
It is also convenient to denote simply by x a singleton {x}.

If k is a semiring, we denote by Mn(k) be the semiring of square matrices of
size n with entries in k.
⋆ The author acknowledges support from the project ANR 2010 BLAN 0202 02 FREC.



1.2 Syntactic ordered monoid

Let L be a language of A∗. The syntactic preorder of L is the relation 6L defined
on A∗ by u 6L v if and only if, for every x, y ∈ A∗,

xvy ∈ L ⇒ xuy ∈ L

The syntactic congruence of L is the relation ∼L defined by u ∼L v if and only
if u 6L v and v 6L u.

The syntactic monoid of L is the quotient M(L) of A∗ by ∼L and the natural
morphism η : A∗ → A∗/∼L is called the syntactic morphism of L. The syntactic
preorder 6L induces an order on the quotient monoid M(L). The resulting
ordered monoid is called the syntactic ordered monoid of L.

The syntactic ordered monoid can be computed from the minimal automaton
as follows. First observe that if A = (Q, A, · , q−, F ) is a minimal deterministic
automaton, the relation 6 defined on Q by p 6 q if for all u ∈ A∗,

q ·u ∈ F ⇒ p·u ∈ F

is an order relation, called the syntactic order of the automaton. Then the syntac-
tic ordered monoid of a language is the transition monoid of its ordered minimal
automaton. The order is defined by u 6 v if and only if, for all q ∈ Q, q ·u 6 q · v.

For instance, let L be the language {a, aba}. Its minimal deterministic au-
tomaton is represented below:
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The order on the set of states is 2 6 4, 1 6 3 and 1, 2, 3, 4 6 0. Indeed, one has
0·u = 0 for all u ∈ A∗ and thus, the formal implication

0·u ∈ F ⇒ q ·u ∈ F

holds for any state q. Similarly, 1 6 3 since a is the only word such that 3· a ∈ F
and one also has 1· a ∈ F .

The syntactic monoid of L is the monoid M = {1, a, b, ab, ba, aba, 0} presented
by the relations a2 = b2 = bab = 0. Its syntactic order is 1 < ab < 0, 1 < ba < 0,
a < aba < 0, b < 0.
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1.3 Free profinite monoids

We briefly recall the definition of a free profinite monoid. More details can be
found in [1, 45]. A finite monoid M separates two words u and v of A∗ if there
is a morphism ϕ : A∗ → M such that ϕ(u) 6= ϕ(v). We set

r(u, v) = min
{
|M | | M is a finite monoid that separates u and v }

and d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
Then d is a metric on A∗ and the completion of A∗ for this metric is denoted by
Â∗. The product on A∗ can be extended by continuity to Â∗. This extended prod-
uct makes Â∗ a compact topological monoid, called the free profinite monoid.
Its elements are called profinite words.

In a compact monoid, the smallest closed subsemigroup containing a given
element s has a unique idempotent, denoted sω. This is true in particular in a
finite monoid and in the free profinite monoid.

One can show that every morphism ϕ from A∗ into a (discrete) finite monoid

M extends uniquely to a a uniformly continuous morphism ϕ̂ from Â∗ to M . It
follows that if x is a profinite word, then ϕ̂(xω) = ϕ̂(x)ω .

1.4 Equations and identities

Let ϕ be a morphism from A∗ into a finite [ordered] monoid M and let x, y be

two profinite words of Â∗. We say that ϕ satisfies the profinite equation x = y
[x 6 y] if ϕ̂(x) = ϕ̂(y) [ϕ̂(x) 6 ϕ̂(y)].

A regular language of A∗ satisfies a profinite equation if its syntactic mor-
phism satisfies this equation. More generally, we say that a set of regular lan-
guages L is defined a set of profinite equations E if L is the set of all regular
languages satisfying every equation of E.

A lattice of languages is a set L of languages of A∗ containing ∅ and A∗ and
closed under finite union and finite intersection. It is closed under quotients if,
for each L ∈ L and u ∈ A∗, the languages u−1L and Lu−1 are also in L. It is
proved in [19] that a set of regular languages is a lattice [Boolean algebra] closed
under quotient if and only if it can be defined by a set of profinite equations of
the form u 6 v [u = v].

A finite [ordered] monoid M satisfies the identity x = y [x 6 y] if every
morphism from A∗ into M satisfies this equation. These notions can be extended
to semigroups by considering morphisms from the free semigroup A+ to a finite
semigroup.

1.5 Varieties of monoids

In this paper, we will only consider varieties in Eilenberg’s sense. Thus, for
us, a variety of semigroups is a class of finite semigroups closed under taking
subsemigroups, quotients and finite direct products [18]. Varieties of ordered
semigroups, monoids and ordered monoids are defined analogously [39].
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Given a set E of identities, we denote by JEK the class of all finite [ordered]
monoids which satisfy all the identities of E. Reiterman’s theorem [57] and its
extension to ordered structures [53] states that every variety of [ordered] monoids
[semigroups] can be defined by a set of identities. For instance, the variety of
ordered semigroups Jxωyxω 6 xωK is the variety of ordered semigroups S such
that, for each idempotent e ∈ S and for each s ∈ S, ese 6 e.

The following varieties will be used in this paper: the variety A of aperiodic
monoids, defined by the identity xω+1 = xω , the variety R [L] of R-trivial [L-
trivial ] monoids, defined by the identity (xy)ωx = xω [y(xy)ω = xω ] and the
variety DA, which consists of the aperiodic monoids whose regular J -classes
are idempotent semigroups. This variety is defined by the identities xω = xω+1

and (xy)ω(yx)ω(xy)ω = (xy)ω .
We will also consider two group varieties: the variety Gp of p-groups (for a

prime p) and the variety Gsol of soluble groups.
Finally, if V is a variety of monoids, the class of all semigroups S such that,

for each idempotent e ∈ S, the “local” monoid eSe belongs to V, form a variety
of semigroups, denoted LV. In particular, the variety LI is the variety of locally
trivial semigroups, defined by the identity xωyxω = xω.

1.6 Varieties of languages

A class of languages C associates with each alphabet A a set C(A∗) of regular
languages of A∗. A positive variety of languages is a class of languages V such
that, for all alphabets A and B,

(1) V(A∗) is a lattice of languages closed under quotients,

(2) if ϕ : A∗ → B∗ is a morphism, then L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗).

A variety of languages is a positive variety V such that, for each alphabet A,
V(A∗) is closed under complement. We can now state Eilenberg’s variety theorem
[18] and its counterpart for ordered monoids [39].

Theorem 1.1. Let V be a variety of monoids. For each alphabet A, let V(A∗)
be the set of all languages of A∗ whose syntactic monoid is in V. Then V is a
variety of languages. Further, the correspondence V → V is a bijection between
varieties of monoids and varieties of languages.

Theorem 1.2. Let V be a variety of ordered monoids. For each alphabet A,
let V(A∗) be the set of all languages of A∗ whose syntactic ordered monoid is
in V. Then V is a positive variety of languages. Further, the correspondence
V → V is a bijection between varieties of ordered monoids and positive varieties
of languages.

A slightly more general definition was introduced by Straubing [71]. Let C
be a class of morphisms between free monoids, closed under composition and
containing all length-preserving morphisms. Examples include the classes of all
length-preserving morphisms, of all length-multiplying morphisms (morphisms
such that, for some integer k, the image of any letter is a word of length k),
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all non-erasing morphisms (morphisms for which the image of each letter is
a nonempty word), all length-decreasing morphisms (morphisms for which the
image of each letter is either a letter or the empty word) and all morphisms.

A positive C-variety of languages is a class V of recognisable languages sat-
isfying the first condition defining a positive variety of languages and a second
condition

(2′) if ϕ : A∗ → B∗ is a morphism in C, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗).

A C-variety of languages is a positive C-variety of languages closed under com-
plement. When C is the class of non-erasing morphisms (for which the image of
a letter is a nonempty word), we use the term ne-variety. These ne-varieties are
essentially the same thing as Eilenberg’s +-varieties (see [49, p. 260–261] for a
detailed discussion) and they correspond to varieties of semigroups.

1.7 Relational morphisms

A relational morphism between two monoids M and N is a function τ from M
into P(N) such that:

(1) for all M ∈ M , τ(m) 6= ∅,

(2) 1 ∈ τ(1),

(3) for all m, n ∈ M , τ(m)τ(n) ⊆ τ(mn)

Let V be a variety of [ordered] semigroups. A [relational] morphism τ : M → N
is said to be a [relational] V-morphism if for every [ordered] semigroup R of N
belonging to V, the [ordered] semigroup τ−1(R) also belongs to V.

Let me point out an important subtlety. The definition of a [relational] V-
morphism adopted in this paper is taken from [44] and differs from the original
definition given for instance in [68, 42]. The original definition only requires that,
for each idempotent e, the [ordered] semigroup τ−1(e) also belongs to V. In
many cases the two definitions are equivalent: for instance, when V is one of
the varieties A, Jxωyxω = xωK, Jxωy = xωK, Jyxω = xωK or LH where H is a
variety of groups. However, the two definitions are not equivalent for the variety
Jxωyxω 6 xωK.

2 Theme and variations: the concatenation product

We now come to the main topic of this article. Just like a piece of classical music,
the concatenation product includes theme and variations.

2.1 Main theme

The product (or concatenation product) of the languages L0, L1, . . . , Ln of A∗ is
the language

L0L1 · · ·Ln = {u0u1 · · ·un | u0 ∈ L0, u1 ∈ L1, · · · , un ∈ Ln}
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A language L of A∗ is a marked product of the languages L0, L1, . . . , Ln if

L = L0a1L1 · · · anLn

for some letters a1, . . . , an of A.

2.2 Three variations

Variations include the unambiguous, deterministic, bideterministic and modular
products, that are defined below.

Unambiguous product.

A marked product L = L0a1L1 · · · anLn is said to be unambiguous if every
word of L admits a unique decomposition of the form u = u0a1u1 · · · anun with
u0 ∈ L0, . . . , un ∈ Ln. For instance, the marked product {a, c}∗a{1}b{b, c}∗ is
unambiguous.

Deterministic product.

A word x is a prefix [suffix ] of a word u if there is a word v such that u = xv
[u = vx]. It is a proper prefix [suffix] if x 6= u. A subset C of A+ is a prefix
[suffix ] code if if no element of C is a proper prefix [suffix] of another element of
C.

A marked product L = L0a1L1 · · · anLn of n nonempty languages L0, L1, . . . ,
Ln of A∗ is left [right ] deterministic if, for 1 6 i 6 n, the set L0a1L1 · · ·Li−1ai

[aiLi · · ·anLn] is a prefix [suffix] code. This means that every word of L has a
unique prefix [suffix] in L0a1L1 · · ·Li−1ai [aiLi · · · anLn]. It is observed in [9, p.
495] that the marked product L0a1L1 · · · anLn is deterministic if and only if,
for 1 6 i 6 n, the language Li−1ai is a prefix code. Since the product of two
prefix codes is a prefix code, any left [right ] deterministic product of left [right ]
deterministic products is left [right ] deterministic.

A marked product is said to be bideterministic if it is both left and right
deterministic.

Modular product of languages.

Let L0, . . . , Ln be languages of A∗, let a1, . . . , an be letters of A and let r
and p be integers such that 0 6 r < p. We define the modular product of the
languages L0, . . . , Ln with respect to r and p, denoted (L0a1L1 · · ·anLn)r,p, as
the set of all words u in A∗ such that the number of factorizations of u in the
form u = u0a1u1 · · · anun, with ui ∈ Li for 0 6 i 6 n, is congruent to r modulo p.

A language is a p-modular product of the languages L0, . . . , Ln if it is of the
form (L0a1L1 · · · anLn)r,p for some r.

3 Classical area

The most important results on the concatenation product are due to Schützen-
berger. They concern the smallest Boolean algebra of languages closed under
marked product or one of its variants.
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Recall that the set of star-free languages is the smallest Boolean algebra of
languages of A∗ which is closed under marked product.

Theorem 3.1 (Schützenberger [60]). A regular language is star-free if and
only if its syntactic monoid is aperiodic.

There are essentially two proofs of this result. Schützenberger’s original proof
[60, 35], slightly simplified in [30], works by induction on the J -depth of the syn-
tactic semigroup. Schützenberger’s proof actually gives a stronger result since
it shows that the star-free languages form the smallest Boolean algebra of lan-
guages of A∗ which is closed under marked products of the form L → LaA∗ and
A∗aL. In other words, marked products with A∗ suffice to generate all star-free
languages.

The other proof [17, 28] makes use of a weak form of the Krohn-Rhodes
theorem: every aperiodic semigroup divides a wreath product of copies of the
monoid U2 = {1, a, b}, given by the multiplication table aa = a, ab = b, ba = b
and bb = b.

Theorem 3.1 provides an algorithm to decide whether a given regular lan-
guage is star-free. The complexity of this algorithm is analysed in [16, 65].

Let us define in the same way the set of unambiguous [right deterministic, left
deterministic] star-free languages as the smallest Boolean algebra of languages
of A∗ containing the languages of the form B∗, for B ⊆ A, which is closed
under unambiguous [left deterministic, right deterministic] marked product. The
algebraic characterizations of these classes are also known.

Theorem 3.2 (Schützenberger [61]). A regular language is unambiguous
star-free if and only if its syntactic monoid belongs to DA.

One can show that the set of unambiguous star-free languages of A∗ is the
smallest set of languages of A∗ containing the languages of the form B∗, for B ⊆
A, which is closed under finite disjoint union and unambiguous marked product.
The languages corresponding to DA admit several other nice characterizations:
see [72] for a survey.

Deterministic products were also studied in [61]. Alternative descriptions of
these languages can be found in [18, 13].

Theorem 3.3 ([18]). A regular language is left [right ] deterministic star-free
if and only if its syntactic monoid is R-trivial [L-trivial ].

Similar results are known for the p-modular product [18, 66, 73, 76, 29, 78–80].

Theorem 3.4. Let p be a prime. A language of A∗ belongs to the smallest
Boolean closed under p-modular product if and only if its syntactic monoid is
a p-group.

Theorem 3.5. A language of A∗ belongs to the smallest Boolean closed under
p-modular product for all prime p if and only if its syntactic monoid is a soluble
group.
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Finally, one may consider the product and the p-modular products simulta-
neously.

Theorem 3.6. A language of A∗ belongs to the smallest Boolean closed under
product and under p-modular product for all prime p if and only if all the groups
in its syntactic monoid are soluble.

See also [75] for another description of this variety of languages.

4 The ground bass: Schützenberger products

The Schützenberger product is the first algebraic tool used to study the concate-
nation product. It was first defined by Schützenberger [60] and later generalized
by Straubing [67]. An intuitive construction, related to the linear representa-
tion of a suitable transducer, was given in [46, 47] and is briefly sketched below.
More information on transducers and their linear representations can be found
in Sakarovitch’s book [59].

4.1 Transducers for the product

The construction given in [46, 47] relies on the following observation. Let τ and
τa be the transductions from A∗ to A∗ × A∗ defined by

τ(u) = {(u1, u2) | u1u2 = u}

τa(u) = {(u1, u2) | u1au2 = u}

It is easy to see that the two transducers pictured below realise these trans-
ductions. In these figures, c is a generic letter and the symbol | is a separator
between the input letter and the output.

1 2 1 2

c | (c, 1)

1 | (1, 1)

c | (1, c) c | (c, 1)

a | (1, 1)

c | (1, c)

The transducer on the left [right] realizes τ [τa]. Now L0L1 = τ−1(L0 × L1)
and L0aL1 = τ−1

a (L0 × L1) and this equality allows one to compute a monoid
recognising L0L1 and L0aL1, given monoids recognising L0 and L1.

This construction can be readily extended to (marked) products of several
languages. For instance, given a1, . . . , an ∈ A, the transduction σ defined by
σ(u) = {(u0, · · · , un) ∈ (A∗)n+1 | u0a1u1 · · ·anun = u} is realised by the trans-
ducer

8



1 2 . . . n − 1 n

c | (c, 1)

a1 | (1, 1)

c | (1, c) c | (1, c)

an | (1, 1)

c | (1, c)

and the marked product L0a1L1 · · · anLn is equal to σ−1(L0 × L1 × · · · × Ln).
A bit of algebra is now required to make full use of this transduction.

4.2 Linear representations

The R be the semiring P(A∗×A∗). Then for each word u in A∗, τa(u) = µ(u)1,2,
where µ : A∗ → M2(R) is defined by

µ(a) =

(
(c, 1) (1, 1)

0 (1, c)

)
and µ(c) =

(
(c, 1) 0

0 (1, c)

)
if c 6= a

Indeed, for each u ∈ A∗, one gets

µ(u) =

(
(u, 1) {(u0, u1) | u0au1 = u}

0 (1, u)

)

which gives the result. Let now π0 : A∗ → M0 [π1 : A∗ → M1] be a monoid
morphism recognising the language L0 [L1] and let M = M0 × M1. Let π =
π0 × π1. Then π is a monoid morphism from A∗ ×A∗ into M , which can be first
extended to a semiring morphism from A∗×A∗ to P(M) and then to a semiring
morphism from M2(A

∗ × A∗) to M2(P(M)), also denoted by π. It follows that
π ◦ µ is a morphism from A∗ into M2(P(M)) and it is not difficult to see that
this morphism recognises the language τ−1

a (L0 ×L1), that is, L0aL1. Further, if
u is a word of A∗, the matrix π ◦ µ(u) has the form

(
(m0, 1) P

0 (1, m1)

)

for some m0 ∈ M0, m1 ∈ M1 and P ⊆ M0 × M1. In particular, L0aL1 is recog-
nised by the monoid of matrices of this form. This monoid is the Schützenberger
product of the monoids M0 and M1.

A similar representation can be given for the transducer σ and this leads to
the definition of the Schützenberger product of n + 1 monoids M0, . . . , Mn. In
fact, one can give a slightly more general definition. Let M = M0 × · · · × Mn,
let k be a semiring and let k[M ] be the monoid algebra of M over k. The
Schützenberger product over k of the monoids M0, . . . , Mn, is the submonoid of
Mn+1(k[M ]) made up of matrices m = (mi,j) such that

(1) mi,j = 0, for i > j,

(2) mi,i = (1, . . . , 1, mi, 1, . . . , 1) for some mi ∈ Mi,

(3) mi,j ∈ k[1 × · · · × 1 × Mi × · · · × Mj × 1 × · · · × 1], for i < j.
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This monoid is denoted k♦(M0, . . . , Mn). The first condition means that the
matrices are uppertriangular, the second one that the entry mi,i can be identified
with an element of Mi.

When k is the Boolean semiring, then k[M ] is isomorphic to P(M) and
the Schützenberger product is simply denoted ♦(M0, . . . , Mn). For instance, a
matrix of ♦3(M1, M2, M3) will have the form




s1 P1,2 P1,3

0 s2 P2,3

0 0 s3





with si ∈ Mi, P1,2 ⊆ M1×M2, P1,3 ⊆ M1 ×M2×M3 and P2,3 ⊆ M2 ×M3. The
first part of the next proposition is due to Schützenberger [60] for n = 1 and to
Straubing [67] for the general case.

Proposition 4.1. Let L = L0a1L1 · · · anLn be a marked product and let Mi be
the syntactic monoid of Li, for 0 6 i 6 n. Then the Schützenberger product
♦n(M0, . . . , Mn) recognises L.

A similar result holds for the p-modular product, for a prime p, by taking
k = Fp, the field with p elements [34, 37, 79].

Proposition 4.2. Let L = (L0a1L1 · · · anLn)r,p be a p-modular product and
let Mi be the syntactic monoid of Li, for 0 6 i 6 n. Then the Schützenberger
product Fp♦n(M0, . . . , Mn) recognises L.

In view of Proposition 4.1, a natural question arises: what are the languages
recognised by a Schützenberger product? In the Boolean case, the answer was
first given by Reutenauer [58] for n = 2 and by the author [33] in the general
case (see also [80, 63]). The case k = Fp was treated by Weil [79, Theorem 2.2].

Theorem 4.3. A language is recognised by the Schützenberger product of M0,
. . . , Mn if and only if it belongs to the Boolean algebra generated by the marked
products of the form Li0a1Li1 · · · asLis

where 0 6 i0 < i1 < · · · < is 6 n and Lij

is recognised by Mij
for 0 6 j 6 s.

Theorem 4.4. A language is recognised by the monoid Fp♦(M0, . . . , Mn) if and
only if it belongs to the Boolean algebra generated by the p-modular products of
the form (Li0a1Li1 · · ·asLis

)r,p where 0 6 i0 < i1 < · · · < is 6 n and Lij
is

recognised by Mij
for 0 6 j 6 s.

In the Boolean case, it is possible to give an ordered version of Theorem 4.3
[54, 44]. Indeed, the (Boolean) Schützenberger product can be ordered by reverse
inclusion: P 6 P ′ if and only if for 1 6 i 6 j 6 n, Pi,j ⊇ P ′

i,j . The corresponding
ordered monoid is denoted ♦+

n (M0, . . . , Mn) and is called the ordered Schützen-
berger product of M1, . . . , Mn.

Theorem 4.5. A language is recognised by the ordered Schützenberger product
of M0, . . . , Mn if and only if it belongs to the lattice generated by the marked
products of the form Li0a1Li1 · · · asLis

where 0 6 i0 < i1 < · · · < is 6 n and Lij

is recognised by Mij
for 0 6 j 6 s.
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4.3 Algebraic properties of the Schützenberger product

It follows from the definition of the Schützenberger product that the map sending
a matrix to its diagonal is a morphism π from k♦(M0, . . . , Mn) to M . The
properties of this morphism were first analysed by Straubing [67] and by the
author [36, 54, 44] in the Boolean case and by Weil [80, Corollary 3.6] when
k = Fp. See also [4].

Proposition 4.6. The morphism π : ♦(M0, . . . , Mn) → M is a Jxωyxω 6 xωK-
morphism.

Proposition 4.7. The morphism π : Fp♦(M0, . . . , Mn) → M is a LGp-morphism.

5 Passacaglia: pumping properties

The second method to study the product is to use relational morphisms. This
technique was initiated by Straubing [68] and later refined in [10, 8, 36, 44, 50,
54]. We first state the main result under the form of a pumping lemma before
turning to a more algebraic formulation.

Let L = L0a1L1 · · · anLn be a marked product of regular languages.

Theorem 5.1. Let u and v be words of A∗ satisfying the following properties:

(1) u2 ∼L u and

(2) for each i ∈ {0, . . . , n}, u2 ∼Li
u and uvu 6Li

u.

Then for all x, y ∈ A∗, the condition xuy ∈ L implies xuvuy ∈ L.

Another possible formulation of the theorem is to say that, under the assump-
tions (1) and (2), L is closed under the rewriting system u → uvu.

We now turn to the algebraic version of this statement. For each i, let Li be
a language of A∗, let ηi : A∗ → M(Li) be its syntactic morphism and let

η : A∗ → M(L0) × M(L1) × · · · × M(Ln)

be the morphism defined by η(u) = (η0(u), η1(u), . . . , ηn(u)). Finally, let µ :
A∗ → M(L) be the syntactic morphism of L. Theorem 5.1 can be reformulated
as a property of the relational morphism (see picture below)

τ = η ◦ µ−1 : M(L) → M(L0) × M(L1) × · · · × M(Ln)

M(L) M(L0) × M(L1) × · · · × M(Ln)

A∗

µ

τ = η ◦ µ−1

η
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Theorem 5.2.

(1) The relational morphism τ is a relational Jxωyxω 6 xωK-morphism.

(2) If the product is unambiguous, it is a relational Jxωyxω = xωK-morphism.

(3) If the product is left deterministic, it is a relational Jxωy = xωK-morphism.

(4) If the product is right deterministic, it is a relational Jyxω = xωK-morphism.

A similar result holds for the p-modular product.

Proposition 5.3. Let L = (L0a1L1 · · · anLn)r,p be a p-modular product. The
relational morphism τ : M(L) → M(L0) × · · · × M(Ln) is a relational LGp-
morphism.

Theorem 5.2 is often used in the following weaker form.

Corollary 5.4. The relational morphism τ : M(L) → M(L0) × M(L1) × · · · ×
M(Ln) is an aperiodic relational morphism.

6 Chaconne: Closure properties

The results of Section 3 give a description of the smallest Boolean algebra closed
under marked product and its variants. The next step would be to characterize
all Boolean algebras closed under marked product and its variants. A related
problem is to describe the classes of regular languages closed under union and
marked product.

Both problems have been solved in the case of a variety of languages, but the
description of these results requires an algebraic definition. Let V be a variety
of [ordered] monoids and let W be a variety of ordered semigroups. The class
of all [ordered] monoids M such that there exists a V-relational morphism from
M into a monoid of V is a variety of [ordered] monoids, denoted W−1V.

6.1 Varieties closed under product

Varieties closed under marked products were described by Straubing [66].

Theorem 6.1. Let V be a variety of monoids and let V be the associated vari-
ety of languages. For each alphabet A, let W(A∗) be the smallest Boolean algebra
containing V(A∗) and closed under product. Then W is a variety and the asso-
ciated variety of monoids is A−1V.

This important result contains Theorem 3.1 as a particular case, when V is
the trivial variety of monoids. Examples of varieties V satisfying the equality
A−1V = V also include the variety of monoids whose groups belong to a given
variety of groups.

Theorem 6.1 has been extended to C-varieties in [15, Theorem 4.1].
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6.2 Varieties closed under modular product

Finally, let us mention the results of Weil [80]. A set of languages L of A∗ is
closed under p-modular product if, for any language L0, . . . , Ln ∈ L, for any letter
a1, . . . , an ∈ A and for any integer r such that 0 6 r < p, (L0a1L1 · · ·anLn)r,p ∈
L. A set of languages L of A∗ is closed under modular product if it is closed
under p-modular product, for each prime p.

Theorem 6.2. Let p be a prime number, let V be a variety of monoids and
let V be the associated variety of languages. For each alphabet A, let W(A∗)
be the smallest Boolean algebra containing V(A∗) and closed under p-modular
product. Then W is a variety of languages and the associated variety of monoids
is LG−1

p V.

Given a variety of groups H, let H be the variety of all monoids whose groups
belong to H.

Theorem 6.3. Let p be a prime number, let V be a variety of monoids and
let V be the associated variety of languages. For each alphabet A, let W(A∗) be
the smallest Boolean algebra containing V(A∗) and closed under product and p-
modular product. Then W is a variety of languages and the associated variety of

monoids is LG
−1

p V.

Theorem 6.4. Let V be a variety of monoids and let V be the associated variety
of languages. For each alphabet A, let W(A∗) be the Boolean algebra containing
V(A∗) and closed under modular product. Then W is a variety of languages and

the associated variety of monoids is LGsol
−1

V.

6.3 Polynomial closure

Let L be a lattice of languages. The polynomial closure of L is the set of lan-
guages that are finite unions of marked products of languages of L. It is denoted
Pol(L). Similarly, the unambiguous polynomial closure of L is the set of lan-
guages that are finite unions of unambiguous marked products of languages of
L. It is denoted UPol(L). The left and right deterministic polynomial closure are
defined analogously, by replacing “unambiguous” by “left [right] deterministic”.
They are denoted DlPol(V) [DrPol(V)].

An algebraic characterization of the polynomial closure of a variety of lan-
guages was first given in [51, 54]. It was extended to positive varieties in [44].

Theorem 6.5. Let V be a variety of [ordered ] monoids and let V be the associ-
ated [positive ] variety of languages. Then Pol(V) is a positive variety of languages
and the associated variety of ordered monoids is Jxωyxω 6 xωK−1V.

Theorem 6.5 has been extended to C-varieties in [49, Theorem 7.2]. For the
unambiguous product, one has the following result [32, 50, 4].

13



Theorem 6.6. Let V be a variety of monoids and let V be the associated variety
of languages. Then UPol(V) is a variety of languages and the associated variety
of ordered monoids is Jxωyxω = xωK−1V.

For the left (resp. right) deterministic product, similar results hold [32, 50].

Theorem 6.7. Let V be a variety of monoids and let V be the associated variety
of languages. Then DlPol(V) (resp. DrPol(V)) is a variety of languages, and the
associated variety of monoids is Jxωy = xωK−1V (resp. Jyxω = xωK−1V).

It is known that the smallest nontrivial variety of aperiodic monoids is the
variety J1 = Jxy = yx, x = x2K. One can show that Jxωy = xωK−1J1 is equal
to the variety R of all R-trivial monoids, which is also defined by the identity
(xy)ωx = (xy)ω . This leads to the following characterization [18, 13].

Corollary 6.8. For each alphabet A, R(A∗) consists of the languages which
are disjoint unions of languages of the form A∗

0a1A
∗

1a2 · · · anA∗

n, where n > 0,
a1, . . . an ∈ A and the Ai’s are subsets of A such that ai /∈ Ai−1, for 1 6 i 6 n.

A dual result holds for L-trivial monoids. Finally, Jxωyxω = xωK−1J1 = DA,
which leads to the description of the languages of DA given hereinabove.

6.4 Back to identities

A general result of [52] permits to give identities defining the varieties of the
form V−1W. In particular, we get the following results.

Theorem 6.9. Let V be a variety of monoids. Then

(1) A−1V is defined by the identities of the form xω+1 = xω, where x is a
profinite word such that V satisfies the identity x = x2.

(2) Jxωyxω = xωK−1V is defined by the identities of the form xωyxω = xω,
where x, y are profinite words such that V satisfies the identity x = y = x2.

(3) Jxωyxω 6 xωK−1V is defined by the identities of the form xωyxω 6 xω,
where x, y are profinite words such that V satisfies the identity x = y = x2.

7 Hierarchies and bridges

The Boolean algebra BL generated by a lattice L is called its Boolean closure.
In particular, BPol(L) denotes the Boolean closure of Pol(L).

Concatenation hierarchies are defined by alternating Boolean operations and
polynomial operations (union and marked product). More precisely, let L be a set
of regular languages (or more generally, a class of languages). The concatenation
hierarchy built on L is the sequence Ln defined inductively as follows1: L0 = L
and, for each n > 0:

1 In the literature, concatenation hierarchies are usually indexed by half integers, but
it seems simpler to use integers.
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(1) L2n+1 is the polynomial closure of the level 2n,

(2) L2n+2 is the Boolean closure of the level 2n + 1.

The next results summarize the results of [5, 6, 54].

Proposition 7.1. If L is a lattice of regular languages, then each even level is
a lattice of regular languages and each odd level is a Boolean algebra. Further, if
L is closed under quotients, then every level is closed under quotients.

Since the polynomial closure of a C-variety of languages is a positive C-variety
of languages [49, Theorem 6.2], a similar result holds for C-varieties.

Proposition 7.2. If L is a C-variety of languages, then each even level is a
positive C-variety of languages and each odd level is a C-variety of languages.

For instance, the Straubing-Thérien’ hierarchy Vn [74, 67, 69] is built on the
trivial Boolean algebra V0 = {∅, A∗}. The starting point of Brzozowski’s “dot-
depth” hierarchy Bn [12] was originally defined as the Boolean algebra of finite
and cofinite languages but it was later suggested to start with the Boolean
algebra

B0(A
∗) = {FA∗G ∪ H | F , G, H are finite languages}

This suggestion was motivated by Theorem 7.4 below.
Another series of concatenation hierarchies is obtained as follows. Let H

be a variety of groups and let H be the associated variety of languages. The
concatenation hierarchy built on H is denoted by Hn and these hierarchies are
called group hierarchies.

It is not immediate to see that all these hierarchies do not collapse. This was
first proved by Brzozowski and Knast [14] for the dot-depth hierarchy, but the
result also holds for the other hierarchies [26].

Theorem 7.3. The Straubing-Thérien’ hierarchy, the dot-depth hierarchy and
the group hierarchies are infinite.

Let Vn be the variety of monoids corresponding to Vn and let Bn be the
variety of semigroups corresponding to Bn. There is a nice algebraic connection
between Vn and Bn, discovered by Straubing [69]. Given a variety of [ordered]
monoids V and a variety of monoids [semigroups] W, let V ∗W be the variety
of [ordered] monoids generated by the semidirect products M ∗ N with M ∈ V
and N ∈ W.

Theorem 7.4. The equality Bn = Vn ∗ LI holds for each n > 0.

There is a similar bridge between Vn and Hn for each variety of groups H
[43, 44].

Theorem 7.5. The equality Hn = Vn ∗ H holds for each n > 0.

It is still an outstanding open problem to know whether there is an algorithm
to compute the concatenation level of a given regular language. Here is a brief
summary of the known results. Let us start with the level 1 [26, 39, 41, 56]. Let
G be the variety of all groups.
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Theorem 7.6. The following relations hold: V1 = Jx 6 1K, B1 = Jxωyxω 6

xωK and G1 = Jxω 6 1K. In particular, these varieties are decidable.

The languages of G1 are also known to be the open regular sets for the
progroup topology [26]. Extensions of this result to the varieties H1 where H is
a variety of groups is the topic of intensive research. See in particular Steinberg’
article [64].

The first decidability result for the level 2 was obtained by Simon [62].

Theorem 7.7. A language belongs to V2 if and only if its syntactic monoid is
J -trivial.

The corresponding result for B2 is due to Knast [24, 25]

Theorem 7.8. A language belongs to B2 if and only if its syntactic semigroup
satisfies the identity

(xωpyωqxω)ωxωpyωsxω(xωryωsxω)ω = (xωpyωqxω)ω(xωryωsxω)ω .

The corresponding result for G2 has a long story, related in detail in [38],
where several other characterizations can be found.

Theorem 7.9. A language belongs to G2 if and only if in its syntactic monoid,
the submonoid generated by the idempotents is J -trivial.

Theorem 7.9 shows that G2 is decidable. Again, there is a lot of ongoing work
to try to extend this result to varieties of the form H2. See in particular [7].

Since level 3 is the polynomial closure of level 2, Theorem 6.5 can be ap-
plied. One gets in particular the following decidability result [54]. Recall that
the content of a word is the set of letters occurring in this word.

Theorem 7.10. A language belongs to V3 if and only if its syntactic ordered
monoid satisfies the identities xωyxω 6 xω for all profinite words x, y with the
same content.

The corresponding problem for B3 is studied in [20, 22, 56]. In fact, Theorem
7.4 can be used to prove the following more general decidability result [56, 69].

Theorem 7.11. For every integer n, the variety Bn is decidable if and only if
Vn is decidable.

It is still an open problem to know whether a similar reduction exists for the
hierarchy Gn.

For the level 4, several partial results are known [48, 70] and several conjec-
tures have been formulated and then disproved [54, 64, 55]. Due to the lack of
space, we will not detail these results here. Some partial results are also known
for the level 5 [21].
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8 Harmony with logic

One of the reasons why the decidability problem is particularly appealing is its
close connection with finite model theory, first explored by Büchi in the early
sixties. Büchi’s logic comprises a relation symbol < and, for each letter a ∈ A,
a unary predicate symbol a. The set FO[<] of first order formulas is built in
the usual way by using these symbols, the equality symbol, first order variables,
Boolean connectives and quantifiers.

A word u is represented as a structure (Dom(u), (a)a∈A, <) where Dom(u) =
{1, . . . , |u|} and a = {i ∈ Dom(u) | u(i) = a}. The binary relation symbol <
is interpreted as the usual order. Thus, if u = abbaab, Dom(u) = {1, . . . , 6},
a = {1, 4, 5} and b = {2, 4, 6}. Formulas can now be interpreted on words. For
instance, the sentence

ϕ = ∃x ∃y
(
(x < y) ∧ (ax) ∧ (by)

)

means “there exist two integers x < y such that, in u, the letter in position x is
an a and the letter in position y is a b”. Therefore, the set of words satisfying
ϕ is A∗aA∗bA∗. More generally, the language defined by a sentence ϕ is the set
of words u such that ϕ satisfies u. The connection with star-free languages was
established by McNaughton and Papert [27].

Theorem 8.1. A language is FO[<]-definable if and only if it is star-free.

Thomas [77] (see also [31]) refined this result by showing that the concate-
nation hierarchy of star-free languages corresponds, level by level, to the Σn-
hierarchy, defined inductively as follows:

(1) Σ0 consists of the quantifier-free formulas.

(2) Σn consists of the formulas of the form ∃∗ ∀∗ ∃∗ · · · ϕ with n alternating
blocks of quantifiers and ϕ quantifier-free.

(3) BΣn denotes the class of formulas that are Boolean combinations of Σn-
formulas.

For instance, ∃x1∃x2∀x3∀x4∀x5∃x6 ϕ, where ϕ is quantifier free, is in Σ3. The
next theorem is due to Thomas [77] (see also [31, 40]).

Theorem 8.2.

(1) A language is Σn[<]-definable if and only if it belongs to V2n−1.

(2) A language is BΣn[<]-definable if and only if it belongs to V2n.

A slightly expanded logic is required for the dot-depth hierarchy. Let min
[max] be a predicate symbol interpreted as the minimum [maximum] of the do-
main and let P [S] be a relation symbol interpreted as the predecessor [successor]
relation. Let Loc be the signature {min, max, S, P} ∪ {(a)a∈A}.

Theorem 8.3.

(1) A language is Σn[Loc]-definable if and only if it belongs to B2n−1.

(2) A language is BΣn[Loc]-definable if and only if it belongs to B2n.

Thus deciding whether a language has level n is equivalent to a very natural
problem in finite model theory.
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9 Other variations, recent advances

Some specialized topics require even more sophisticated algebraic tools, like the
kernel category of a morphism. This is the case for instance for the bidetermin-
istic product [9–11] or for the marked product of two languages [4].

Another topic that we did not mention at all, but which is highly interesting,
is the extension of these results to infinite words or even to words over ordinals
or linear orders.

I would like to conclude with a recent result, which opens a new research
direction. We have given in Section 6 various closure properties for varieties or
even for C-varieties. The next result of Branco and the author [8] is much more
general.

Theorem 9.1. If L is a lattice of languages closed under quotients, then Pol(L)
is defined by the set of equations of the form xωyxω 6 xω, where x, y are profinite
words such that the equations x = x2 and y 6 x are satisfied by L.

Work is in progress to extend the other results of Section 6 to this more
general setting. The difficulty stems from the fact that definitions like V−1W
are no longer available in this context and one has to work directly on profinite
identities.
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(1983), 331–342.

26. S. Margolis and J.-E. Pin, Products of group languages, in FCT, Berlin, 1985,
pp. 285–299, Lect. Notes Comp. Sci. n̊ 199, Springer.

27. R. McNaughton and S. Papert, Counter-free automata, The M.I.T. Press, Cam-
bridge, Mass.-London, 1971. With an appendix by William Henneman, M.I.T.
Research Monograph, No. 65.

28. A. R. Meyer, A note on star-free events, J. Assoc. Comput. Mach. 16 (1969),
220–225.

29. P. Péladeau, Sur le produit avec compteur modulo un nombre premier, RAIRO
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50. J.-E. Pin, H. Straubing and D. Thérien, Locally trivial categories and unam-
biguous concatenation, J. of Pure and Applied Algebra 52 (1988), 297–311.

51. J.-E. Pin and P. Weil, Polynomial closure and unambiguous product, in 22th
ICALP, Berlin, 1995, pp. 348–359, Lect. Notes Comp. Sci. n̊ 944, Springer.

52. J.-E. Pin and P. Weil, Profinite semigroups, Mal’cev products and identities, J.
of Algebra 182 (1996), 604–626.

53. J.-E. Pin and P. Weil, A Reiterman theorem for pseudovarieties of finite first-
order structures, Algebra Universalis 35 (1996), 577–595.

20



54. J.-E. Pin and P. Weil, Polynomial closure and unambiguous product, Theory
Comput. Systems 30 (1997), 383–422.

55. J.-E. Pin and P. Weil, A conjecture on the concatenation product, Theoret.
Informatics Appl. 35 (2001), 597–618.

56. J.-E. Pin and P. Weil, The wreath product principle for ordered semigroups,
Communications in Algebra 30 (2002), 5677–5713.

57. J. Reiterman, The Birkhoff theorem for finite algebras, Algebra Universalis 14,1
(1982), 1–10.

58. C. Reutenauer, Sur les variétés de langages et de monöıdes, in Theoretical com-
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