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Abstract

Given two words u and v, the binomial coefficient
(

u

v

)

is the number
of ways v appears as a subword (or subsequence) of u. The Thue-Morse
sequence is the infinite word t = abbabaab · · · obtained by iteration of the
morphism τ (a) = ab and τ (b) = ba. We show that, for every prime p, and
every positive integer n, there exists an integer m = f(p, n), such that,
for every non-empty word v of length less than of equal to n, the binomial
coefficient

(

t[m]
v

)

is congruent to 0 modulo p. In fact f(p, n) = 2np1+blogpnc

for p 6= 2 and f(2, n) = 2k if Fk−1 ≤ n < Fk, where Fk denotes the k-th
Fibonacci number. It follows that, for each prime number p, there exists
a sequence of left factors of t of increasing length, the limit of which is
the empty word in the p-adic topology of the free monoid.

1 Introduction

The aim of this paper is to prove a new combinatorial property of a famous
infinite word, called after his discoverers the word of Thue-Morse. This word
has a great number of nice combinatorial properties, most of which can be found
for instance in [3, Chap. 2]. It plays a central role in the study of square-free
and cube-free words, and is also one of the “historical” examples of an infinite
word defined by iteration of a morphism. As such, a number of papers have
been devoted to the study of its factors, but Ochsenschlager [4] was the first
to consider the subwords (or subsequences) of its left factors. One of the more
useful tools in the study of subwords is the binomial coefficient introduced by
Eilenberg [1], that counts, roughly speaking, the number of ways a given word
v appears as a subword of another word u. Our main result shows that, given a
prime number p and a positive integer n, one can find a left factor u of the word
of Thue-Morse, such that all the binomial coefficients associated with the non-
empty words v of length less than or equal to n are simultaneously congruent
to 0 modulo p. As an application, we show that for each prime number p, there
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exists a subsequence of the sequence of the left factors of the word of Thue-
Morse, the limit of which is the empty word in the p-adic topology of the free
monoid.

2 Counting the subwords of the Thue-Morse se-

quence

Let A be a finite alphabet. We denote by A∗ the free monoid over A and by
1 the empty word. Let u and v be two words of A. A word u = a1a2 · · · ak is
said to be a subword of v if v can be factorized as v = v0a1v1 · · ·akvk where
v0, v1, . . . , vk ∈ A∗. Following Eilenberg [1], we set

(

v

u

)

= Card{(v0, v1, . . . , vk) ∈ A∗ ×A∗ × · · · ×A∗ | v0a1v1 · · · akvk = v}

Thus
(

v
u

)

is the number of distinct ways to write u as a subword of v. For

instance,
(

aabbaa
aba

)

= 8 and
(

an

am

)

=
(

n
m

)

. The basic properties of these binomial

coefficients are summarized by the following formulae

(a) For every word u ∈ A∗,
(

u
1

)

= 1.

(b) For every non empty word u ∈ A∗,
(

1
u

)

= 0.

(c) If w = uv, then
(

w
x

)

=
∑

x1x2=x

(

u
x1

)(

v
x2

)

.

Let A = {a, b}, and let τ : A∗ → A∗ be the monoid morphism defined by τ(a) =
ab and τ(b) = ba. For every n ≥ 0, we set un = τn(a) and vn = τn(b). Then u0,
u1, . . . is a sequence of words of A∗ such that each ui is a proper left factor of
ui+1. Therefore this sequence defines an infinite word t = abbabaabbaababba · · ·
called the infinite word of Thue-Morse. The aim of this section is the study of
the binomial coefficients of the form

(

t[m]
v

)

where t[m] denotes the left factor of
length n of t. We first recall the result of Ochsenschlager.

Theorem 2.1 [4] For every word x such that 0 ≤ |x| ≤ n,
(

un

x

)

=
(

vn

x

)

. Fur-

thermore there exists a word x of length n + 1 such that
(

un

x

)

6=
(

vn

x

)

.

If we count modulo some prime number p, we have the following main result.

Theorem 2.2 For every prime number p, and for every positive integer n, there

exists an integer m = f(p, n) such that, for every non-empty word v of length

less than or equal to n,
(

t[m]
v

)

≡ 0 mod p.

Theorem 2.2 is the consequence of two more precise results, corresponding
to the cases p = 2 and p 6= 2, respectively. We first treat the case p = 2. Let
(Fn)n≥0 be the Fibonacci sequence defined by F0 = 0, F1 = 1 and Fn+2 =
Fn+1 + Fn for every n ≥ 0. Then we have

Theorem 2.3 For every n ≥ 0, and for every word x such that 0 < |x| < Fn,
(

un

x

)

≡
(

vn

x

)

≡ 0 mod 2.
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Proof. We show by induction on n that
(

un

x

)

≡ 0 mod 2 for 0 < |x| < Fn, and

(

un

x

)

≡

(

vn

x

)

mod 2 for 0 < |x| < Fn+1.

There relations clearly hold for n = 0, 1. Thus let n > 1 and let x be a word
with 0 < |x| < Fn+1. Then

(

un+1

x

)

=
∑

x1x2=x

(

un

x1

)(

vn

x2

)

≡

(

un

x

)

+

(

vn

x

)

mod 2

Indeed, if x = x1x2 and x1, x2 6= 1, then |x1| < Fn or |x2| < Fn and conse-
quently, either

(

un

x1

)

≡ 0 mod 2 or
(

vn

x2

)

≡ 0 mod 2.

Next, by the induction hypothesis,
(

un

x

)

≡
(

vn

x

)

≡ 0 mod 2, which shows
that

(

un

x

)

+

(

vn

x

)

≡ 0 mod 2

Consider now a word x with 0 < |x| < Fn+2. Then again
(

un+1

x

)

=
∑

x1x2=x

(

un

x1

)(

vn

x2

)

=

(

un

x

)

+

(

vn

x

)

+
∑

(

un

x1

)(

vn

x2

)

the sum on the right hand side being restricted to all pairs (x1, x2) with x = x1x2

and 0 < |x1|, |x2| < Fn+1. Indeed, if x1 or x2 has length greater that Fn+1 then
the other word has length less than Fn and the corresponding term vanishes.

Using the induction hypothesis, we get that

∑

x1x2=x

(

un

x1

)(

vn

x2

)

=
∑

x1x2=x

(

vn

x1

)

+

(

un

x2

)

Theorem 2.2 follows immediately from Theorem 2.3 when p = 2. It suffices to
put f(2, n) = 2k if Fk−1 ≤ n < Fk. The first values of f(2, n) are given in Table
1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13
f(2,n) 4 8 16 16 32 32 32 64 64 64 64 64 128

Table 1: The first values of f(2, n).

We now consider the case p 6= 2. Put f(p, n) = 2np1+blogpnc. Then we can state

Theorem 2.4 For every prime number p 6= 2, for every positive integers i and

n, and for every word x such that 0 < |x| ≤ n, if m = f(p, n), then
(

t[im]
x

)

≡ 0
mod p.

We fix p and prove the theorem by induction on n. For n = 1, f(p, 1) = 2p,
and we have for every i > 0,

(

t[2ip]

a

)

=

(

t[2ip]

b

)

= ip ≡ 0 mod p.
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Assume that the theorem holds for some n ≥ 1, and let x be a word such that
0 < |x| ≤ n + 1. Put f(p, n + 1) = m and let i be a fixed positive integer. Then
t[im] = τ(u) where u = t[ 12 im], and since m/2 is a multiple of f(p, n), we have
by induction,

(

u
s

)

≡ 0 mod p for every word s such that 0 < |s| ≤ n.
At this point, we need some algebraic tools to conclude the proof. Let

k = Z/pZ and let k〈A∗〉 be the algebra of polynomials in non-commutative
variables over A with coefficients in k.

The monoid morphism τ : A∗ → A∗ can be extended to an endomorphism
τ : k〈A∗〉 → k〈A∗〉. Another useful endomorphism is the Magnus transformation
µ : k〈A∗〉 → k〈A∗〉, defined by µ(a) = 1 + a and µ(b) = 1 + b. As is well-known
[3, p.123] , we have, for every word s ∈ A∗,

µ(s) =
∑

x∈A∗

(

s

x

)

x

Let γ be the morphism defined by γ(a) = a + b + ab and by γ(b) = a + b + ba.
Then µτ = γµ. Put, for every s ∈ A∗,

γ(s) =
∑

x∈A∗

〈γ(s), x〉x

Then we have

µτ(u) = γµ(u) = γ
(

∑

s∈A∗

(

u

s

)

s
)

=
∑

s∈A∗

(

u

s

)

sγ(s).

and hence

µτ(u) =
∑

x∈A∗

∑

s∈A∗

(

u

s

)

〈γ(s), x〉x

On the other hand,

µτ(u) =
∑

x∈A∗

(

τ(u)

x

)

x

Therefore
(

τ(u)

x

)

=
∑

x∈A∗

∑

s∈A∗

(

u

s

)

〈γ(s), x〉.

Now, it follows immediately from the definition of γ that 〈γ(s), x〉 = 0 if |s| > |x|
and 〈γ(s), x〉 = 1 if |s| = |x|. Furthermore, by the induction hypothesis,

(

u
s

)

≡ 0
mod p for every word s such that 0 < |s| < |x|. Thus

(

τ(u)

x

)

≡
∑

|s|=|x|

(

u

s

)

≡

(

|u|

|x|

)

≡

(

im

|x|

)

mod p.

Thus it remains to prove that
(

im
|x|

)

≡ 0 mod p. Given an integer i, denote by

νp(i) the greatest integer such that pNp(i) divides i. Observe that if i > j and
νp(i) > νp(j), then νp(i− j) = νp(j). Clearly, it suffices to show that

S =
(

∑

0≤k<|x|

νp(im− k)
)

−
(

∑

0<k≤|x|

νp(k)
)

> 0.

But since m = 2n+1p1+blog
p
(n+1)c, we have for 0 < k ≤ |x| ≤ (n + 1), νp(im) ≥

1 + blogp(n + 1)c > νp(k), and hence νp(im − k) = νp(k). Therefore S =
νp(im)− νp(|x|) > 0 as required.
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3 The p-adic topology of the free monoid

Recall that a p-group is a finite group of order pk for some k > 0. One can
show that two distinct words u and v of A∗ can always be separated by a p-
group in the following sense : there exists a p-group G and a monoid morphism
ϕ : A∗ → G such that ϕ(u) 6= ϕ(v). Set, for every u, v ∈ A∗

r(u, v) = min{Card(G) | G is a p-group that separates u and v}

and
d(u, v) = e−r(u,v)

with the usual conventions min ∅ = ∞ and e−∞ = 0. Then d is a metric (in
fact an ultrametric) which defines a topology on A, called the p-adic topology

of the free monoid. This topology is the analoguous for the free monoid of the
topology of the free group introduced by M. Hall [2]. It is the coarsest topology
such that every monoid morphism from A into a discrete p-group is continuous.
A∗, equipped with this topology, is a topological monoid. The interested reader
is referred to [2,5,6] for a more detailed study of this topology. An example of
converging sequence is given by the following proposition.

Proposition 3.1 For every word w ∈ A∗, lim
n→∞

wpn

= 1

Proof. By the definition of the topology, it suffices to show that if ϕ : A∗ → G
is a monoid morphism onto a discrete p-group G, then lim

n→∞
ϕ(gpn

) = 1. But

if Card(G) = pk, then for n ≥ k, ϕ(gpn

) = 1 since the order of ϕ(g) divides
pk.

Since the multiplication is continuous, we also have, for every x, y ∈ A∗,
lim

n→∞
xgpn

y = xy, but it is less obvious to find an example of converging sequence

that is not directly related to Proposition 3.1.

Theorem 3.2 For every prime number p, there exists a strictly increasing se-

quence m1 < m2 < · · · such that lim
n→∞

t[mn] = 1.

Proof. Fix a prime number p, and set mn = f(p, n), where f(p, n) is the
function introduced after the proof of Theorem 2.3. Let ∼n be the congruence
over A∗ defined by

u ∼n v if and only if,

for every word x such that |x| ≤ n,

(

u

x

)

≡

(

v

x

)

mod p.

By Theorem 2.2, t[mn] ∼n 1. Denote by ϕn : A∗ → A∗/∼n= Gn the natural
morphism. It is shown in [1] that Gn is a p-group and that for every monoid
morphism from A∗ into a p-group G, there exists a positive integer k = k(ϕ) and
a group morphism αk : Gk → G such that ϕ = αkϕk. Now, if n ≥ k, t[mn] ∼k 1
and hence ϕk(t[mn]) = 1. It follows that ϕ(t[mn]) = 1 for every n ≤ k and thus
lim

n→∞
(t[mn]) = 1 in the discrete p-group G. Therefore lim

n→∞
(t[mn]) = 1.

Note that Theorem 3.2 cannot be deduced from Proposition 3.1 since the
Thue-Morse doesn’t contain any factor of the form u3, where u is a non-empty
word [3].
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