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Finite semigroups as categories, ordered semigroupsor compact semigroups
Jean-Eric Pin

Communicated by K. H. Hofmann and M. W. Mislove
I met Professor A.H. Cli�ord just once, in 1984. It was my �rst semigroupconference in the USA and I felt very honored when he told me very kindly howhe enjoyed the way automata theory and semigroups mixed together. Ten yearslater, it was again a great honor for me to participate to the Tulane conferencein his memory.

1. Introduction
Algebraic semigroup theory has made great strides in the recent years.It is a remarkable fact that these new results did require the introduction ofsome auxiliary structures. In this article, I would like to emphasize the rôle ofthree of these tools: topology, partial orders and categories. The three parts arerelatively independent.

2. Identities and topology
The results presented in this section are a good illustration of the fol-lowing quotation of Marshall Stone [34]: 'A cardinal principle of modern math-ematical research may be stated as a maxim: \One must always topologize" '.Varieties of �nite semigroups are a good example where Stone's principle wasapplied successfully.Recall that a variety of semigroups is a class of semigroups closed un-der taking subsemigroups, quotients and direct products. A variety of �nitesemigroups, or pseudovariety , is a class of �nite semigroups closed under takingsubsemigroups, quotients and �nite direct products.It is a well known theorem of Birkho� that varieties can be de�ned byidentities. Formally, an identity is an equality of the form u = v betweentwo elements of the free semigroup �+ on a countable number of generators�. A semigroup S satis�es an identity u = v if and only if u' = v' forevery morphism ' : �+ ! S . For instance, the identity xy = yx de�nesthe variety of commutative semigroups and x = x2 de�nes the variety of bands.Birkho�'s theorem can be summarized by saying that each variety is an equationalclass. It was an interesting question to know whether pseudovarieties could alsobe de�ned by identities. The problem was solved by several authors but themost satisfactory answer is due to Reiterman [31]. Reiterman's theorem statesthat pseudovarieties are also equational classes. The di�erence with Birkho�'stheorem lies in the de�nition of the identities. For Reiterman, an identity is alsoa formal equality of the form u = v , but u and v are now elements of a certain

completion �̂+ of the free semigroup �+ . The idea is actually quite simple. Letus say that a �nite semigroup S separates two words u; v 2 �+ if u' 6= v' forsome morphism ' : �+ ! S . Now set, for u; v 2 A+ ,
r(u; v) = min� S S is a �nite semigroup separating u and v g
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and d(u; v) = 2�r(u;v) , with the usual conventions min ; = +1 and 2�1 = 0.One can verify that d is a metric for which two words are close if a large semigroup
is required to separate them. Now, (�+; d) is a metric space and �̂+ is its
completion. In particular, every element of �̂+ is the limit of some Cauchysequence of (�+; d) . An important such limit is the ! -power, which traditionally
designates the idempotent power of an element of a �nite semigroup. If x 2 �̂+ ,
the sequence (xn!)n�0 converges in �̂+ to an idempotent denoted x! . Note that
if � : �̂+ ! S is a continuous morphism onto a �nite discrete semigroupS , thenx!� is equal to the unique idempotent power of x� .Some more topology is required to fully understand Reiterman's theorem.We now consider only topological semigroups. In particular, as above, every �nitesemigroup is considered as equipped with the discrete topology. A topological
semigroup S satis�es an identity u = v (where u; v 2 �̂+ ) if and only if u' = v'
for every continuous morphism ' : �̂+ ! S . Let (I;�) be a partially ordered setand suppose that for every i; j 2 I , there exists k 2 I such that i � k and j � k .Assume that for every i 2 I , there is a �nite semigroup Si and for every pair(i; j) 2 I � I with i � j , there is a morphism �j;i : Sj ! Si such that �i;i is theidentity map for every i 2 I and if i � j � k , �k;i = �k;j�j;i . Then (Si; �j;i)i;j2Iis called a projective system and its projective limit is the subsemigroup of Qi2I Siconsisting of all elements s = (si)i2I such that sj�j;i = si for every i � j . Atopological semigroup is pro�nite if it is a projective limit of �nite semigroups.One can show that a topological semigroup is pro�nite if and only if it is compactand 0-dimensional (that is, every connected component is trivial). By extension,a topological semigroup is called pro-V if it is a projective limit of semigroups ofV , or, equivalently, if it is pro�nite and if all its �nite continuous homomorphicimages are in V . Pro-V semigroups form a pro-variety , that is, a class of pro�nitesemigroups closed under taking closed subsemigroups, continuous homomorphicimages and direct products. The de�nition of a pro-variety allows in�nite directproducts and thus is very close to the original de�nition of a variety, with sometopological sugar (or spice?) added. Reiterman's theorem can now be completed
as follows. Let V be a pseudovariety and let E be a set of identities (in �̂+ )de�ning V . Then the class of all pro�nite semigroups satisfying E is exactly theclass of pro-V semigroups. In other words, pro-varieties are equational classes.Thus the core of Reiterman's theorem is a topological extension ofBirkho�'s theorem. Its application to pseudovarieties just shows the emerg-ing part of the iceberg, since pseudovarieties are then considered as the �nitesemigroups of a pro-variety.Reiterman's theorem suggests that most standard results on varietiesmight be extended in some way to pseudovarieties. For instance, it is well knownthat varieties have free objects. More precisely, if V is a variety and A is a�nite set, there exists an A-generated semigroup FA(V) of V , such that everyA-generated semigroup of V is a quotient of FA(V). This semigroup is unique(up to an isomorphism) and is called the free semigroup of the variety V . Howto extend this result to pseudovarieties? Again the answer is \topologize!". If Vis a pseudovariety, one can relativize to V the de�nition of r and d as follows:

rV(u; v) = min� S S 2 V and S separates u and v 	

and dV (u; v) = 2�rV(u;v) . The function dV (u; v) still satis�es the triangularinequality and even the stronger inequality
dV (u; v) � max f dV (u;w); dV (w; v) g
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but it is not a metric anymore because one can have dV (u; v) = 0 withu 6= v : for instance, if V is the pseudovariety of commutative �nite semigroups,dV (xy; yx) = 0 since xy and yx cannot be separated by a commutative semi-group. However, the relation �V de�ned on A+ by u �V v if and only ifdV (u; v) = 0 is a congruence and dV induces a metric on the quotient semi-group A+=�V . The completion of this metric space is a topological compact
semigroup F̂A(V), called the free pro-V semigroup. This semigroup is pro-V ,is generated by A as a topological semigroup (this just means that A+=�V is
dense in F̂A(V)) and satis�es the following universal properties:(1) If � is a map from A into a pro-V semigroup S , then � induces a unique

continuous morphism �̂ : F̂A(V)! S(2) Every A-generated semigroup of V is a continuous homomorphic image
of F̂A(V) .

(3) Let S and T be pro-V semigroups. If � : F̂A(V) ! S and ' : T ! Sare continuous morphisms and if ' is onto, then there exists a continuous
morphism � : F̂A(V)! T such that �' = � .One can actually extend this construction to the case where A is a pro�nite set,that is a topological set which is a projective limit of �nite sets [28]. This moregeneral setting is required in the study of the semidirect product [5, 6].A more detailed presentation of Reiterman's theorem can be found in [1,2, 4, 38].

3. Ordered semigroups and Eilenberg's theorem
An ordered semigroup (S;�) is a semigroup S equipped with a (partial)stable order relation � : for every u; v; x 2 S , u � v implies ux � vx andxu � xv . An order ideal of (S;�) is a subset I of S such that, if x � yand y 2 I , then x 2 I . Morphisms, ordered subsemigroups, quotients, directproducts and (pseudo)varieties are de�ned in the natural way. Note that the freeordered semigroup on a set A is just (A+;=), where A+ is the free semigroupon A . The dual of an ordered semigroup (S;�) is the ordered semigroup Sequipped with the dual order �0 de�ned by u �0 v if and only if v � u . Theclass of all dual ordered semigroups of members of a (pseudo)variety of ordered

semigroups V is also a (pseudo)variety, called the dual of V and denoted �V .Ordered semigroups occurred recently in connection with language the-ory [26]. The reader is referred to one of the books [12, 13, 18, 22] or to thesurvey article [24] for an introduction to this theory. Recall that a variety oflanguages is a class of recognizable languages closed under �nite union, �nite in-tersection, complement, left and right quotients and inverse morphisms betweenfree semigroups. Eilenberg's variety theorem gives a bijective correspondencebetween varieties of �nite semigroups and varieties of languages. However, cer-tain important classes of recognizable languages occurring in language theory arenot closed under complement but are closed under the other operations de�ninga variety of languages. This observation motivated the following de�nition: apositive variety of languages is a class of recognizable languages closed under�nite union, �nite intersection, left and right quotients and inverse morphismsbetween free semigroups. The term \positive" is borrowed from formal logic,where a positive formula is a formula without negation.It turns out that Eilenberg's variety theorem can be extended to positivevarieties. On the algebraic side, varieties of �nite semigroups are replaced byvarieties of �nite ordered semigroups. The �rst thing to do is to extend the
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de�nition of recognizability and the second will be to generalize the notion ofsyntactic semigroup.

Let (S;�) be an �nite ordered semigroup and let � be a surjectivesemigroup morphism from A+ onto S , which can be considered as a morphismof ordered semigroup from (A+;=) onto (S;�) . A language L of A+ is saidto be recognized by � if L = P��1 for some order ideal P of S . Note that if(T;�) recognizes L and (T;�) is a quotient of (S;�), then (S;�) recognizesL . By extension, a language L is said to be recognized by (S;�) if there existsa surjective morphism from A+ onto S that recognizes Q .
Let L a language of A+ . One de�nes a stable quasiorder �L and acongruence relation �L on A+ by setting

u �L v if and only if, for every x; y 2 A�, xvy 2 L implies xuy 2 L
u �L v if and only if u �L v and v �L u

The congruence �L is called the syntactic congruence of L and the quasiorder�L induces a stable order �L on S(L) = A+=�L . The ordered semigroup(S(L);�L) is called the syntactic ordered semigroup of L , the relation �L iscalled the syntactic order of L and the canonical morphism �L from A+ ontoS(L) is called the syntactic morphism of L . The syntactic ordered semigroupis the smallest ordered semigroup that recognizes L . More precisely, an orderedsemigroup (S;�) recognizes L if and only if (S(L);�L) is a quotient of (S;�) .
If V is variety of �nite ordered semigroups and A is a �nite alphabet,we denote by A+V the set of recognizable languages of A+ which are recognizedby an ordered semigroup of V . Equivalently, A+V is the set of recognizablelanguages of A+ whose ordered syntactic semigroup belongs to V . It is shownin [26] that the correspondence V 7! V is a bijective correspondence betweenvarieties of �nite ordered semigroups and positive varieties of languages. Theopposite correspondence is also easy to describe: with each positive variety oflanguages is associated the variety of �nite ordered semigroups generated byall ordered syntactic semigroups of languages of V . A similar result holds iflanguages are considered as subsets of the free monoid A� . Then one shouldconsider monoids and varieties of �nite ordered monoids instead of semigroupsand varieties of �nite semigroups.
We would like to illustrate this correspondence on three non-trivial ex-amples. Other examples can be found for instance in [26] or [29]. It is convenientto describe our examples by identities. Indeed, it was proved by Bloom [11] thata Birkho�'s theorem holds for varieties of ordered semigroups, if one considersidentities of the form u � v , with u; v 2 �� . Similarly, a Reiterman's theoremholds for varieties of �nite ordered semigroups [30]. Given a set E of identities of

the form u � v , with u; v 2 �̂+ , one denotes by [[E]] the variety of �nite orderedsemigroups which satisfy all the identities of E . Our three examples are the twovarieties of ordered monoids V1 = [[x � 1]] , V2 = [[x! � 1]] and the variety ofordered semigroups V3 = [[x!yx! � x!]] .
Thus V1 consists of all �nite ordered monoids (M;�) in which theidentity is the top element. Observe that this implies that M is J -trivial.Indeed, if x �J y , then x = ayb for some a; b 2 M . Now a � 1, y � y , b � 1and thus x = ayb � y . Thus, if x J y , then x � y and y � x , whence x = y .
Next V2 consists of all �nite ordered monoids (M;�) in which e � 1,for every idempotent e 2 E(M) . This condition too, imposes severe restrictionson the algebraic structure of M . For instance, the argument above shows thatthe submonoid of M generated by its idempotents is J -trivial. Finite monoids



Pin 5
satisfying this condition are called block groups. This terminology is justi�ed in[25], where several equivalent conditions are also given. For instance:(1) Every R -class and every L-class contains at most one idempotent,(2) For every regular D -class D of M , D0 is a Brandt semigroup

Finally V3 consists of all �nite semigroups (S;�) in which ese � e , forevery idempotent e and every element s in S : this is equivalent to saying thatthe \local" ordered monoids (eSe;�) , for e 2 E(S) , are in V1 . In particular,the local monoids are J -trivial, but we shall see later on that S satis�es an evenstronger condition.Our three examples are de�ned by some rather natural conditions onthe order and the corresponding positive varieties of languages are also relativelynatural families. For every alphabet A , A�V1 is the set of languages whichare �nite union of languages of the form A�a1A�a2 � � � akA� where the ai 's areletters of A . The languages of A�V2 are �nite union of languages of the formL0a1L1 � � � akLk where the ai 's are letters and the Li 's are group languages(that is, languages whose syntactic monoid is a �nite group). There is anobvious similarity between these two descriptions which is discussed in detailin [29]. The languages of A+V3 are �nite union of languages of the formu0A�u1A� � � �uk�1A�uk , where k � 0 and u0; : : : ; uk 2 A� .These three results are a particular case of a much more general resultestablished in [29] but they will su�ce to illustrate a typical back and forthargument between semigroups and languages to obtain results of pure semigrouptheory. The idea is to make use of the natural relations between varieties of �nitesemigroups and varieties of �nite ordered semigroups.If V is a variety of �nite semigroups, the class of all �nite orderedsemigroups of the form (S;�) , where S 2 V , is a variety of �nite orderedsemigroups, denoted V� , and called the variety of �nite ordered semigroupsassociated with V . Conversely, given a variety of �nite ordered semigroups W ,the class of all semigroups S such that (S;�) 2W for some stable order � on Sis a variety of �nite semigroups, called the variety of �nite semigroups associatedwith W . Now, for every variety of �nite semigroups V , V is the variety of�nite semigroups associated with V� . But if W is a variety of �nite orderedsemigroups, and if V is the variety of �nite semigroups associated with W , then
V� is not in general equal to W . In fact, V� is equal to W_ �W , the join of Wand its dual (that is, the smallest variety of �nite ordered semigroups containingW and its dual).Now, if V is a variety of �nite ordered monoids (resp. semigroups), onecan try to compute the associated variety of �nite monoids (resp. semigroups)according to the following plan:Step 1 Characterize the positive variety of languages corresponding to V .
Step 2 Characterize the positive variety of languages corresponding to �V .
Step 3 Characterize the positive variety of languages V corresponding to V_ �V .Step 4 Characterize the variety of �nite monoids corresponding to V .
Step 1 was discussed above for our examples V1 , V2 or V3 . Step 2 is easy:taking the dual of a variety of ordered semigroups V corresponds to comple-
mentation at the language level. More precisely, if V (resp. �V ) is the positive
variety corresponding to V (resp. to �V), then, for each alphabet A , A+ �V is theclass of all complements in A+ of the languages of A+V . Step 3 is also simple:
W = V _ �V is not only a positive variety, but also a variety of languages, and foreach alphabet A , A+W is the boolean algebra generated by A+V .
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For the last step, we consider our three examples separately. A+W1 isthe set of languages which are boolean combinations of languages of the formA�a1A�a2 � � � akA� where the ai 's are letters of A . It is a well-known result ofSimon [33] that these languages correspond to the variety J of �nite J -trivialmonoids, which can be de�ned by the identities

(xy)!x = (xy)! = y(xy)!
The languages of A�W2 are boolean combinations of languages of the formL0a1L1 � � � akLk where the ai 's are letters and the Li 's are group languages.These languages correspond to the variety BG of block groups [19, 25, 28],de�ned by the identities

(x!y!)!x! = (x!y!)! = y!(x!y!)!
Finally, the languages of A+W3 are boolean combination of languages of the formu0A�u1A� � � �uk�1A�uk , where k � 0 and u0; : : : ; uk 2 A� . These languagesare known as languages of \dot-depth one" in the literature [13, 22, 29] andthe corresponding variety of �nite semigroups is denoted B1 (the \B" refers toBrzozowski who introduced the dot-depth hierarchy, and the 1 to the �rst levelof this hierarchy). A characterization of B1 was obtained by Knast [16, 17] andrelies on the notion of graph of a �nite semigroup. Given a semigroup S , form agraph G(S) as follows: the vertices are the idempotents of S and the edges frome to f are the elements of the form esf . Then a �nite semigroup is in B1 if itsgraph satis�es the following condition : if e and f are two vertices, p and r edgesfrom e to f , and q and s edges from f to e , then (pq)!ps(rs)! = (pq)!(rs)! .Thus B1 is de�ned by the identities

(x!py!qx!)!x!py!sx!(x!ry!sx!)! = (x!py!qx!)!(x!ry!sx!)!
Our computation can be summarized into the following three equations

[[x � 1]] _ [[1 � x]] = [[(xy)!x = (xy)! = y(xy)!]]
[[x! � 1]] _ [[1 � x!]] = [[(x!y!)!x! = (x!y!)! = y!(x!y!)!]]

[[x!yx! � x!]] _ [[x! � x!yx!]] = B1
The di�cult part is to prove that the right hand side of these equalities iscontained in the left hand side. The opposite inclusion follows from simplemanipulations of the identities. For instance, here is a proof that the identityx � 1 implies x! = x!+1 . The identity x � 1 clearly implies x!+1 � x! .It follows that, for all n > 0, x!+n! � x!+1 � x! and by continuity, x! =limn!1x!+n! � x!+1 � x! , whence x! = x!+1 .

This former formulation is only appealing to people familiar with iden-tities, but there is a more attractive version of these results, also given in [29].(1) Every �nite J -trivial monoid is a quotient of an ordered monoid satis-fying the identity x � 1.(2) Every block group is a quotient of an ordered monoid satisfying theidentity x! � 1.(3) Every semigroup of B1 is a quotient of an ordered semigroup satisfyingthe identity x!yx! � x! .The �rst of these results was �rst proved by Straubing and Th�erien by a remark-able induction on the size of the monoid [35]. It would be very interesting to have
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a similar proof for the two other results. It is easy, however, to prove directly thethird result for powergroups, which are particular cases of block groups. Givena group G , denote by P 0(G) the monoid of all non-empty subsets of G undermultiplication. Then P 0(G) is naturally ordered by the relation � de�ned by

X � Y if and only if Y � X
The idempotents of P 0(G) are the subgroups of G and they all contain the trivialsubgroup f1g , which is the identity of P 0(G). Therefore X! � f1g for everyX 2 P 0(G) and thus (P 0(G);�) satis�es the identity x! � 1.

4. Decomposition theorems
Let us brie
y review some well-known facts of group theory. Kernels andgroup extensions are two central notions of this theory. Given a group morphism' : G ! H , the kernel of ' is the subgroup 1'�1 of G . Given three groupsG , H and K , G is said to be an extension of K by H (or an expansion (�) ofH by K ) if there exists a group morphism from G onto H whose kernel is K .Group expansions are intimately related to wreath products and to semidirectproducts. For instance, if G is an expansion of H by K , then G divides thewreath product K �H . Furthermore, if K and H are �nite groups whose orderare relatively prime, then G is a semidirect product of K by H : this is theSchur-Zassenhaus lemma.
It is tempting to develop a similar theory for semigroups, but it is a nontrivial task. We �rst consider a simple case, which is half-way between semigroupsand groups. Let N be a monoid and let G be group. It is natural to say thata monoid M is an expansion of G by N if there exists a surjective morphism' : M ! G such that 1'�1 = N . For instance, one may consider the monoidswhich are expansions of a group by a band (resp. a semilattice). In this case1'�1 is a submonoid of E(M) , the set of idempotents of M , and since ' mapsany idempotent onto 1, the equality 1'�1 = E(M) actually holds. In particularE(M) is a submonoid of M . Furthermore, if e and es are idempotent, thene' = (es)' = 1, whence s' = 1 and s 2 E(M). Thus E(M) is an unitarysubmonoid of M . Furthermore, M is E -dense: for every s 2 M , there existsan element t 2 M such that st; ts 2 E(M) (choose for t an arbitrary elementin g'�1 , where g = (s')�1 .) Thus M is E -unitary dense. This is actually acharacterization: a monoid is an expansion of a group by an idempotent monoidif and only if it is E -unitary dense. This result was proved for monoids withcommuting idempotents (or E -commutative monoids) in [20] and generalized in[3]. Note that we didn't make any assumption on the regularity of M .
Although their natural de�nition as expansions makes these monoidsworth to be studied, they were originally introduced for another purpose. De�nea covering to be a surjective morphism which is one-to-one on idempotents. It wasconjectured in [20] that every E -dense E -commutative monoid is covered by anE -unitary dense monoid. A version for �nite monoids was also proposed: every�nite E -commutative monoid is covered by a �nite E -unitary dense monoid.Both conjectures received a positive answer : the latter was proved by Ash[7] and the �rst one by Fountain [14]. Birget, Margolis and Rhodes [10], Ash[8], and Almeida, Pin, Weil [3] gave further extensions. It is convenient to

(�) Although it might be a little bit confusing to have a double terminology, Iam taking the risk of introducing the word \expansion", which is more adapted to thegeneralizations introduced below.
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summarize these results into a single statement with some optional propertieswritten between brackets:
First structure theorem Every [�nite] [E -commutative] [regular] E -densemonoid is covered by a [�nite] [E-commutative] [regular] E -unitary dense monoid.

By an E -dense monoid, we mean of course a monoid in which E(M) isa dense submonoid. Note that the density condition is rather weak: if E(M) isa submonoid of M , then M0 is always E -dense.
Let us return to the structure of an E -unitary dense monoid M . Wealready mentioned that M is expansion of a group by a band. Clearly, the bandhas to be E(M), but what about the group ? The group is the fundamental groupof M , denoted �1(M), and de�ned as the quotient of the free group F (M) withbasis M by the relations (s)(t) = (st) , for every s; t 2 M . One can show that�1(M) is the maximal quotient group of M . Then if �:M ! �1(M) denotes thenatural morphism, � is onto and 1��1 = E(M) . Therefore M is an expansionof �1(M) by E(M).
Our last characterization motivates the introduction of categories as ageneralization of monoids. We follow the presentation of [3]. Formally, a categoryC is given by

(a) a set Ob(C) of objects,
(b) for each pair (u; v) of objects, a set C(u; v) of arrows,
(c) for each triple (u; v; w) of objects, a mapping from C(u; v) � C(v; w)into C(u;w) which associates to each p 2 C(u; v) and q 2 C(v; w) thecomposition p+ q 2 C(u;w).
(d) for each object u , an arrow 0u such that, for each pair (u; v) of objects,for each p 2 C(u; v) and q 2 C(v; u), 0u + p = p and q + 0u = q .

The additive notation is used for convenience, but it does not imply commuta-tivity. Composition is assumed to be associative (when de�ned).
For each object u , C(u; u) is a monoid, called the local monoid of u .In particular a monoid can be considered as a category with exactly one object.A category is said to be locally idempotent (resp. locally commutative, etc.) ifall its local monoids are idempotent (resp. commutative, etc.). A category Cis regular if, for each arrow p 2 C(u; v) , there exists an arrow q 2 C(v; u) suchthat p+ q + p = p , and it is inverse if, for each arrow p 2 C(u; v) , there existsa unique arrow �p 2 C(v; u) such that p + �p + p = p and �p + p + �p = �p . It isconnected if C(u; v) 6= ; for each pair (u; v) of objects of C . The J partialorder is de�ned as in a semigroup : given two arrows p and q , p �J q if andonly if p = r + q + s for some arrows r and s . The other Green relations andthe corresponding equivalence classes are de�ned analogously.
A morphism ':C ! D between two categories C and D is given by amap ':Ob(C) ! Ob(D) and, for every u; v 2 Ob(C) , a map, also denoted 'from C(u; v) into D(u'; v') such that, for each pair (p; q) of consecutive arrows,p' + q' = (p + q)' and for each object u , 0u' = 0u' . An automorphism 'of a category C is de�ned as usual. An action of a group G on C is given bya group morphism from G into the group of automorphisms of C . In this casewe write gu (resp. gp) the result of the action of g on the object u (resp. thearrow p). Note the following identities:

(1) g(p+ q) = gp+ gq for all g 2 G , p 2 C(u; v) and q 2 C(v; w).
(2) (gh)p = g(hp) for all g; h 2 G and p 2 C(u; v) .

Whenever a group G acts on a category C , a quotient category C=G is de�ned,with object set Ob(C)=G , that is, the set of disjoint subsets of Ob(C) of the
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form Gu (u 2 Ob(C)), and with arrow sets

C=G(Gu;Gv) = fGp j p 2 C(u0; v0), u0 2 Gu; v0 2 Gvg
Composition of consecutive arrows Gp and Gq (that is, p 2 C(u; v) and q 2C(gv; w) for some objects u , v and w and some element g of G) is given by

Gp+Gq = G(p+ g�1q)
If a group G acts transitively without �xpoints on a category C , then thecategory C=G is a monoid and for each object u of C ,

Cu = f(p; g) j g 2 G; p 2 C(u; gu)g
is a monoid isomorphic to C=G for the multiplication de�ned by (p; g)(q; h) =(p+ gq; gh) .Let us come back to expansions of groups by monoids. Let G be groupand let ' : M ! G be a surjective morphism. The derived category of ' is thecategory C such that Ob(C) = G and, for u; v 2 G ,

C(u; v) = f(u; s; v) 2 G�M �G j u(s') = vg:
Composition is given by (u; s; v)+(v; t; w) = (u; st; w) . Then G acts transitivelywithout �xpoints on C and M is isomorphic (as a monoid) to C=G . This fact isthe key of the second main result of this section, also stated with some optionalproperties. The �rst version was proved in [20] and extensions were given in [10],[3] and [36].
Second structure theorem A [�nite] [E -commutative] [regular] E -monoid isE -unitary dense if and only if it is isomorphic to C=G where G is a group actingtransitively without �xpoints on some [�nite] [locally commutative] [regular]connected, locally idempotent category C .

The two structure theorems give a satisfying description of E -densemonoids. They cover important particular cases, especially in the regular case,since a regular E -commutative monoid is nothing else than an inverse monoidand a regular E -dense monoid is an orthodox monoid. One can also deriveMcAlister's P-theorem. Indeed, if G is a group acting transitively without�xpoints on a connected, locally commutative, inverse category C , then theinverse monoid C=G is isomorphic to a P-semigroup P (G;F;E), where F isthe partially ordered set of J -classes of C and E is a subsemilattice of Fisomorphic to E(C=G). Actually, if u is an object of C , one can take for E theset fJ 2 F j J \ C(u; u) 6= ;g . Then E is a semilattice isomorphic to C(u; u)(and to E(C=G)) and an order ideal of F . See [20] for more details.For �nite monoids, one can generalize further on the notion of expansionas follows. Let V be a variety of �nite semigroups and let M and N be monoids.A surjective morphism ' : M ! N is a V-morphism if, for every e 2 E(M) ,e'�1 2 V . A monoid M is a V-expansion of N if there exists a surjectiveV-morphism from M onto N . Given a variety of �nite monoids W , the varietyof �nite monoids generated by all V-expansions of a monoid of W is called theMal'cev product of V and W and is denoted V M
W .Given V and W , the computation of V M
W can sometimes be verydi�cult, but some recent results put some new light on this problem. The �rstbreakthrough was Ash's solution of Rhodes \Type II" conjecture [8]. A detailed
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account of Rhodes conjecture and its far reaching consequences can be found in[15], so we just mention the following consequence : if V is a decidable varietyof �nite monoids (that is, if there is an algorithm to decide membership in V fora given �nite monoid), then V M
G is also decidable. This result has a numberof interesting corollaries (see [15]). For instance:(1) If V is the variety of �nite semilattices, then V M
G is the variety of�nite monoids with commuting idempotents and is also the variety of�nite monoids generated by all �nite inverse monoids.(2) If V is the variety of �nite idempotent monoids (bands), then V M
Gis the variety of �nite monoids generated by all �nite orthodox monoids.(3) If V is the variety of �nite J -trivial monoids, then V M
G is the varietyof block groups.
P. Weil and the author recently introduced another powerful technique for com-puting Mal'cev products [28]. The idea is to �nd the identities de�ning V M
W ,given the identities de�ning V and W . Although the general result is a little bittoo technical to be stated here in extenso, some consequences are worth mention-ing. It is shown in particular that if V is a decidable variety of �nite semigroups,then V M
W is also decidable in the following cases(1) W is the variety of �nite nilpotent semigroups(2) W is the variety of �nite semilattices(3) W is the variety of �nite J -trivial monoidsIt is interesting to note that these results rely heavily on the structure of pro�nitesemigroups. In particular, a crucial step of the proof is a compactness argument.
As it is the case for groups, the Mal'cev product is sometimes related to thewreath product or to the semidirect product. For instance, an E -unitary inversemonoid is isomorphic to a submonoid of a semidirect product of a semilattice bya group. More precisely, if ' is a surjective morphism from an inverse monoidM onto a group G such that 1'�1 = E(M) , and if C is the derived categoryof C , then M is isomorphic to a subsemigroup of a semidirect product S � G ,where S is the semilattice of ideals of C under intersection [20]. It is not clearwhether this type of result can be generalized to the non regular case or to regularexpansions of groups by bands of a given variety of bands, although partial resultswere obtained by P. Jones and M. Szendrei.Given a variety of �nite semigroups V and a variety of �nite monoidsW , one denotes by V �W the variety of �nite monoids generated by all wreathproducts of the form M �N with M 2 V and N 2W . Almeida and Weil givea description of the free pro�nite semigroup of V �W [5] and provide identitiesde�ning V�W , given identities de�ning V and W [6]. For instance, the equalityV M
G = V �G holds if V is one of the following variety of �nite monoids:(1) aperiodic monoids.(2) semilattices(3) J -trivial monoidsAnother important tool for studying the relations between expansions and wreathproduct decompositions is again the derived category. Indeed, as it was shown byTilson [37], the use of the derived category is not limited to expansions of groupsby monoids. Consider now the more general situation of a surjective morphism' : M ! N , where M and N are monoids. One can mimic the constructiongiven above to de�ne a category C such that Ob(C) = N and, for all u; v 2 N ,

C(u; v) = f(u; s; v) 2 N �M �N j u(s') = vg:
Again, composition is given by (u; s; v) + (v; t; w) = (u; st; w) . Now the derived
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category D(') of ' is the quotient of C by the congruence � de�ned by

(u; s; v) � (u; t; v) if and only if ms = mt for all m 2 u'�1
Thus the derived category identi�es elements with the same action on each �beru'�1 . A few more de�nitions on categories are in order to state Tilson's theoremprecisely. A category C is a subcategory of a category D if there exists amorphism ' : C ! D which is injective on arrows (that is, for each pair ofobjects (u; v), the map from C(u; v) into D(u'; v') is injective). A categoryC is a quotient of a category D if there exists a morphism D ! C which isbijective on objects and surjective on arrows. Finally C divides D if C is aquotient of a subcategory of D . Tilson's derived category theorem [37] relatesexpansions to wreath products as follows
Derived Category Theorem Let M and N be monoids and let ' :M ! Nbe a surjective morphism. Then, for each monoid K such that D(') divides K ,M divides K �N .

Tilson's theorem can actually be stated in the more general setting ofrelational morphisms.
5. Conclusion

The three tools presented in this paper (pro�nite semigroups, orderedsemigroups and categories) share a common feature. All three can be viewed asextensions of the purely algebraic structure of semigroup, but none of them wasintroduced for the purpose of gratuitous generalization. Rather, they were simplyneeded to solve existing problems: this is actually a rather common phenomenonin mathematics and it would not be surprising if even more sophisticated con-structions were required in the future.
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