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I met Professor A.H. Clifford just once, in 1984. It was my first semigroup
conference in the USA and I felt very honored when he told me very kindly how
he enjoyed the way automata theory and semigroups mixed together. Ten years
later, it was again a great honor for me to participate to the Tulane conference
in his memory.

1. Introduction

Algebraic semigroup theory has made great strides in the recent years.
It is a remarkable fact that these new results did require the introduction of
some auxiliary structures. In this article, I would like to emphasize the role of
three of these tools: topology, partial orders and categories. The three parts are
relatively independent.

2. Identities and topology

The results presented in this section are a good illustration of the fol-
lowing quotation of Marshall Stone [34]: A cardinal principle of modern math-
ematical research may be stated as a maxim: “One must always topologize” ’.
Varieties of finite semigroups are a good example where Stone’s principle was
applied successfully.

Recall that a variety of semigroups is a class of semigroups closed un-
der taking subsemigroups, quotients and direct products. A wariety of finite
semigroups, or pseudovariety, is a class of finite semigroups closed under taking
subsemigroups, quotients and finite direct products.

It is a well known theorem of Birkhoff that varieties can be defined by
identities. Formally, an identity is an equality of the form v = v between
two elements of the free semigroup 7 on a countable number of generators
Y. A semigroup S satisfies an identity v = v if and only if up = vy for
every morphism ¢ : ¥T — §. For instance, the identity zy = yz defines
the variety of commutative semigroups and z = 2% defines the variety of bands.
Birkhoft’s theorem can be summarized by saying that each variety is an equational
class. It was an interesting question to know whether pseudovarieties could also
be defined by identities. The problem was solved by several authors but the
most satisfactory answer is due to Reiterman [31]. Reiterman’s theorem states
that pseudovarieties are also equational classes. The difference with Birkhoff’s
theorem lies in the definition of the identities. For Reiterman, an identity is also
a formal equality of the form v = v, but v and v are now elements of a certain

completion 37T of the free semigroup Y7 . The idea is actually quite simple. Let
us say that a finite semigroup S separates two words u,v € 7 if ugp # vy for
some morphism ¢ : ¥T — S. Now set, for u,v € A%,

r(u,v) = min{ |S| | S is a finite semigroup separating u and v }



and d(u,v) = 277" with the usual conventions min ) = +oo and 27 = 0.
One can verify that d is a metric for which two words are close if a large semigroup
is required to separate them. Now, (X1, d) is a metric space and It is its

completion. In particular, every element of S+ is the limit of some Cauchy
sequence of (X7, d). An important such limit is the w-power, which traditionally

designates the idempotent power of an element of a finite semigroup. If = € St
the sequence (:z:"l)nzo converges in 7 to an idempotent denoted z*. Note that

if 7: 3% — § is a continuous morphism onto a finite discrete semigroup S, then
x“7 1s equal to the unique idempotent power of x7.

Some more topology is required to fully understand Reiterman’s theorem.
We now consider only topological semigroups. In particular, as above, every finite
semigroup is considered as equipped with the discrete topology. A topological
semigroup S satisfies an identity u = v (where u,v € XA]"') if and only if up = vy
for every continuous morphism ¢ : St 5. Let (I, <) be a partially ordered set
and suppose that for every ¢,j € I, there exists & € I such that : < k and j < k.
Assume that for every ¢ € I, there is a finite semigroup S; and for every pair
(7,7) € I x I with ¢ < j, there is a morphism =;; : S; — S; such that =, ; is the
identity map for every ¢ € I andif ¢ <j <k, mp; = mp ;7. Then (Si,7;:)ijer
is called a projective system and its projective limit is the subsemigroup of | [, S
consisting of all elements s = (s;);es such that s;m;; = s; for every ¢+ < j. A
topological semigroup is profinite if it is a projective limit of finite semigroups.
One can show that a topological semigroup is profinite if and only if it is compact
and 0-dimensional (that is, every connected component is trivial). By extension,
a topological semigroup is called pro-V if it is a projective limit of semigroups of
V., or, equivalently, if it is profinite and if all its finite continuous homomorphic
images are in V. Pro-V semigroups form a pro-variety, that is, a class of profinite
semigroups closed under taking closed subsemigroups, continuous homomorphic
images and direct products. The definition of a pro-variety allows infinite direct
products and thus is very close to the original definition of a variety, with some
topological sugar (or spice?) added. Reiterman’s theorem can now be completed

as follows. Let V be a pseudovariety and let E be a set of identities (in XA]"')
defining V. Then the class of all profinite semigroups satisfying E is exactly the
class of pro-V semigroups. In other words, pro-varieties are equational classes.

Thus the core of Reiterman’s theorem is a topological extension of
Birkhoff’s theorem. Its application to pseudovarieties just shows the emerg-
ing part of the iceberg, since pseudovarieties are then considered as the finite
semigroups of a pro-variety.

Reiterman’s theorem suggests that most standard results on varieties
might be extended in some way to pseudovarieties. For instance, it is well known
that varieties have free objects. More precisely, if V is a variety and A is a
finite set, there exists an A-generated semigroup F4(V) of V, such that every
A-generated semigroup of V is a quotient of F4(V). This semigroup is unique
(up to an isomorphism) and is called the free semigroup of the variety V. How
to extend this result to pseudovarieties? Again the answer is “topologize!”. If V
is a pseudovariety, one can relativize to V the definition of r and d as follows:

rv(u,v) = min{ S| | S €V and S separates u and v }

and dv (u,v) = 27"v(®¥)  The function dvy (u,v) still satisfies the triangular
inequality and even the stronger inequality

dv (u,v) <max { dv(u,w), dv(w,v) }



but it is not a metric anymore because one can have dv(u,v) = 0 with
u # v: for instance, if 'V is the pseudovariety of commutative finite semigroups,
dy (zy,yx) = 0 since xy and yx cannot be separated by a commutative semi-
group. However, the relation ~v defined on AT by u ~v v if and only if
dv (u,v) = 0 is a congruence and dyv induces a metric on the quotient semi-
group A1 /~v . The completion of this metric space is a topological compact
semigroup FA(V), called the free pro-V semigroup. This semigroup is pro-V,
is generated by A as a topological semigroup (this just means that A"/~ is
dense in FA(V)) and satisfies the following universal properties:
(1) If o isamap from A into a pro-V semigroup 5, then ¢ induces a unique
continuous morphism & : FA(V) — S
(2) Every A-generated semigroup of V is a continuous homomorphic image
of FA(V) .
(3) Let S and T be pro-V semigroups. If o : F4(V) — S and ¢ : T — §
are continuous morphisms and if ¢ is onto, then there exists a continuous
morphism 7 : FA(V) — T such that 7o = 0.
One can actually extend this construction to the case where A is a profinite set,
that is a topological set which is a projective limit of finite sets [28]. This more
general setting is required in the study of the semidirect product [5, 6].

A more detailed presentation of Reiterman’s theorem can be found in [1,

2, 4, 38].

3. Ordered semigroups and Eilenberg’s theorem

An ordered semigroup (S, <) is a semigroup S equipped with a (partial)
stable order relation <: for every w,v,z € S, v < v implies ur < vz and
zu < xv. An order ideal of (S,<) is a subset I of S such that, if « <y
and y € I, then x € I. Morphisms, ordered subsemigroups, quotients, direct
products and (pseudo)varieties are defined in the natural way. Note that the free
ordered semigroup on a set A is just (AT,=), where AT is the free semigroup
on A.

The dual of an ordered semigroup (5, <) is the ordered semigroup S
equipped with the dual order <' defined by v <’ v if and only if v < u. The
class of all dual ordered semigroups of members of a (pseudo)variety of ordered
semigroups V is also a (pseudo)variety, called the dual of V and denoted V.

Ordered semigroups occurred recently in connection with language the-
ory [26]. The reader is referred to one of the books [12, 13, 18, 22] or to the
survey article [24] for an introduction to this theory. Recall that a variety of
languages 1s a class of recognizable languages closed under finite union, finite in-
tersection, complement, left and right quotients and inverse morphisms between
free semigroups. Eilenberg’s variety theorem gives a bijective correspondence
between varieties of finite semigroups and varieties of languages. However, cer-
tain important classes of recognizable languages occurring in language theory are
not closed under complement but are closed under the other operations defining
a variety of languages. This observation motivated the following definition: a
positive variety of languages is a class of recognizable languages closed under
finite union, finite intersection, left and right quotients and inverse morphisms
between free semigroups. The term “positive” is borrowed from formal logic,
where a positive formula 1s a formula without negation.

It turns out that Eilenberg’s variety theorem can be extended to positive
varieties. On the algebraic side, varieties of finite semigroups are replaced by
varieties of finite ordered semigroups. The first thing to do is to extend the



definition of recognizability and the second will be to generalize the notion of
syntactic semigroup.

Let (9,<) be an finite ordered semigroup and let n be a surjective
semigroup morphism from A" onto S, which can be considered as a morphism
of ordered semigroup from (A*,=) onto (S,<). A language L of A% is said
to be recognized by n if L = Pn~! for some order ideal P of S. Note that if
(T,<) recognizes L and (T,<) is a quotient of (S, <), then (5, <) recognizes
L. By extension, a language L is said to be recognized by (S, <) if there exists
a surjective morphism from A1 onto S that recognizes Q).

Let L a language of AT. One defines a stable quasiorder <j; and a
congruence relation ~7 on A1 by setting

v = v if and only if, for every x,y € A*, vvy € L implies zuy € L

u~p vif and only if u <7 v and v <p, u

The congruence ~ is called the syntactic congruence of L and the quasiorder
<y induces a stable order <; on S(L) = At/~p. The ordered semigroup
(S(L),<p) is called the syntactic ordered semigroup of L, the relation <j is
called the syntactic order of L and the canonical morphism 7 from AT onto
S(L) is called the syntactic morphism of L. The syntactic ordered semigroup
is the smallest ordered semigroup that recognizes L. More precisely, an ordered
semigroup (9, <) recognizes L if and only if (S(L), <p) is a quotient of (5, <).

If V is variety of finite ordered semigroups and A is a finite alphabet,
we denote by ATV the set of recognizable languages of AT which are recognized
by an ordered semigroup of V. Equivalently, ATV is the set of recognizable
languages of AT whose ordered syntactic semigroup belongs to V. It is shown
in [26] that the correspondence V +— V is a bijective correspondence between
varieties of finite ordered semigroups and positive varieties of languages. The
opposite correspondence is also easy to describe: with each positive variety of
languages is associated the variety of finite ordered semigroups generated by
all ordered syntactic semigroups of languages of V. A similar result holds if
languages are considered as subsets of the free monoid A*. Then one should
consider monoids and varieties of finite ordered monoids instead of semigroups
and varieties of finite semigroups.

We would like to illustrate this correspondence on three non-trivial ex-
amples. Other examples can be found for instance in [26] or [29]. It is convenient
to describe our examples by identities. Indeed, it was proved by Bloom [11] that
a Birkhoff’s theorem holds for varieties of ordered semigroups, if one considers
identities of the form v < v, with uw,v € ¥*. Similarly, a Reiterman’s theorem
holds for varieties of finite ordered semigroups [30]. Given a set E of identities of

the form u < v, with u,v € &1, one denotes by [E] the variety of finite ordered
semigroups which satisfy all the identities of E. Our three examples are the two
varieties of ordered monoids V; = [x < 1], V, = [¢¥ < 1] and the variety of
ordered semigroups V3 = [z¥yz“ < z¢].

Thus Vi consists of all finite ordered monoids (M, <) in which the
identity is the top element. Observe that this implies that M is J-trivial.
Indeed, if * <y, then * = ayb for some a,b € M. Now a <1, y <y, b <1
and thus @ = ayb < y. Thus, if © J y, then « <y and y < x, whence x = y.

Next V, consists of all finite ordered monoids (M, <) in which e < 1,
for every idempotent e € E(M). This condition too, imposes severe restrictions
on the algebraic structure of M. For instance, the argument above shows that
the submonoid of M generated by its idempotents is J -trivial. Finite monoids



satisfying this condition are called block groups. This terminology is justified in
[25], where several equivalent conditions are also given. For instance:

(1) Every R-class and every L-class contains at most one idempotent,

(2) For every regular D-class D of M, D° is a Brandt semigroup

Finally Vs consists of all finite semigroups (S5, <) in which ese < e, for
every idempotent e and every element s in S: this is equivalent to saying that
the “local” ordered monoids (eSe, <), for e € E(S), are in V;. In particular,
the local monoids are J -trivial, but we shall see later on that S satisfies an even
stronger condition.

Our three examples are defined by some rather natural conditions on
the order and the corresponding positive varieties of languages are also relatively
natural families. For every alphabet A, A*V; is the set of languages which
are finite union of languages of the form A*ay A*as ---ap A* where the a;’s are
letters of A. The languages of A*V, are finite union of languages of the form
Loay Ly ---ap L where the a;’s are letters and the L;’s are group languages
(that is, languages whose syntactic monoid is a finite group). There is an
obvious similarity between these two descriptions which is discussed in detail
in [29]. The languages of AtV are finite union of languages of the form
ugA*ur A* - up_1A%uy, where k> 0 and wug,...,u € A*.

These three results are a particular case of a much more general result
established in [29] but they will suffice to illustrate a typical back and forth
argument between semigroups and languages to obtain results of pure semigroup
theory. The idea is to make use of the natural relations between varieties of finite
semigroups and varieties of finite ordered semigroups.

If V is a variety of finite semigroups, the class of all finite ordered
semigroups of the form (S,<), where S € V., is a variety of finite ordered
semigroups, denoted V<. and called the wariety of finite ordered semigroups
associated with V. Conversely, given a variety of finite ordered semigroups W,
the class of all semigroups S such that (S, <) € W for some stable order < on S
is a variety of finite semigroups, called the variety of finite semigroups associated
with W. Now, for every variety of finite semigroups V, V is the variety of
finite semigroups associated with V<. But if W is a variety of finite ordered
semigroups, and if V is the variety of finite semigroups associated with W, then
V< is not in general equal to W. In fact, V< is equal to W\/W, the join of W
and its dual (that is, the smallest variety of finite ordered semigroups containing
W and its dual).

Now, if V is a variety of finite ordered monoids (resp. semigroups), one
can try to compute the associated variety of finite monoids (resp. semigroups)
according to the following plan:

Step 1 Characterize the positive variety of languages corresponding to V.

Step 2 Characterize the positive variety of languages corresponding to V.

Step 3 Characterize the positive variety of languages V corresponding to VVV.
Step 4 Characterize the variety of finite monoids corresponding to V.

Step 1 was discussed above for our examples Vi, V, or V3. Step 2 is easy:
taking the dual of a variety of ordered semigroups V corresponds to comple-

mentation at the language level. More precisely, if V (resp. )v/) is the positive

variety corresponding to V (resp. to \V/'), then, for each alphabet A, ATV is the
class of all complements in AT of the languages of ATV . Step 3 is also simple:

W =VVYV is not only a positive variety, but also a variety of languages, and for

each alphabet A, ATW is the boolean algebra generated by ATV.



For the last step, we consider our three examples separately. ATW), is
the set of languages which are boolean combinations of languages of the form
A*a1A%ay -+ - ap A* where the a;’s are letters of A. It 1s a well-known result of
Simon [33] that these languages correspond to the variety J of finite J -trivial
monoids, which can be defined by the identities

(zy)“z = (zy)* = y(xy)”

The languages of A*W, are boolean combinations of languages of the form
Loay Ly - - - ag Ly where the a;’s are letters and the L;’s are group languages.
These languages correspond to the variety BG of block groups [19, 25, 2§],
defined by the identities

Finally, the languages of ATWj are boolean combination of languages of the form
ugA*ug A* - up_1 A*uyp, where k& > 0 and ug,...,ur € A*. These languages
are known as languages of “dot-depth one” in the literature [13, 22, 29] and
the corresponding variety of finite semigroups is denoted Bj (the “B” refers to
Brzozowski who introduced the dot-depth hierarchy, and the 1 to the first level
of this hierarchy). A characterization of By was obtained by Knast [16, 17] and
relies on the notion of graph of a finite semigroup. Given a semigroup S, form a
graph G(S) as follows: the vertices are the idempotents of S and the edges from
e to f are the elements of the form esf. Then a finite semigroup is in By if its
graph satisfies the following condition : if e and f are two vertices, p and r edges
from e to f, and ¢ and s edges from f to e, then (pg)“ps(rs)* = (pg)*“(rs)~.
Thus By is defined by the identities

Our computation can be summarized into the following three equations

[+ <1] V1 <a] = [(zy)“z = (xy)* = y(zy)*]
[+ < 1]V 1 <2¥] = [(«%y*)*2* = («%y*)” = y*(z*y*)*]

The difficult part is to prove that the right hand side of these equalities is
contained in the left hand side. The opposite inclusion follows from simple
manipulations of the identities. For instance, here is a proof that the identity
r < 1 implies z% = 2¥t!. The identity = < 1 clearly implies z“t! < 2v.
It follows that, for all n > 0, z*T™ < %! < 2% and by continuity, z% =

. 1
lim T < 2¥t! < 2¥ whence 2% = ¢¥t!.
n—o0

This former formulation is only appealing to people familiar with iden-
tities, but there is a more attractive version of these results, also given in [29].
(1) Every finite J -trivial monoid is a quotient of an ordered monoid satis-
fying the identity = < 1.
(2) Every block group is a quotient of an ordered monoid satisfying the
identity x« <1.
(3) Every semigroup of By is a quotient of an ordered semigroup satisfying
the identity z“yz* < x%.
The first of these results was first proved by Straubing and Thérien by a remark-
able induction on the size of the monoid [35]. It would be very interesting to have



a similar proof for the two other results. It is easy, however, to prove directly the
third result for powergroups, which are particular cases of block groups. Given
a group G, denote by P'(G) the monoid of all non-empty subsets of G under
multiplication. Then P'(G) is naturally ordered by the relation < defined by

X<Yifandonlyif V¥ CX

The idempotents of P'(G) are the subgroups of G and they all contain the trivial
subgroup {1}, which is the identity of P'(G). Therefore X« < {1} for every
X € P(G) and thus (P'(G), <) satisfies the identity z* < 1.

4. Decomposition theorems

Let us briefly review some well-known facts of group theory. Kernels and
group extensions are two central notions of this theory. Given a group morphism
w1 G — H, the kernel of ¢ is the subgroup 1p~1 of G. Given three groups
G, H and K, G is said to be an extension of I by H (or an ezpansion™ of
H by K) if there exists a group morphism from G onto H whose kernel is K.
Group expansions are intimately related to wreath products and to semidirect
products. For instance, if G is an expansion of H by K, then G divides the
wreath product K o H. Furthermore, if K and H are finite groups whose order
are relatively prime, then G is a semidirect product of K by H: this is the
Schur-Zassenhaus lemma.

It is tempting to develop a similar theory for semigroups, but it is a non
trivial task. We first consider a simple case, which is half-way between semigroups
and groups. Let N be a monoid and let G be group. It is natural to say that
a monoid M is an ezpansion of G by N if there exists a surjective morphism
@ : M — G such that 1¢~! = N. For instance, one may consider the monoids
which are expansions of a group by a band (resp. a semilattice). In this case
1o~ ! is a submonoid of E(M), the set of idempotents of M, and since ¢ maps
any idempotent onto 1, the equality 1p~! = E(M) actually holds. In particular
E(M) is a submonoid of M. Furthermore, if ¢ and es are idempotent, then
ep = (es)p = 1, whence sp = 1 and s € E(M). Thus E(M) is an unitary
submonoid of M. Furthermore, M is E-dense: for every s € M, there exists
an element t € M such that st,ts € E(M) (choose for ¢ an arbitrary element
in go~!, where ¢ = (sp)™'.) Thus M is E-unitary dense. This is actually a
characterization: a monoid is an expansion of a group by an idempotent monoid
if and only if it is E-unitary dense. This result was proved for monoids with
commuting idempotents (or E -commutative monoids) in [20] and generalized in
[3]. Note that we didn’t make any assumption on the regularity of M .

Although their natural definition as expansions makes these monoids
worth to be studied, they were originally introduced for another purpose. Define
a covering to be a surjective morphism which is one-to-one on idempotents. It was
conjectured in [20] that every E-dense E-commutative monoid is covered by an
FE -unitary dense monoid. A version for finite monoids was also proposed: every
finite EF-commutative monoid is covered by a finite F-unitary dense monoid.
Both conjectures received a positive answer : the latter was proved by Ash
[7] and the first one by Fountain [14]. Birget, Margolis and Rhodes [10], Ash

[8], and Almeida, Pin, Weil [3] gave further extensions. It is convenient to

(%) Although it might be a little bit confusing to have a double terminology, 1
am taking the risk of introducing the word “expansion”, which is more adapted to the
generalizations introduced below.



summarize these results into a single statement with some optional properties
written between brackets:

First structure theorem Every [finite] [ E-commutative| [regular] E-dense
monoid is covered by a [finite] [E-commutative| [regular] E-unitary dense monoid.

By an E-dense monoid, we mean of course a monoid in which E(M) is
a dense submonoid. Note that the density condition is rather weak: if E(M) is
a submonoid of M, then M is always E-dense.

Let us return to the structure of an FE-unitary dense monoid M. We
already mentioned that M is expansion of a group by a band. Clearly, the band
has to be E(M ), but what about the group 7 The group is the fundamental group
of M, denoted m1(M), and defined as the quotient of the free group F(M) with
basis M by the relations (s)(t) = (st), for every s, € M. One can show that
71 (M) is the maximal quotient group of M. Then if 7: M — m1(M) denotes the
natural morphism, 7 is onto and 17~! = E(M). Therefore M is an expansion
of m (M) by E(M).

Our last characterization motivates the introduction of categories as a
generalization of monoids. We follow the presentation of [3]. Formally, a category
C' is given by

(a) a set Ob(C') of objects,

(b) for each pair (u,v) of objects, a set C(u,v) of arrows,

(¢) for each triple (u,v,w) of objects, a mapping from C(u,v) x C(v,w)
into C(u,w) which associates to each p € C(u,v) and ¢ € C(v,w) the
composition p + ¢ € C(u,w).

(d) for each object u, an arrow 0, such that, for each pair (u,v) of objects,
for each p € C(u,v) and ¢ € C(v,u), 0, +p=p and ¢+ 0, = q.

The additive notation is used for convenience, but it does not imply commuta-
tivity. Composition is assumed to be associative (when defined).

For each object u, C(u,u) is a monoid, called the local monoid of w.
In particular a monoid can be considered as a category with exactly one object.
A category is said to be locally tdempotent (resp. locally commutative, ete.) if
all its local monoids are idempotent (resp. commutative, etc.). A category C
is regular if, for each arrow p € C(u,v), there exists an arrow ¢ € C(v,u) such
that p+ ¢ + p = p, and it is inverse if, for each arrow p € C(u,v), there exists
a unique arrow p € C(v,u) such that p+p+p=p and p+p+p=p. It is
connected if C(u, v) # () for each palr (u,v) of objects of C'. The J partial
order is defined as in a semigroup : given two arrows p and ¢, p <7 ¢ if and
only if p = r 4+ ¢ + s for some arrows r and s. The other Green relations and
the corresponding equivalence classes are defined analogously.

A morphism @:C — D between two categories C' and D is given by a
map ¢: 0b(C) — Ob(D) and, for every u,v € Ob(C), a map, also denoted ¢
from C(u,v) into D(up,ve) such that, for each pair (p, ¢) of consecutive arrows,
Py +qp = (p+ ¢)p and for each object u, 0,9 = 04,. An automorphism ¢
of a category C' is defined as usual. An action of a group G on C is given by
a group morphism from G into the group of automorphisms of C'. In this case
we write gu (resp. gp) the result of the action of ¢ on the object u (resp. the
arrow p). Note the following identities:

(1) g(p+q)=gp+gq forall g € G, p € C(u,v) and ¢ € C(v,w).

(2) (gh)p = g(hp) for all g,h € G and p € C(u,v).
Whenever a group G acts on a category C', a quotient category C'/G is defined,
with object set Ob(C)/G, that is, the set of disjoint subsets of Ob(C) of the



form Gu (u € Ob(C)), and with arrow sets

C/G(Gu,Gv) ={Gp|pe C(u',v"),u' € Gu,v' € Gv}

Composition of consecutive arrows Gp and Gq (that is, p € C(u,v) and ¢ €
C(gv,w) for some objects u, v and w and some element ¢ of G) is given by

Gp+Gqg=Glp+g'q

If a group G acts transitively without fixpoints on a category C', then the
category C'/G is a monoid and for each object u of C,

Cu={(p,9) |lg€G peClugu)}

is a monoid isomorphic to C/G for the multiplication defined by (p,g)(q,h) =
(p+9q.9h).
Let us come back to expansions of groups by monoids. Let G be group

and let ¢ : M — G be a surjective morphism. The derived category of ¢ is the
category C such that Ob(C') = G and, for u,v € G,

Clu,v) ={(u,s,v) € Gx M x G| u(sp)=v}.

Composition is given by (u,s,v)+(v,t,w) = (u,st,w). Then G acts transitively
without fixpoints on C' and M is isomorphic (as a monoid) to C/G. This fact is
the key of the second main result of this section, also stated with some optional

properties. The first version was proved in [20] and extensions were given in [10],

[3] and [36].

Second structure theorem A [finite] [ E-commutative] [regular] E-monoid is
E -unitary dense if and only if it is isomorphic to C'/G where G is a group acting
transitively without fixpoints on some [finite] [locally commutative| [regular]
connected, locally idempotent category C'.

The two structure theorems give a satisfying description of FE-dense
monoids. They cover important particular cases, especially in the regular case,
since a regular E-commutative monoid is nothing else than an inverse monoid
and a regular E-dense monoid is an orthodox monoid. One can also derive
McAlister’s P-theorem. Indeed, if G is a group acting transitively without
fixpoints on a connected, locally commutative, inverse category C', then the
inverse monoid C/G is isomorphic to a P-semigroup P(G, F, E), where F is
the partially ordered set of J-classes of C' and E is a subsemilattice of F
isomorphic to E(C/G). Actually, if u is an object of C', one can take for E the
set {J € F|JNC(u,u)# 0}. Then E is a semilattice isomorphic to C(u,u)
(and to E(C/G)) and an order ideal of F. See [20] for more details.

For finite monoids, one can generalize further on the notion of expansion
as follows. Let V be a variety of finite semigroups and let M and N be monoids.
A surjective morphism ¢ : M — N is a V-morphism if, for every e € E(M),
ep™! € V. A monoid M is a V-ezpansion of N if there exists a surjective
V-morphism from M onto N. Given a variety of finite monoids W, the variety
of finite monoids generated by all V-expansions of a monoid of W is called the
Mal’cev product of V and W and is denoted V ) W..

Given V and W, the computation of V & W can sometimes be very
difficult, but some recent results put some new light on this problem. The first
breakthrough was Ash’s solution of Rhodes “Type II” conjecture [8]. A detailed



account of Rhodes conjecture and its far reaching consequences can be found in
[15], so we just mention the following consequence : if V is a decidable variety
of finite monoids (that is, if there is an algorithm to decide membership in V for
a given finite monoid), then V @ G is also decidable. This result has a number
of interesting corollaries (see [15]). For instance:

(1) If V is the variety of finite semilattices, then V & G 1is the variety of
finite monoids with commuting idempotents and is also the variety of
finite monoids generated by all finite inverse monoids.

(2) If V is the variety of finite idempotent monoids (bands), then V & G
is the variety of finite monoids generated by all finite orthodox monoids.

(3) If V is the variety of finite 7 -trivial monoids, then V &) G is the variety
of block groups.

P. Weil and the author recently introduced another powerful technique for com-
puting Mal’cev products [28]. The idea is to find the identities defining V. &) W,
given the identities defining V and W. Although the general result is a little bit
too technical to be stated here in extenso, some consequences are worth mention-
ing. It is shown in particular that if V is a decidable variety of finite semigroups,
then V &) W is also decidable in the following cases

(1) W is the variety of finite nilpotent semigroups

(2) W is the variety of finite semilattices

(3) W is the variety of finite J -trivial monoids
It is interesting to note that these results rely heavily on the structure of profinite
semigroups. In particular, a crucial step of the proof is a compactness argument.

As it is the case for groups, the Mal’cev product is sometimes related to the
wreath product or to the semidirect product. For instance, an E-unitary inverse
monoid is isomorphic to a submonoid of a semidirect product of a semilattice by
a group. More precisely, if ¢ is a surjective morphism from an inverse monoid
M onto a group G such that 1p~! = E(M), and if C is the derived category
of C', then M 1is isomorphic to a subsemigroup of a semidirect product S * G,
where S is the semilattice of ideals of C' under intersection [20]. It is not clear
whether this type of result can be generalized to the non regular case or to regular
expansions of groups by bands of a given variety of bands, although partial results
were obtained by P. Jones and M. Szendrei.
Given a variety of finite semigroups V and a variety of finite monoids

W . one denotes by V « W the variety of finite monoids generated by all wreath
products of the form M o N with M € V and N € W. Almeida and Weil give
a description of the free profinite semigroup of V « W' [5] and provide identities
defining VW | given identities defining V and W [6]. For instance, the equality
V M G =V xG holds if V is one of the following variety of finite monoids:

(1) aperiodic monoids.

(2) semilattices

(3) J-trivial monoids
Another important tool for studying the relations between expansions and wreath
product decompositions is again the derived category. Indeed, as it was shown by
Tilson [37], the use of the derived category is not limited to expansions of groups
by monoids. Consider now the more general situation of a surjective morphism
¢ : M — N, where M and N are monoids. One can mimic the construction
given above to define a category C such that Ob(C) = N and, for all u,v € N,

Clu,v) ={(u,s,v) € N x M x N | u(sp) =v}.

Again, composition is given by (u,s,v)+ (v,t,w) = (u, st,w). Now the derived



category D(p) of ¢ is the quotient of C' by the congruence ~ defined by

(u,s,v) ~ (u,t,v) if and only if ms = mt for all m € up™!

Thus the derived category identifies elements with the same action on each fiber
uc,o_l .

A few more definitions on categories are in order to state Tilson’s theorem
precisely. A category C' is a subcategory of a category D if there exists a
morphism ¢ : C — D which is injective on arrows (that is, for each pair of
objects (u,v), the map from C(u,v) into D(up,vp) is injective). A category
C' 1s a quotient of a category D if there exists a morphism D — C which is
bijective on objects and surjective on arrows. Finally C divides D if C is a
quotient of a subcategory of D. Tilson’s derived category theorem [37] relates
expansions to wreath products as follows

Derived Category Theorem Let M and N be monoids and let ¢ : M — N
be a surjective morphism. Then, for each monoid K such that D(y) divides K,
M divides K o N.

Tilson’s theorem can actually be stated in the more general setting of
relational morphisms.

5. Conclusion

The three tools presented in this paper (profinite semigroups, ordered
semigroups and categories) share a common feature. All three can be viewed as
extensions of the purely algebraic structure of semigroup, but none of them was
introduced for the purpose of gratuitous generalization. Rather, they were simply
needed to solve existing problems: this is actually a rather common phenomenon
in mathematics and it would not be surprising if even more sophisticated con-
structions were required in the future.
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