On two combinatorial problems arising from automata theory

Jean-Éric Pin
LITP, CNRS and Université Paris 6 (France)

Abstract

We present some partial results on the following conjectures arising from automata theory. The first conjecture is the triangle conjecture due to Perrin and Schützenberger. Let $A=\{a, b\}$ be a two-letter alphabet, d a positive integer and let $B_{d}=\left\{a^{i} b a^{j} \mid 0 \leqslant i+j \leqslant d\right\}$. If $X \subset B_{d}$ is a code, then $|X| \leqslant d+1$. The second conjecture is due to Cerný and the author. Let \mathcal{A} be an automaton with n states. If there exists a word of rank $\leqslant n-k$ in \mathcal{A}, there exists such a word of length $\leqslant k^{2}$.

1 Introduction

The theory of automata and formal langauges provides many beautiful combinatorial results and problems which, I feel, ought to be known. The book recently published: Combinatorics on words, by Lothaire [8], gives many examples of this.

In this paper, I present two elegant combinatorial conjectures which are of some importance in automata theory. The first one, recently proposed by Perrin and Schützenberger [9], was originally stated in terms of coding theory. Let $A=\{a, b\}$ be a two-letter alphabet and let A^{*} be the free monoid generated by A. Recall that a subset C of A^{*} is a code whenever the submonoid of A^{*} generated by C is free with base C; i.e., if the relation $c_{1} \cdots c_{p}=c_{1}^{\prime} \cdots c^{\prime} q$, where $c_{1}, \ldots, c_{p}, c_{1}^{\prime}, \ldots, c_{q}^{\prime}$ are elements of C implies $p=q$ and $c_{i}=c_{i}^{\prime}$ for $1 \leqslant i \leqslant p$. Set, for any $d>0, B_{d}=\left\{a^{i} b a^{j} \mid 0 \leqslant i+j \leqslant d\right\}$. One can now state the following conjecture:

The triangle conjecture. Let $d>0$ and $X \subset B_{d}$. If X is a code, then $|X| \leqslant d+1$.
The term "The triangle conjecture" originates from the following construction: if one represents every word of the form $a^{i} b a^{j}$ by a point $(i, j) \in \mathbb{N}^{2}$, the set B_{d} is represented by the triangle $\left\{(i, j) \in \mathbb{N}^{2} \mid 0 \leqslant i+j \leqslant d\right\}$. The second conjecture was originally stated by Cerný (for $k=n-1$) [3] and extended by the author. Recall that a finite automaton \mathcal{A} is a triple (Q, A, δ), where Q is a finite set (called the set of states), A is a finite set (called the alphabet) and $\delta: Q \times A \rightarrow Q$ is a map. Thus δ defines an action of each letter of A on Q. For simplicity, the action of the letter a on the state q is usually denoted by $q a$. This action can be extended to A^{*} (the free monoid on A) by the associativity rule

$$
(q w) a=q(w a) \text { for all } q \in Q, w \in A^{*}, a \in A
$$

Thus each word $w \in A^{*}$ defines a map from Q to Q and the rank of w in \mathcal{A} is the integer $\operatorname{Card}\{q w \mid q \in Q\}$.

One can now state the following
Conjecture (C). Let \mathcal{A} be an automaton with n states and let $0 \leqslant k \leqslant n-1$. If there exists a word of rank $\leqslant n-k$ in \mathcal{A}, there exists such a word of length $\leqslant k^{2}$.

2 The triangle conjecture

I shall refer to the representation of X as a subset of the triangle $\left\{(i, j) \in \mathbb{N}^{2} \mid 0 \leqslant\right.$ $i+j \leqslant d\}$ to describe some properties of X. For example, " X has at most two columns occupied" means that there exist two integers $0 \leqslant i_{1}<i_{2}$ such that X is contained in $a^{i_{1}} b a^{*} \cup a^{i_{2}} b a^{*}$.

Only a few partial results are known on the triangle conjecture. First of all the conjecture is true for $d \leqslant 9$; this result has been obtained by a computer, somewhere in Italy.

In [5], Hansel computed the number t_{n} of words obtained by concatenation of n words of B_{d}. He deduced from this the following upper bound for $|X|$.

Theorem 2.1 Let $X \subset B_{d}$. If X is a code, then $|X| \leqslant(1+(1 / \sqrt{2}))(d+1)$.
Perrin and Schützenberger proved the following theorem in [9].
Theorem 2.2 Assume that the projections of X on the two components are both equal to the set $\{0,1, \ldots, r\}$ for some $r \leqslant d$. If X is a code, then $|X| \leqslant r+1$.

Two further results have been proved by Simon and the author [15].
Theorem 2.3 Let $X \subset B_{d}$ be a set having at most two rows occupied. If X is a code, then $|X| \leqslant d+1$.

Theorem 2.4 Assume there is exactly one column of $X \subset B_{d}$ with two points or more. If X is a code, then $|X| \leqslant d+1$.

Corollary 2.5 Assume that all columns of X are occupied. If X is a code, then $|X| \leqslant d+1$.

Proof. Indeed assume that $|X|>d+1$. Then one of the columns of X has two points or more. Thus one can find a set $Y \subset X$ such that: (1) all columns but one of Y contain exactly one point; (2) the exceptional column contains two points. Since $|Y|>d+1, Y$ is a non-code by Theorem 2.4. Thus X is a non-code.

Of course statements 2.3, 2.4, 2.5 are also true if one switches "row" and "column".

3 A conjecture on finite automata

We first review some results obtained for Conjecture (C) in the particular case $k=n-1$: "Let \mathcal{A} be an automaton with n states containing a word of rank 1 . Then there exists such a word of length $\leqslant(n-1)^{2}$."

First of all the bound $(n-1)^{2}$ is sharp. In fact, let $\mathcal{A}_{n}=(Q,\{a, b\}, \delta)$, where $Q=\{0,1, \ldots, n-1\}, i a=i$ and $i b=i+1$ for $i \neq n-1$, and $(n-1) a=(n-1) b=0$.

Then the word $\left(a b^{n-1}\right)^{n-2} a$ has rank 1 and length $(n-1)^{2}$ and this is the shortest word of rank 1 (see [3] or [10] for a proof).

Moreover, the conjecture has been proved for $n=1,2,3,4$ and the following upper bounds have been obtained

$$
\begin{array}{ll}
2^{n}-n-1 & (\text { Černý [2], 1964) } \\
\frac{1}{2} n^{3}-\frac{3}{2} n^{2}+n+1 & (\text { Starke }[16,17], 1966) \\
\frac{1}{2} n^{3}-n^{2}+\frac{n}{2} & (\text { Kohavi [6], 1970) } \\
\frac{1}{3} n^{3}-\frac{3}{2} n^{2}+\frac{25}{6} n-4 & \text { (Černý, Pirická et Rosenauerová [4], 1971) } \\
\frac{7}{27} n^{3}-\frac{17}{18} n^{2}+\frac{17}{6} n-3 & (\text { Pin [11], 1978) }
\end{array}
$$

For the general case, the bound k^{2} is also the best possible (see [10]) and the conjecture has been proved for $k=0,1,2,3$ [10]. The best known upper bound was

$$
\frac{1}{3} k^{3}-\frac{1}{3} k^{2}+\frac{13}{6} k-1[11]
$$

We prove here some improvements of these results. We first sketch the idea of the proof. Let $\mathcal{A}=(Q, A, \delta)$ be an automaton with n states. For $K \subset Q$ and $w \in A^{*}$, we shall denote by $K w$ the set $\{q w \mid q \in K\}$. Assume there exists a word of rank $\leqslant n-k$ in \mathcal{A}. Since the conjecture is true for $k \leqslant 3$, one can assume that $k \geqslant 4$. Certainly there exists a letter a of rank $\neq n$. (If not, all words define a permutation on Q and therefore have rank n). Set $K_{1}=Q a$. Next look for a word m_{1} (of minimal length) such that $K_{2}=K_{1} m_{1}$ satisfies $\left|K_{2}\right|<\left|K_{1}\right|$. Then apply the same procedure to K_{2}, etc. until one of the $\mid K_{i}$'s satisfies $\left|K_{i}\right| \leqslant n-k$:

$$
Q \xrightarrow{a} K_{1} \xrightarrow{m_{1}} K_{2} \xrightarrow{m_{2}} \quad \cdots K_{r-1} \xrightarrow{m_{r-1}} K_{r} \quad\left|K_{r}\right| \leqslant n-k
$$

Then $a m_{1} \cdots m_{r-1}$ has rank $\leqslant n-k$.
The crucial step of the procedure consists in solving the following problem:
Problem P. Let $\mathcal{A}=(Q, A, \delta)$ be an automaton with n states, let $2 \leqslant m \leqslant n$ and let K be an m-subset of Q. Give an upper bound of the length of the shortest word w (if it exists) such that $|K w|<|K|$.

There exist some connections between Problem P and a purely combinatorial Problem P'.

Problem P'. Let Q be an n-set and let s and t be two integers such that $s+t \leqslant n$. Let $\left(S_{i}\right)_{1 \leqslant i \leqslant p}$ and $\left(T_{i}\right)_{1 \leqslant i \leqslant p}$ be subsets of Q such that
(1) For $1 \leqslant i \leqslant p,\left|S_{i}\right|=s$ and $\left|T_{i}\right|=t$.
(2) For $1 \leqslant i \leqslant p, S_{i} \cap T_{i}=\emptyset$.
(3) For $1 \leqslant j<i \leqslant p, S_{j} \cap T_{i}=\emptyset$.

Find the maximum value $p(s, t)$ of p.
We conjecture that $p(s, t)=\binom{s+t}{s}=\binom{s+t}{t}$. Note that if (3) is replaced by
(3') For $1 \leqslant i \neq j \leqslant p, S_{i} \cap T_{j}=\emptyset$.
then the conjecture is true (see Berge [1, p. 406]).
We now state the promised connection between Problems P and P'.
Proposition 3.1 Let $\mathcal{A}=(Q, A, \delta)$ be an automaton with n states, let $0 \leqslant s \leqslant n-2$ and let K be an $(n-s)$-subset of Q. If there exists a word w such that $|K w|<|K|$, one can choose w with length $\leqslant p(s, 2)$.

Proof. Let $w=a_{1} \cdots a_{p}$ be a shortest word such that $|K w|<|K|=n-s$ and define $K_{1}=K, K_{2}=K_{1} a_{1}, \ldots, K_{p}=K_{p-1} a_{p-1}$. Clearly, an equality of the form $\left|K_{i}\right|=\left|K a_{1} \cdots a_{i}\right|<|K|$ for some $i<p$ is inconsistent with the definition of w. Therefore $\left|K_{1}\right|=\left|K_{2}\right|=\cdots=\left|K_{p}\right|=(n-s)$. Moreover, since $\left|K_{p} a_{p}\right|<\left|K_{p}\right|, K_{p}$ contains two elements x_{p} and y_{p} such that $x_{p} a_{p}=y_{p} a_{p}$.

Define 2-sets $T_{i}=\left\{x_{i}, y_{i}\right\} \subset K_{i}$ such that $x_{i} a_{i}=x_{i+1}$ and $y_{i} a_{i}=y_{i+1}$ for $1 \leqslant i \leqslant$ $p-1$ (the T_{i} are defined from $T_{p}=\left\{x_{p}, y_{p}\right\}$). Finally, set $S_{i}=Q \backslash K_{i}$. Thus we have
(1) For $1 \leqslant i \leqslant p,\left|S_{i}\right|=s$ and $\left|T_{i}\right|=2$.
(2) For $1 \leqslant i \leqslant p, S_{i} \cap T_{i}=\emptyset$.

Finally assume that for some $1 \leqslant j<i \leqslant p, S_{i} \cap T_{i}=\emptyset$, i.e., $\left\{x_{i}, y_{i}\right\} \subset K_{i}$. Since

$$
x_{i} a_{i} \cdots a_{p}=y_{i} a_{i} \cdots a_{p}
$$

it follows that

$$
\left|K a_{1} \cdots a_{j-1} a_{i} \cdots a_{p}\right|=\left|K_{j} a_{i} \cdots a_{p}\right|<n-s
$$

But the word $a_{1} \cdots a_{j-1} a_{i} \cdots a_{p}$ is shorter that w, a contradiction.
Thus the condition (3), for $1 \leqslant j<i \leqslant p, S_{j} \cap T_{i} \neq \emptyset$, is satisfied, and this concludes the proof.

I shall give two different upper bounds for $p(s)=p(2, s)$.

Proposition 3.2

(1) $p(0)=1$,
(2) $p(1)=3$,
(3) $p(s) \leqslant s^{2}-s+4$ for $s \geqslant 2$.

Proof. First note that the S_{i} 's $\left(T_{i}\right.$'s) are all distinct, because if $S_{i}=S_{j}$ for some $j<i$, then $S_{i} \cap T_{i}=\emptyset$ and $S_{i} \cap T_{j} \neq \emptyset$, a contradiction.

Assertion (1) is clear.
To prove (2) assumet that $p(1)>3$. Then, since $T_{4} \cap S_{1} \neq \emptyset, T_{4} \cap S_{2} \neq \emptyset, T_{4} \cap S_{3} \neq \emptyset$, two of the three 1-sets S_{1}, S_{2}, S_{3} are equal, a contradiction.

On the other hand, the sequence $S_{1}=\left\{x_{1}\right\}, S_{2}=\left\{x_{2}\right\}, S_{3}=\left\{x_{3}\right\}, T_{1}=\left\{x_{2}, x_{3}\right\}$, $T_{2}=\left\{x_{1}, x_{3}\right\}, T_{3}=\left\{x_{1}, x_{2}\right\}$ satisfies the conditions of Problem P'. Thus $p(1)=3$.

To prove (3) assume at first that $S_{1} \cap S_{2}=\emptyset$ and consider a 2-set T_{i} with $i \geqslant 4$. Such a set meets S_{1}, S_{2} and S_{3}. Since S_{1} and S_{2} are disjoint sets, T_{i} is composed as follows:

- either an element of $S_{1} \cap S_{3}$ with an element of $S_{2} \cap S_{3}$,
- or an element of $S_{1} \cap S_{3}$ with an element of $S_{2} \backslash S_{3}$,
- or an element of $S_{1} \backslash S_{3}$ with an element of $S_{2} \cap S_{3}$.

Therefore

$$
\begin{aligned}
p(s)-3 & \leqslant\left|S_{1} \cap S_{3}\right|\left|S_{2} \cap S_{3}\right|+\left|S_{1} \cap S_{3}\right|\left|S_{2} \backslash S_{3}\right|+\left|S_{1} \backslash S_{3}\right|\left|S_{2} \cap S_{3}\right| \\
& =\left|S_{1} \cap S_{3}\right|\left|S_{2}\right|+\left|S_{1}\right|\left|S_{2} \cap S_{3}\right|-\left|S_{1} \cap S_{3}\right|\left|S_{2} \cap S_{3}\right| \\
& =s\left(\left|S_{1} \cap S_{3}\right|+\left|S_{2} \cap S_{3}\right|\right)-\left|S_{1} \cap S_{3}\right|\left|S_{2} \cap S_{3}\right|
\end{aligned}
$$

Since S_{1}, S_{2}, S_{3} are all distinct, $\left|S_{1} \cap S_{3}\right| \leqslant s-1$. Thus if $\left|S_{1} \cap S_{3}\right|=0$ or $\left|S_{2} \cap S_{3}\right|=0$ it follows that

$$
p(s) \leqslant s(s-1)+3=s^{2}-s+3
$$

If $\left|S_{1} \cap S_{3}\right| \neq 0$ and $S_{2} \cap S_{3} \mid \neq 0$, one has

$$
\left|S_{1} \cap S_{3}\right|\left|S_{2} \cap S_{3}\right| \geqslant\left|S_{1} \cap S_{3}\right|\left|S_{2} \cap S_{3}\right|-1
$$

and therefore:

$$
p(s) \leqslant 3+(s-1)\left(\left|S_{1} \cap S_{3}\right|+\left|S_{2} \cap S_{3}\right|\right)+1 \leqslant s^{2}-s+4
$$

since $\left|S_{1} \cap S_{3}\right|+\left|S_{2} \cap S_{3}\right| \leqslant\left|S_{3}\right|=s$.
We now assume that $a=\left|S_{1} \cap S_{2}\right|>0$, and we need some lemmata.
Lemma 3.3 Let x be an element of Q. Then x is contained in at most $(s+1) T_{i}$'s.
Proof. If not there exist $(s+2)$ indices $i_{1}<\ldots<i_{s+2}$ such that $T_{i_{j}}=\left\{x, x_{i_{j}}\right\}$ for $1 \leqslant j \leqslant s+2$. Since $S_{i_{1}} \cap T_{i_{1}} \neq \emptyset, x \notin S_{i_{1}}$. On the other hand, $S_{i_{1}}$ meets all $T_{i_{j}}$ for $2 \leqslant j \leqslant s+2$ and thus the s-set $S_{i_{1}}$ has to contain the $s+1$ elements $x_{i_{2}}, \ldots, x_{i_{s+2}}$, a contradiction.

Lemma 3.4 Let R be an r-subset of Q. Then R meets at most $(r s+1) T_{i}$'s.
Proof. The case $r=1$ follows from Lemma 3.3. Assume $r \geqslant 2$ and let x be an element of R contained in a maximal number N_{x} of T_{i} 's. Note that $N_{x} \leqslant s+1$ by Lemma 3.3. If $N_{x} \leqslant s$ for all $x \in R$, then R meets at most rs T_{i} 's. Assume there exists an $x \in R$ such that $N_{x}=s+1$. Then x meets $(s+1) T_{i}$'s, say $T_{i_{1}}=\left\{x, x_{i_{1}}\right\}, \ldots$, $T_{i_{s+1}}=\left\{x, x_{i_{s+1}}\right\}$ with $i_{1}<\ldots<i_{s+1}$.

We claim that every $y \neq x$ meets at most $s T_{i}$'s such that $i \neq i_{1}, \ldots, i_{s+1}$. If not, there exist $s+1$ sets $T_{j_{1}}=\left\{y, y_{j_{1}}\right\}, \ldots, T_{j_{s+1}}=\left\{y, y_{j_{s+1}}\right\}$ with $j_{1}<\ldots<j_{s+1}$ containing y. Assume $i_{1}<j_{1}$ (a dual argument works if $j_{1}<i_{1}$). Since $S_{i_{1}} \cap T_{i_{1}}=\emptyset$, $x \notin T_{i_{1}}$ and since $S_{i_{1}}$ meets all other $T_{i_{k}}, S_{i_{1}}=\left\{x_{i_{2}}, \ldots, x_{i_{s+1}}\right\}$. If $y \in T_{i_{1}}, y$ belongs to $(s+2) T_{i}$'s in contradiction to Lemma 3.3. Thus $\left|S_{i_{1}}\right|>s$, a contradiction. This proves the claim and the lemma follows easily.

We can now conclude the proof of (3) in the case $\left|S_{1} \cap S_{2}\right|=a>0$. Consider a 2 -set T_{i} with $i \geqslant 3$. Since T_{i} meets S_{1} and S_{2}, either T_{i} meets $S_{1} \cap S_{2}$, or T_{i} meets $S_{1} \backslash S_{2}$ and $S_{2} \backslash S_{1}$. By Lemma 3.4, there are at most $(a s+1) T_{i}$'s of the first type and at most $(s-a)^{2} T_{i}$'s of the second type. It follows that

$$
p(s)-2 \leqslant(s-a)^{2}+a s+1
$$

and hence $p(s) \leqslant s^{2}+a^{2}-a s+3 \leqslant s^{2}-s+4$, since $1 \leqslant a \leqslant s-1$.
Two different upper bounds were promised for $p(s)$. Here is the second one, which seems to be rather unsatisfying, since it depends on $n=|Q|$. In fact, as will be shown later, this new bound is better than the first one for $s>\lfloor n / 2\rfloor$.

Proposition 3.5 Let $a=\lfloor n /(n-s)\rfloor$. Then

$$
p(s) \leqslant \frac{1}{2} n s+a=\binom{a+1}{2} s^{2}+\left(1-a^{2}\right) n s+\binom{a}{2} n^{2}+a
$$

if $n-s$ divides n, and

$$
p(s) \leqslant\binom{ a+1}{2} s^{2}+\left(1-a^{2}\right) n s+\binom{a}{2} n^{2}+a+1
$$

if $n-s$ does not divide n.

Proof. Denote by N_{i} the number of 2-sets meeting S_{j} for $j<i$ but not meeting S_{i}. Note that the conditions of Problem P' just say that $N_{i}>0$ for all $i \leqslant p(s)$. The idea of the proof is contained in the following formula

$$
\begin{equation*}
\sum_{1 \leqslant i \leqslant p(s)} N_{i} \leqslant\binom{ n}{2} \tag{1}
\end{equation*}
$$

This is clear since the number of 2-subsets of Q is $\binom{n}{2}$. The next lemma provides a lower bound for N_{i}.

Lemma 3.6 Let $Z_{i}=\bigcap_{j<i} S_{j} \backslash S_{i}$ and $\left|Z_{i}\right|=z_{i}$. Then $N_{i} \geqslant\binom{ z_{i}}{2}+z_{i}\left(n-s-z_{i}\right)$.
Proof. Indeed, any 2-set contained in Z_{i} and any 2-set consisting of an element of Z_{i} and of an element of $Q \backslash\left(S_{i} \cup Z_{i}\right)$ meets all S_{j} for $j<i$ but does not meet S_{i}.

We now prove the proposition. First of all we claim that

$$
\bigcup_{1 \leqslant i \leqslant p(s)} Z_{i}=Q
$$

If not,

$$
Q \backslash\left(\cup Z_{i}\right)=\bigcap_{1 \leqslant i \leqslant s(p)} S_{i}
$$

is nonempty, and one can select an element x in this set. Let T be a 2 -set containing x and S be an s-set such that $S \cap T=\emptyset$. Then the two sequences $S_{1}, \ldots, S_{p(s)}, S$ and $T_{1}, \ldots, T_{p(s)}, T$ satisfy the conditions of Problem P^{\prime} in contradiction to the definition of $p(s)$. Thus the claim holds and since all Z_{i} 's are pairwise disjoint:

$$
\begin{equation*}
\sum z_{i}=n \tag{2}
\end{equation*}
$$

It now follows from (1) that

$$
\begin{equation*}
p(s) \leqslant\binom{ n}{2}-\sum_{1 \leqslant i \leqslant p(s)}\left(N_{i}-1\right) \tag{3}
\end{equation*}
$$

Since $N_{i}>0$ for all i, Lemma 3.6 provides the following inequality:

$$
\begin{equation*}
p(s) \leqslant\binom{ n}{2}-\sum_{z_{i}>0} f\left(z_{i}\right) \tag{4}
\end{equation*}
$$

where $f(z)=\binom{z}{2}+z(n-s-z)-1$.
Thus, it remains to find the minimum of the expression $\sum f\left(z_{i}\right)$ when the z_{i} 's are submitted to the two conditions
(a) $\sum z_{i}=n($ see (2)) and
(b) $0<z_{i} \leqslant n-s$ (because $Z_{i} \subset Q \backslash S_{i}$).

Consider a family $\left(z_{i}\right)$ reaching this minimum and which furthermore contains a minimal number α of z_{i} 's different from $(n-s)$.

We claim that $\alpha \leqslant 1$. Assume to the contrary that there exist two elements different from $n-s$, say z_{1} and z_{2}. Then an easy calculation shows that

$$
\begin{array}{ll}
f\left(z_{1}+z_{2}\right) \leqslant f\left(z_{1}\right)+f\left(z_{2}\right) & \text { if } z_{1}+z_{2} \leqslant n-s \\
f(n-s)+f\left(z_{1}+z_{2}-(n-s)\right) \leqslant f\left(z_{1}\right)+f\left(z_{2}\right) & \text { if } z_{1}+z_{2}>n-s
\end{array}
$$

Thus replacing z_{1} and z_{2} by $z_{1}+z_{2}$ - in the case $z_{1}+z_{2} \leqslant n-s-$ or by ($n-s$) and $z_{1}+z_{2}-(n-s)$ - in the case $z_{1}+z_{2}>n-s$ - leads to a family $\left(z_{i}^{\prime}\right)$ such that $\sum f\left(z_{i}^{\prime}\right) \leqslant \sum f\left(z_{i}\right)$ and containing at most $(\alpha-1)$ elements z_{i}^{\prime} different from $n-s$, in
contradiction to the definition of the family $\left(z_{i}\right)$. Therefore $\alpha=1$ and the minimum of $f\left(z_{i}\right)$ is obtained for

$$
z_{1}=\cdots=z_{\alpha}=n-s \quad \text { if } n=a(n-s)
$$

and for

$$
z_{1}=\cdots=z_{\alpha}=n-s, z_{\alpha+1}=r \quad \text { if } n=a(n-s)+r \text { with } 0<r<n-s
$$

It follows from inequality (4) that

$$
\begin{array}{ll}
p(s) \leqslant\binom{ n}{2}-a f(n-s) & \text { if } n=a(n-s), \\
p(s) \leqslant\binom{ n}{2}-a f(n-s)-f(r) & \text { if } n=a(n-s)+r \text { with } 0<r<n-s
\end{array}
$$

where $f(z)=\binom{n}{2}+z(n-z)-1$.
Proposition 3.5 follows by a routine calculation.
We now compare the two upper bound for $p(s)$ obtained in Propositions 3.2 and 3.5 for $2 \leqslant s \leqslant n-2$.

Case 1. $2 \leqslant s \leqslant(n / 2)-1$.
Then $a=1$ and Proposition 3.5 gives $p(s) \leqslant s^{2}+2$. Clearly $s^{2}-s+4$ is a better upper bound.
Case 2. $s=n / 2$.
Then $a=2$ and Proposition 3.5 gives $p(s) \leqslant s^{2}+2$. Again $s^{2}-s+4$ is better.
Case 3. $(n+1) / 2 \leqslant s \leqslant(2 n-1) / 3$.
Then $a=2$ and Proposition 3.5 gives

$$
\begin{aligned}
p(s) & \leqslant 3 s^{2}-3 n s+n^{2}+3=s^{2}-s+4+(n-s-1)(n-2 s+1) \\
& \leqslant s^{2}-s+4
\end{aligned}
$$

Case 4. $2 n / 3 \leqslant s$.
Then $a \geqslant 3$ and Proposition 3.5 gives

$$
\begin{aligned}
p(s) & \leqslant\binom{ a+1}{2} s^{2}+\left(1-a^{2}\right) n s+\binom{a}{2} n^{2}+a+1 \\
& \leqslant s^{2}-s+\frac{1}{2} a(a-1)(n-s)^{2}-((a-1)(n-s)-1) s+a+1
\end{aligned}
$$

Since $s \leqslant(1-a)(n-s)$, a short calculation shows that

$$
p(s) \leqslant s^{2}-s+4-\frac{1}{2}(a-1)(a-2)(n-s)^{2}+(a-1)(n-s)+(a-3)
$$

Since $a \geqslant 3,-\frac{1}{2}(a-1) \leqslant-1$ and thus

$$
p(s) \leqslant s^{2}-s+4-(a-2)(n-s)^{2}+(a-1)(n-s)+(a-3),
$$

and it is not difficult to see that for $n-s \geqslant 2$,

$$
-(a-2)(n-s)^{2}+(a-1)(n-s)+(a-3) \leqslant 0
$$

Therefore Proposition 3.5 gives a better bound in this case.
The next theorem summarizes the previous results.

Theorem 3.7 Let $\mathcal{A}=(Q, A, \delta)$ be an automaton with n states, let $0 \leqslant s \leqslant n-2$ and let K be an $(n-s)$-subset of Q. If there exists a word w such that $|K w|<|K|$, one can choose w with length $\leqslant \varphi(n, s)$ where $a=\lfloor n /(n-s)\rfloor$ and

$$
\begin{aligned}
& \varphi(n, s)= \begin{cases}1 & \text { if } s=0, \\
3 & \text { if } s=3, \\
s^{2}-s+4 & \text { if } 3 \leqslant s \leqslant n / 2,\end{cases} \\
& \varphi(n, s)=\binom{a+1}{2} s^{2}+\left(1-a^{2}\right) n s+\binom{a}{2} n^{2}+a=\frac{1}{2} n s+a \\
& \varphi(n, s)=\binom{a+1}{2} s^{2}+\left(1-a^{2}\right) n s+\binom{a}{2} n^{2}+a+1 \\
& \quad \text { if } n-s \text { does not divide } n \text { and } s>n / 2 .
\end{aligned}
$$

We can now prove the main results of this paper.
Theorem 3.8 Let \mathcal{A} be an automaton with n states and let $0 \leqslant k \leqslant n-1$. If there exists a word of rank $\leqslant n-k$ in \mathcal{A}, there exists such a word of length $\leqslant G(n, k)$ where

$$
G(n, k)= \begin{cases}k^{2} & \text { for } k=0,1,2,3 \\ \frac{1}{3} k^{3}-k^{2}+\frac{14}{3} k-5 & \text { for } 4 \leqslant k \leqslant(n-2)+1 \\ 9+\sum_{3 \leqslant s \leqslant k-1} \varphi(n, s) & \text { for } k \geqslant(n+3) / 2\end{cases}
$$

Observe that in any case

$$
G(n, k) \leqslant \frac{1}{3} k^{3}-k^{2}+\frac{14}{3} k-5
$$

Table 1 gives values of $G(n, k)$ for $0 \leqslant k \leqslant n \leqslant 12$.

$k \backslash n$	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	4	9	19	34	56	85	125	173	235	310
2		0	1	4	9	19	35	57	89	128	180	244
3			0	1	4	9	19	35	59	90	133	186
4				0	1	4	9	19	35	59	93	135
5					0	1	4	9	19	35	59	93
6						0	1	4	9	19	35	59
7							0	1	4	9	19	35
8								0	1	4	9	19
9									0	1	4	9
10										0	1	4
11											0	1
12												0

Figure 1: Values of $G(n, k)$ for $0 \leqslant k \leqslant n \leqslant 12$.
Proof. Assume that there exists a word w of rank $\leqslant n-k$ in \mathcal{A}. Since Conjecture (C) has been proved for $k \leqslant 3$, we may assume $k \geqslant 4$ and there exists a word w_{1} of length $\leqslant 9$ such that $Q w_{1}=K_{1}$ satisfies $\left|K_{1}\right| \leqslant n-3$. It suffices now to apply the method decribed at the beginning of this section which consists of using Theorem 3.7 repetitively. This method shows that one can find a word of $\operatorname{rank} \leqslant n-k$ in \mathcal{A} of length
$\leqslant 9+\sum_{3 \leqslant s \leqslant k-1} \varphi(n, s)=G(n, k)$. In particular, $\varphi(n, s)=s^{2}-s+4$ for $s \leqslant n / 2$ and thus

$$
G(n, k)=\frac{1}{3} k^{3}-k^{2}+\frac{14}{3} k-5 \quad \text { for } 4 \leqslant k \leqslant(n-2)+1
$$

It is interesting to have an estimate of $G(n, k)$ for $k=n-1$.
Theorem 3.9 Let \mathcal{A} be an automaton with n states. If there exists a word of rank 1 in \mathcal{A}, there exists such a word of length $\leqslant F(n)$ where

$$
F(n)=\left(\frac{1}{2}-\frac{\pi^{2}}{36}\right) n^{3}+o\left(n^{3}\right) .
$$

Note that this bound is better than the bound in $\frac{7}{27} n^{3}$, since $7 / 27 \simeq 0.2593$ and $\left(\frac{1}{2}-\frac{\pi^{2}}{36}\right) \simeq 0.2258$.

Proof. Let $h(n, s)=\binom{a+1}{2} s^{2}+\left(1-a^{2}\right) n s+\binom{a}{2} n^{2}+a+\varepsilon(s)$, where

$$
\varepsilon(s)= \begin{cases}0 & \text { if } n=a(n-s) \\ 1 & \text { if } n-s \text { does not divide } n\end{cases}
$$

The above calculations have shown that for $3 \leqslant s \leqslant n / 2$,

$$
s^{2}-s+4 \leqslant h(n, s) \leqslant s^{2}+2
$$

Therefore

$$
\sum_{0 \leqslant s \leqslant n / 2} \varphi(n, s) \sim 9+\sum_{3 \leqslant s \leqslant n-2} s^{2} \sim \frac{1}{24} n^{3} \sim \sum_{0 \leqslant s \leqslant n / 2} h(n, s)
$$

It follows that

$$
\begin{aligned}
F(n)=G(n, n-1) & =\sum_{0 \leqslant s \leqslant n-2} h(n, s)+o\left(n^{3}\right) \\
& =\sum_{0 \leqslant s \leqslant n-1} h(n, s)+o\left(n^{3}\right)
\end{aligned}
$$

A new calculation shows that

$$
h(n, n-s)=n^{2}+(\lfloor n / s\rfloor+1)\left(\frac{1}{2}\lfloor n / s\rfloor s^{2}-s n+1\right)-\varepsilon(n-s)
$$

Therefore

$$
F(n)=\sum_{1 \leqslant i \leqslant 6} T_{i}(n)+o\left(n^{3}\right)
$$

where

$$
\begin{array}{ll}
T_{1}=\sum_{s=1}^{n} n^{2}=n^{3}, & T_{4}=-n \sum_{s=1}^{n}\lfloor n / s\rfloor s \\
T_{1}=\frac{1}{2} \sum_{s=1}^{n}\lfloor n / s\rfloor^{2} s^{2}, & T_{5}=-n \sum_{s=1}^{n} s, \\
T_{3}=\frac{1}{2} \sum_{s=1}^{n}\lfloor n / s\rfloor s, & T_{6}=\sum_{s=1}^{n}\lfloor n / s\rfloor s+1-\varepsilon(n-s) .
\end{array}
$$

Clearly $T_{5}=-\frac{1}{2} n^{3}+o\left(n^{3}\right)$ and $T_{6}=o\left(n^{3}\right)$. The terms T_{2}, T_{3} and T_{4} need a separate study.

Lemma 3.10 We have $T_{3}=\frac{1}{6} \zeta(3) n^{3}+o\left(n^{3}\right)$ and $T_{4}=-\frac{1}{2} \zeta(2) n^{3}+o\left(n^{3}\right)$, where $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$ is the usual zeta-function.

These two results are easy consequences of classical results of number theory (see [7, p. 117, Theorem 6.29 and p. 121, Theorem 6.34])

$$
\text { (a) } \begin{aligned}
\sum_{s=1}^{n}\lfloor n / s\rfloor s & =\sum_{s=1}^{n} \sum_{d=1}^{\lfloor n / s\rfloor} s=\frac{1}{2} \sum_{s=1}^{n}\left(\lfloor n / s\rfloor^{2}+\lfloor n / s\rfloor\right) \\
& =\frac{1}{2} n^{2} \sum_{k=1}^{n} \frac{1}{k^{2}}+o\left(n^{2}\right)=\frac{1}{2} \zeta(2) n^{2}+o\left(n^{2}\right)
\end{aligned}
$$

Therefore $T_{4}=-\frac{1}{2} \zeta(2) n^{3}+o\left(n^{3}\right)$.

$$
\text { (b) } \begin{aligned}
\sum_{s=1}^{n}\lfloor n / s\rfloor s^{2} & =\sum_{s=1}^{n} \sum_{d=1}^{\lfloor n / s\rfloor} s^{2}=\frac{1}{2} \sum_{s=1}^{n}\left(2\lfloor n / s\rfloor^{3}+3\lfloor n / s\rfloor^{2}+\lfloor n / s\rfloor\right) \\
& =\frac{1}{3} n^{3}\left(\sum_{k=1}^{n} \frac{1}{s^{3}}\right)+o\left(n^{3}\right)=\frac{1}{3} \zeta(3)^{3}+o\left(n^{3}\right)
\end{aligned}
$$

Therefore $T_{3}=\frac{1}{6} \zeta(3) n^{3}+o\left(n^{3}\right)$.

Lemma 3.11 We have $T_{2}=\frac{1}{6}(2 \zeta(2)-\zeta(3)) n^{3}+o\left(n^{3}\right)$.
Proof. It is sufficient to prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{s=1}^{n}\lfloor n / s\rfloor^{2} s^{2}=\frac{1}{6}(2 \zeta(2)-\zeta(3))
$$

Fix an integer n_{0}. Then

$$
\begin{aligned}
\frac{1}{n^{3}} \sum_{j=1}^{n_{0}} j^{2} \sum_{s=\lfloor n /(j+1)\rfloor+1}^{\lfloor n / j\rfloor} s^{2} & \leqslant \frac{1}{n^{3}} \sum_{s=1}^{n}\lfloor n / s\rfloor^{2} s^{2} \\
& \leqslant \frac{1}{n}\left\lfloor\frac{n}{n_{0}+1}\right\rfloor+\frac{1}{n^{3}} \sum_{j=1}^{n_{0}} j^{2} \sum_{s=\lfloor n /(j+1)\rfloor+1}^{\lfloor n / j\rfloor} s^{2}
\end{aligned}
$$

Indeed, $\lfloor n / s\rfloor s \leqslant n$ implies the inequality

$$
\frac{1}{n^{3}} \sum_{s=1}^{\left\lfloor n /\left(n_{0}+1\right)\right\rfloor}\left\lfloor\frac{n}{s}\right\rfloor^{2} s^{2} \leqslant \frac{1}{n}\left\lfloor\frac{n}{n_{0}+1}\right\rfloor
$$

Now

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{\lfloor n /(j+1)\rfloor+1 \leqslant s \leqslant\lfloor n / j\rfloor} s^{2}=\frac{1}{3}\left(\frac{1}{j^{3}}-\frac{1}{(j+1)^{3}}\right)
$$

It follows that for all $n_{0} \in \mathbb{N}$

$$
\begin{aligned}
\frac{1}{2} \sum_{j=1}^{n_{0}} j^{2}\left(\frac{1}{j^{3}}-\frac{1}{(j+1)^{3}}\right) & \leqslant \liminf _{n \rightarrow \infty} \frac{1}{n^{3}} \sum\left\lfloor\frac{n}{k}\right\rfloor^{2} k^{2} \\
& \leqslant \limsup _{n \rightarrow \infty} \frac{1}{n^{3}} \sum\left\lfloor\frac{n}{k}\right\rfloor^{2} k^{2} \\
& \leqslant \limsup _{n \rightarrow \infty} \frac{1}{n}\left\lfloor\frac{n}{n_{0}+1}\right\rfloor+\frac{1}{3} \sum_{j=1}^{n_{0}} j^{2}\left(\frac{1}{j^{3}}-\frac{1}{(j+1)^{3}}\right)
\end{aligned}
$$

Since

$$
\limsup _{n \rightarrow \infty} \frac{1}{n}\left\lfloor\frac{n}{n_{0}+1}\right\rfloor=\frac{1}{n_{0}+1}
$$

We obtain for $n_{0} \rightarrow \infty$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{s=1}^{n}\left\lfloor\frac{n}{s}\right\rfloor^{2} s^{2} & =\frac{1}{3} \sum_{j=1}^{\infty} j^{2}\left(\frac{1}{j^{3}}-\frac{1}{(j+1)^{3}}\right) \\
& =\frac{1}{3} \sum_{j=1}^{\infty} \frac{2 j-1}{j^{3}}=\frac{1}{3}(2 \zeta(2)-\zeta(3))
\end{aligned}
$$

Finally we have

$$
\begin{aligned}
F(n) & =n^{3}\left(1+\frac{1}{6}(2 \zeta(2)-\zeta(3))+\frac{1}{6} \zeta(3)-\frac{1}{2} \zeta(2)-\frac{1}{2}\right)+o\left(n^{3}\right) \\
& =\left(\frac{1}{2}-\frac{1}{6} \zeta(2)\right) n^{3}+o\left(n^{3}\right) \\
& =\left(\frac{1}{2}-\frac{\pi^{2}}{36}\right) n^{3}+o\left(n^{3}\right)
\end{aligned}
$$

which concludes the proof of Theorem 3.9.

Note added in proof

(1) P. Shor has recently found a counterexample to the triangle conjecture.
(2) Problem P' has been solved by P. Frankl. The conjectured estimate $p(s, t)=\binom{s+t}{s}$ is correct. It follows that Theorem 3.8 can be sharpened as follows: if there exists a word of rank $\leqslant n-k$ in \mathcal{A} there exists such a word of length $\leqslant \frac{1}{6} k(k+1)(k+2)-1$ (for $3 \leqslant k \leqslant n-1$).

References

[1] C. Berge, Graphes et hypergraphes, Dunod, Paris, 1973. Deuxième édition, Collection Dunod Université, Série Violette, No. 604.
[2] J. Černý, Poznámka k. homogénnym experimentom s konecnými automatmi, Mat. fyz. čas SAV 14 (1964), 208-215.
[3] J. Černý, Communication, in Bratislava Conference on Cybernetics, 1969.
[4] J. Černý, A. Pirická and B. Rosenauerova, On directable automata, Kybernetica 7 (1971), 289-298.
[5] G. Hansel, Baionnettes et cardinaux, Discrete Math. 39,3 (1982), 331-335.
[6] Z. Kohavi, Switching and finite automata theory, McGraw Hill, New-York, 1970.
[7] W. J. LeVeque, Topics in number theory. Vols. 1 and 2, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1956.
[8] M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications vol. 17, Cambridge University Press, 1983.
[9] D. Perrin and M.-P. Schützenberger, A conjecture on sets of differences of integer pairs, J. Combin. Theory Ser. B 30,1 (1981), 91-93.
[10] J.-E. Pin, Le problème de la synchronisation. Contribution à l'étude de la conjecture de Cerný, Thèse de 3ème cycle, Université Paris VI, 1978.
[11] J.-E. Pin, Sur les mots synchronisants dans un automate fini, Elektron. Informationsverarb. Kybernet. 14 (1978), 293-303.
[12] J.-E. Pin, Sur un cas particulier de la conjecture de Černý, in 5th ICALP, Berlin, 1978, pp. 345-352, LNCS n ${ }^{\circ} 62$, Springer.
[13] J.-E. Pin, Utilisation de l'algèbre linéaire en théorie des automates, in Actes du 1er Colloque AFCET-SMF de Mathématiques Appliquées, pp. 85-92, AFCET, 1978.
[14] J.-E. Pin, Le problème de la synchronisation et la conjecture de Černý, in Noncommutative structures in algebra and geometric combinatorics, A. De luca (ed.), pp. 37-48, Quaderni de la Ricerca Scientifica vol. 109, CNR, Roma, 1981.
[15] J.-E. Pin and I. Simon, A note on the triangle conjecture, J. Combin. Theory Ser. A 32,1 (1982), 106-109.
[16] P. H. Starke, Eine Bemerkung über homogene Experimente., Elektr. Informationverarbeitung und Kyb. 2 (1966), 257-259.
[17] P. H. Starke, Abstrakte Automaten, V.E.B. Deutscher Verlag der Wissenschaften, Berlin, 1969.

