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Abstract

We present some partial results on the following conjectures arising from au-
tomata theory. The first conjecture is the triangle conjecture due to Perrin and
Schiitzenberger. Let A = {a,b} be a two-letter alphabet, d a positive integer and
let By = {a'ba’ | 0 <i+j < d}. If X C By is a code, then |X| < d+ 1. The
second conjecture is due to Cerny and the author. Let A be an automaton with
n states. If there exists a word of rank < n — k in A, there exists such a word of
length < k2.

1 Introduction

The theory of automata and formal langauges provides many beautiful combinatorial
results and problems which, I feel, ought to be known. The book recently published:
Combinatorics on words, by Lothaire [8], gives many examples of this.

In this paper, I present two elegant combinatorial conjectures which are of some im-
portance in automata theory. The first one, recently proposed by Perrin and Schiitzen-
berger [9], was originally stated in terms of coding theory. Let A = {a, b} be a two-letter
alphabet and let A* be the free monoid generated by A. Recall that a subset C' of A*
is a code whenever the submonoid of A* generated by C'is free with base C; i.e., if the
relation ¢y - -+ ¢, = ¢} ---c'q, where ci1, ..., ¢p, ¢, ..., ¢ are elements of C' implies p = ¢
and ¢; = ¢, for 1 <i < p. Set, for any d > 0, By = {a’ba’ | 0 < i +j < d}. One can
now state the following conjecture:

The triangle conjecture. Let d > 0 and X C By. If X is a code, then | X| < d+1.

The term “The triangle conjecture” originates from the following construction: if
one represents every word of the form a’ba’ by a point (i,j) € N2, the set By is
represented by the triangle {(i,j) € N? | 0 < i+ j < d}. The second conjecture was
originally stated by Cerny (for k = n—1) [3] and extended by the author. Recall that a
finite automaton A is a triple (Q, 4, §), where @ is a finite set (called the set of states),
A is a finite set (called the alphabet) and § : Q x A — @ is a map. Thus § defines an
action of each letter of A on ). For simplicity, the action of the letter a on the state
q is usually denoted by ga. This action can be extended to A* (the free monoid on A)
by the associativity rule

(qw)a = q(wa) for all ¢ € Q,w € A*,a € A

Thus each word w € A* defines a map from @ to @ and the rank of w in A is the
integer Card{qw | ¢ € Q}.
One can now state the following

Conjecture (C). Let A be an automaton with n states and let 0 < k < n—1. If there
exists a word of rank < n — k in A, there exists such a word of length < k2.



2 The triangle conjecture

I shall refer to the representation of X as a subset of the triangle {(i,5) € N? | 0 <
i+ j < d} to describe some properties of X. For example, “X has at most two columns
occupied” means that there exist two integers 0 < i1 < 75 such that X is contained in
aba* U a’ba*.

Only a few partial results are known on the triangle conjecture. First of all the
conjecture is true for d < 9; this result has been obtained by a computer, somewhere
in Italy.

In [5], Hansel computed the number ¢, of words obtained by concatenation of n
words of By. He deduced from this the following upper bound for |X]|.

Theorem 2.1 Let X C By. If X is a code, then | X| < (14 (1/v/2))(d + 1).

Perrin and Schiitzenberger proved the following theorem in [9].

Theorem 2.2 Assume that the projections of X on the two components are both equal
to the set {0,1,...,r} for somer < d. If X is a code, then | X| <r+1.

Two further results have been proved by Simon and the author [15].

Theorem 2.3 Let X C By be a set having at most two rows occupied. If X is a code,
then | X| < d+ 1.

Theorem 2.4 Assume there is exactly one column of X C By with two points or more.
If X is a code, then |X| < d+ 1.

Corollary 2.5 Assume that all columns of X are occupied. If X is a code, then
| X|<d+1.

Proof. Indeed assume that |X| > d 4+ 1. Then one of the columns of X has two
points or more. Thus one can find a set ¥ C X such that: (1) all columns but
one of Y contain exactly one point; (2) the exceptional column contains two points.
Since |Y| > d + 1, Y is a non-code by Theorem 2.4. Thus X is a non-code. O

Of course statements 2.3, 2.4, 2.5 are also true if one switches “row” and “column”.

3 A conjecture on finite automata

We first review some results obtained for Conjecture (C) in the particular case k = n—1:
“Let A be an automaton with n states containing a word of rank 1. Then there exists
such a word of length < (n — 1)2.”
First of all the bound (n — 1)? is sharp. In fact, let A, = (Q,{a,b},d), where
Q={0,1,....,.n—1},ia=tandib=i+1fori#n—1,and (n —1)a= (n—1)b =0.
Then the word (ab™~!)"~2q has rank 1 and length (n — 1)? and this is the shortest
word of rank 1 (see [3] or [10] for a proof).



Moreover, the conjecture has been proved for n = 1,2, 3,4 and the following upper
bounds have been obtained

2" —p—1 (Cerny [2], 1964)

1 3

5 nd — 5 n>+n+1 (Starke [16, 17], 1966)

1 4 9 M .

gttt g (Kohavi [6], 1970)

1, 3, 25 e ,

3N —5n + e 4 (Cerny, Pirickd et Rosenauerovd [4], 1971)
1 1

2_’7,7n3f1—’;n2+€7n—3 (Pin [11], 1978)

For the general case, the bound k? is also the best possible (see [10]) and the conjecture
has been proved for k =0, 1,2,3 [10]. The best known upper bound was

1, 1., 13
K = gk k=1L
We prove here some improvements of these results. We first sketch the idea of the
proof. Let A = (Q, A,d) be an automaton with n states. For K C @ and w € A*, we
shall denote by Kw the set {qw | ¢ € K}. Assume there exists a word of rank < n —k
in A. Since the conjecture is true for £ < 3, one can assume that k > 4. Certainly
there exists a letter a of rank # n. (If not, all words define a permutation on @ and
therefore have rank n).Set K1 = Qa. Next look for a word m; (of minimal length)
such that Ko = Kjym; satisfies |K2| < |K1|. Then apply the same procedure to K,
etc. until one of the |K;’s satisfies |K;| < n — k:

My

Q % Ki ™ K, ™ ... K., = K, K| <n—k

Then amq ---m,_1 has rank <n — k.
The crucial step of the procedure consists in solving the following problem:

Problem P. Let A = (Q, A,J) be an automaton with n states, let 2 < m < n and let
K be an m-subset of Q. Give an upper bound of the length of the shortest word w (if
it exists) such that |Kw| < |K].

There exist some connections between Problem P and a purely combinatorial Problem
P’

Problem P’. Let () be an n-set and let s and ¢ be two integers such that s +¢ < n.
Let (Si)1<i<p and (T;)1<i<p be subsets of @ such that

(1) For 1 <i<p,|S;|=sand |T;| =t.

(2) For 1 <i<p, SinT; =0.

(3) For1<j<i<p, S;NT; =0.
Find the maximum value p(s,t) of p.
We conjecture that p(s,t) = (s:t) = (s:‘t). Note that if (3) is replaced by

(3) For 1<i#j<p, SinT;=0.
then the conjecture is true (see Berge [1, p. 406]).

We now state the promised connection between Problems P and P’.

Proposition 3.1 Let A= (Q, A,6) be an automaton with n states, let 0 < s < n —2
and let K be an (n — s)-subset of Q. If there exists a word w such that |[Kw| < |K],
one can choose w with length < p(s,2).



Proof. Let w = ay---a, be a shortest word such that |[Kw| < |K| = n — s and

define K; = K, Ky = Kqaq, ..., Kp = Kp_1a,-1. Clearly, an equality of the form
|K;| = |Kay---a;] < |K| for some ¢ < p is inconsistent with the definition of w.
Therefore |Ki| = |Ky| = -+ = |Kp| = (n — s). Moreover, since |Kpa,| < |K,|, K,

contains two elements x, and y, such that z,a, = ypa,.
Define 2-sets T; = {z;,y;} C K; such that x;a; = ;41 and y;a; = yi41 for 1 <@ <
p — 1 (the T; are defined from T, = {zp,y,}). Finally, set S; = Q \ K;. Thus we have
(1) For 1 <i<p,|S;|=sand |T;| = 2.
(2) For 1 <i<p, SinT; =0.
Finally assume that for some 1 < j <i<p, S;NT; =0, i.e., {z;,y;} C K;. Since

ziai...ap:yiai...ap,

it follows that
|Kay---aj_1a;--ap| = |Kja;---ap| <n—s

But the word a; ---aj_1a; - - - ap is shorter that w, a contradiction.
Thus the condition (3), for 1 < j < < p, S;NT; # 0, is satisfied, and this concludes
the proof. 0O

I shall give two different upper bounds for p(s) = p(2, s).

Proposition 3.2
(1) p(0) =1,
(2) p(1) =3,
(3) p(s) < s2—s+4 for s> 2.
Proof. First note that the S;’s (T;’s) are all distinct, because if S; = S; for some j < 1,
then S; NT; =0 and S; NT; # 0, a contradiction.
Assertion (1) is clear.
To prove (2) assumet that p(1) > 3. Then, since TyNSy # 0, TyNSe # O, T4NS3 # O,
two of the three 1-sets Sy, So, S3 are equal, a contradiction.
On the other hand, the sequence Sy = {z1}, S2 = {x2}, S5 = {x3}, T1 = {x2, 23},
Ty = {z1,23}, T5 = {x1, x2} satisfies the conditions of Problem P’. Thus p(1) = 3.
To prove (3) assume at first that S; NSy = () and consider a 2-set T; with 7 > 4.
Such a set meets S1, Sz and S3. Since S; and Sy are disjoint sets, T; is composed as
follows:

e cither an element of S; N S3 with an element of Sy N S3,
e or an element of S; N S5 with an element of S \ Ss,
e or an element of S7 \ S5 with an element of Sy N Ss.
Therefore
p(s) — 3 < |S1 N S3]|S2 N S3| + [S1 N S3|S2 \ S3| + [S1\ S5]]52 N S3]

= |51 N S3][S2| + [S1]|S2 N S3| — |S1 N S3][S2 N Ss|
= S(|Sl ﬂS3| + |Sg QS3|) - |Sl ﬂSgHSQ ﬂSgl

Since S1, S2, S5 are all distinct, |S;NS3| < s— 1. Thus if [S1NS3] =0 or [S2N S5 =0
it follows that
p(s) <s(s—1)+3=s>—s5+3

If |S1 N Ss| # 0 and S2 N S3| # 0, one has

|Sl ﬂS3||SQ ﬂS3| > |Sl ﬂS3||SQ ﬂS3| —1,



and therefore:
p(s) <34+ (s —1)(|S1 N S3| + SN Ss]) +1< 5% —5+4,

since |Sl n S3| + |SQ n S3| < |Sg| = S.
We now assume that a = |S1 N Sa| > 0, and we need some lemmata.

Lemma 3.3 Let x be an element of Q. Then x is contained in at most (s + 1) T;’s.

Proof. If not there exist (s 4 2) indices i; < ... < @542 such that T;, = {z,z;,} for
1<j<s+2 Since S;, NT;, # 0, x ¢ S;;. On the other hand, S;, meets all T;, for
2 < j < s+ 2 and thus the s-set S;; has to contain the s + 1 elements z;,,...,7;,,, a
contradiction. O

Lemma 3.4 Let R be an r-subset of Q. Then R meets at most (rs+ 1) T;’s.

Proof. The case r = 1 follows from Lemma 3.3. Assume r > 2 and let z be an element
of R contained in a maximal number N, of T;’s. Note that N, < s+ 1 by Lemma
3.3. If N, < s for all z € R, then R meets at most rs T;’s. Assume there exists
an ¢ € R such that N, = s+ 1. Then x meets (s + 1) T;’s, say T;, = {z,zi, }, .- .,
T =A{x,xi ) with iy <., <idgyq.

We claim that every y # x meets at most s T;’s such that i # i1,...,4541. If
not, there exist s + 1 sets T, = {y,yj, }» -+, Tjoyy = {¥: Y50} With j1 < ... < jep1
containing y. Assume i; < j; (a dual argument works if j; < 41). Since S;, NT;, = 0,
x ¢ T;, and since S;, meets all other 75, , Si, = {@i,, ...,z }. If y € T;,, y belongs
to (s + 2) T;’s in contradiction to Lemma 3.3. Thus |S;,| > s, a contradiction. This
proves the claim and the lemma follows easily. O

We can now conclude the proof of (3) in the case |[S1 N S2| = a > 0. Consider a
2-set T; with ¢ > 3. Since T; meets Sy and Ss, either T; meets S; N Sy, or T; meets
S1\ Sz and S2 \ S7. By Lemma 3.4, there are at most (as + 1) T;’s of the first type
and at most (s — a)? T;’s of the second type. It follows that

p(s)—2< (s—a)* +as+1
and hence p(s) < s24+a?>—as+3<s?—s+4,sincel<a<s—1. 0O
Two different upper bounds were promised for p(s). Here is the second one, which
seems to be rather unsatisfying, since it depends on n = |Q|. In fact, as will be shown

later, this new bound is better than the first one for s > [n/2].

Proposition 3.5 Let a = [n/(n—s)|. Then

1 1
p(s) < §ns—|—a: (a—;— )52+(1—a2)ns—|— (;)nQ—i—a

if n — s divides n, and

if n — s does not divide n.



Proof. Denote by INV; the number of 2-sets meeting S; for j < ¢ but not meeting S;.
Note that the conditions of Problem P’ just say that N; > 0 for all ¢ < p(s). The idea
of the proof is contained in the following formula

N < (g) (1)

n
2

1<i<p(s)

This is clear since the number of 2-subsets of @ is (
lower bound for N;.

). The next lemma provides a

Lemma 3.6 Let Z; =(),_,S; \ S; and |Z;| = z;. Then N; > (22) +zi(n — s —z;).

j<i
Proof. Indeed, any 2-set contained in Z; and any 2-set consisting of an element of Z;

and of an element of @ \ (S; U Z;) meets all S; for j < ¢ but does not meet .S;.
We now prove the proposition. First of all we claim that

U Z; =Q

1<i<p(s)

If not,
Q\(uz)= [) S
1<i<s(p)

is nonempty, and one can select an element = in this set. Let T be a 2-set containing
x and S be an s-set such that SNT = (). Then the two sequences Si, ..., Sp(s), S and
T1,..., Ty, T satisty the conditions of Problem P’ in contradiction to the definition
of p(s). Thus the claim holds and since all Z;’s are pairwise disjoint:

Zzi:n (2)

It now follows from (1) that

i< (3)- X wi-n ®)

1<i<p(s)

Since N; > 0 for all ¢, Lemma 3.6 provides the following inequality:

po < (5) - 3 s @

z;>0

where f(z) = (5) + z(n—s—2) — 1.
Thus, it remains to find the minimum of the expression Y f(z;) when the z;’s are
submitted to the two conditions
(a) > z; =n (see (2)) and
(b) 0 <z <n—s (because Z; C Q\ S;).
Consider a family (z;) reaching this minimum and which furthermore contains a mini-
mal number « of z;’s different from (n — s).
We claim that o < 1. Assume to the contrary that there exist two elements different
from n — s, say z1 and z3. Then an easy calculation shows that

(21 + 22) < f(21) + f(22) if z1+20<n—s,
fin=s)+ f(z1+ 22— (n—3)) < f(z1) + f(22) it z1+20>n—s.
Thus replacing z; and 29 by 21 + 22 — in the case z1 + 20 < n—s — or by (n — s)

and z1 + 22 — (n — s) — in the case z; + z2 > n — s — leads to a family (z]) such that
> f(2) <37 f(#) and containing at most (o — 1) elements 2] different from n — s, in



contradiction to the definition of the family (z;). Therefore @ = 1 and the minimum
of f(z;) is obtained for

21 =-""=Z5=N—S§ ifn:a(n—s),
and for
2= =2 =N —S8, Zar1 =T ifn=an—s)+rwith0<r<n-—s.

It follows from inequality (4) that
n
p(s)§< >af(ns) if n=a(n—s),
p(s) < <2> —af(n—s)— f(r) ifn=a(n—s)+rwithO<r<n-—s.

where f(z) = (5) + z2(n—2) — 1.
Proposition 3.5 follows by a routine calculation. O

We now compare the two upper bound for p(s) obtained in Propositions 3.2 and
35for2<s<n—2.

Case 1. 2<s< (n/2)—1.
Then a = 1 and Proposition 3.5 gives p(s) < s% + 2. Clearly s2 — s + 4 is a better
upper bound.

Case 2. s =n/2.
Then a = 2 and Proposition 3.5 gives p(s) < s? + 2. Again s? — s + 4 is better.

Case 3. (n+1)/2<s< (2n—1)/3.
Then a = 2 and Proposition 3.5 gives

p(s) <352 —3ns+n?+3=5>—s+4+(n—s—1)(n—2s+1)

~
<s?P—s+4

Case 4. 2n/3 < s.
Then a > 3 and Proposition 3.5 gives

1
p(s) < <a42r )52+(1a2)ns+ (g)n2+a+1

g5275+%a(a71)(n—s)2—((a—l)(nfs)—l)eraJrl

Since s < (1 —a)(n — s), a short calculation shows that

p(s)g5275+47%(a—l)(an)(nfs)Q+(a—1)(n—s)+(a—3)

(a—1) < —1 and thus

N[

Since a > 3, —
ps)<s®—s+4—(a—2)(n—s)*+(a—1)(n—s)+(a—3),
and it is not difficult to see that for n — s > 2,

—(a—2)(n—s)*+(@—-1)(n—-s)+(@—-3)<0

Therefore Proposition 3.5 gives a better bound in this case.
The next theorem summarizes the previous results.



Theorem 3.7 Let A= (Q, A,d) be an automaton with n states, let 0 < s <n—2 and
let K be an (n — s)-subset of Q. If there exists a word w such that |Kw| < |K|, one
can choose w with length < o(n, s) where a = |n/(n —s)| and
1 if s=0,
o(n,s) =43 if s =3,
s2—s+4 if3<s<n/2,
1 1
o(n,s) = ot s+ (1 —a*)ns + “Vn2ta=zns+a
2 2 2
ifn=a(n—s) and s >n/2,

1
o(n,s) = (a; >52+(1a2)ns+ (;)n2+a+1

if n — s does not divide n and s > n/2.

We can now prove the main results of this paper.

Theorem 3.8 Let A be an automaton with n states and let 0 < k < n — 1. If there
exists a word of rank < n—k in A, there exists such a word of length < G(n, k) where

k2 for k=0,1,2,3,

-+ k-5 fora<k<(n—2)+1,
9—i—2:3<$<k_1 o(n,s) fork = (n+3)/2.

Observe that in any case

1 14
K-k +—=k-5
3 + 3
Table 1 gives values of G(n, k) for 0 < k <n < 12.

G(n, k) <

E\n | 1 3145|678 9 10 | 11 12
1 O[1|4|9|19]|34|56 |85 | 125 | 173 | 235 | 310
2 O(1(4| 9 |19]|35|57| 89 | 128 | 180 | 244
3 O(1| 4|9 ]|19|35] 59 | 9 | 133 | 186
4 0|1 (4|9 |19] 35 | 59 | 93 |135
5 O |1 (419|193 |5 | 93
6 0| 1] 4 9 19 | 35 | 59
7 0] 1 4 9 19 | 35
8 0 1 4 9 19
9 0 1 4 9
10 0 1 4
11 0 1
12 0

Figure 1: Values of G(n, k) for 0 < k < n < 12.

Proof. Assume that there exists a word w of rank < n — k in A. Since Conjecture
(C) has been proved for k£ < 3, we may assume k > 4 and there exists a word w; of
length < 9 such that Qw; = K satisfies |K1| < n — 3. Tt suffices now to apply the
method decribed at the beginning of this section which consists of using Theorem 3.7
repetitively. This method shows that one can find a word of rank < n—k in A of length



<9+ Yacochr P(n,5) = G(n, k). In particular, p(n,s) = s — s +4 for s <n/2 and
thus

1 14
G(n,kz):§k3—k:2+?k—5 fora<k<(n-—2)+1

It is interesting to have an estimate of G(n, k) for k =n — 1.

Theorem 3.9 Let A be an automaton with n states. If there exists a word of rank 1
in A, there exists such a word of length < F(n) where

Note that this bound is better than the bound in 2—77713, since 7/27 ~ 0.2593 and
(3 — ) ~0.2258.

Proof. Let h(n,s) = (“1")s? + (1 — a®)ns + ()n? + a + &(s), where

0 ifn=a(n—2s)
e(s) = ) .
1 if n — s does not divide n.
The above calculations have shown that for 3 < s < n/2,
s —s+4 < hn,s) <s?+2.

Therefore

Y elns)~9+ Y 52~2—14n3~ > h(n,s)

0<s<n/2 3<s<n—2 0<s<n/2

It follows that

A new calculation shows that

h(n,n —s) =n?+ (|In/s] +1)(z|n/s|s* —sn+1) —e(n — s)

N =

Therefore

Fin)= 32 Ti(w) +o(n?)
1<i<6
where

lein2:n3, T4:—niLn/st
s=1

T =

Z\_n/sJQSQ, Ts = —nis’
s=1

ngézm/sjs, T6:ZLn/st+1—€(nfs).

s=1 s=1

Clearly Ts = —in3 + o(n?) and T = o(n?). The terms T», T3 and Ty need a separate
study.



Lemma 3.10 We have Ts = $((3)n® + o(n®) and Ty = —1((2)n® + o(n?), where
C(s) =222, n~% is the usual zeta-function.

These two results are easy consequences of classical results of number theory (see
[7, p. 117, Theorem 6.29 and p. 121, Theorem 6.34])

n_[n/s]

(a) Ztn/s s=3 3 6= Z [n/s]? + [n/s))
s=1 d=1

= o’ > 5+ o(n?) = 20(2)n” + o(n?)

Therefore Ty = —2((2)n? + o(n?).

n n_[n/s] n
(b) Dln/sls®=3 > s = %Z(%n/SJ?’ +3ln/s]? + [n/s])
s=1 s=1 d=1 s=1
= %713 > %) +o(n’) = %c(s)s +o(n’)
k=1

Therefore T3 = £((3)n® + o(n?).

Lemma 3.11 We have To = §(2((2) — ¢(3))n® + o(n®).

Proof. It is sufficient to prove that
n

tim > (/s %8 = $(26(2) — C(3))

n—o00 N
s=1

Fix an integer ng. Then

[n/37] n

1 <= .,
EZJ Z ZL”/S

J=1 s=[n/(i+1)]+1 s=1
/i

1
gﬁ Lno—i—lJ n3 Z] Z &

=1 s=[n/(G+1)]+1

Indeed, [n/s]s < n implies the inequality

1 [n/(no+1)] n 12 ) 1 \‘ n J
— i
n

n3 s ng + 1

S=T
e
3|~
C’JL\D
|
LWl =

- 5v)

[n/(G+1) | +1<s< [ n/]]

10



It follows that for all ng € N
Iex , (1 1 N | ni?
- — - )< - i
9 2.7 <j3 (j+1)3)\lhﬂgfn3ZLkJ F
. 1 n|2 4
ghmsup—BZ{EJ k

n—oo N

. Li_n |, 1% o (1 1
< limsup — = - — 7=
n—)oopn no + 1 3j: J ]3 (]+1)3

Since

. 1 n 1
lim sup — =
n—oo N |No+1 ng + 1

We obtain for ng — oo,

Finally we have
3 1 3
F(n)=n (1 + 5 (26(2) =€) + 5¢3) = 5¢(2) — —) +o(n”)
1 1 3 3
= (5 - EC(Q)) n® + o(n”)

1 2
= (5 - 7?:_6) n3 + o(n®)

which concludes the proof of Theorem 3.9. O

Note added in proof

(1) P. Shor has recently found a counterexample to the triangle conjecture.

(2) Problem P’ has been solved by P. Frankl. The conjectured estimate p(s,t) = (Sjt)
is correct. It follows that Theorem 3.8 can be sharpened as follows: if there exists
a word of rank < n—k in A there exists such a word of length < $k(k+1)(k+2)—1

(for3<k<n—1).
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