On two combinatorial problems arising from
automata theory

Jean-Éric Pin
LITP, CNRS and Université Paris 6 (France)

Abstract

We present some partial results on the following conjectures arising from automata theory. The first conjecture is the triangle conjecture due to Perrin and Schützenberger. Let $A = \{a, b\}$ be a two-letter alphabet, d a positive integer and let $B_d = \{a^i ba^j \mid 0 \leq i + j \leq d\}$. If $X \subset B_d$ is a code, then $|X| \leq d + 1$. The second conjecture is due to Černý and the author. Let A be an automaton with n states. If there exists a word of rank $\leq n - k$ in A, there exists such a word of length $\leq k^2$.

1 Introduction

The theory of automata and formal languages provides many beautiful combinatorial results and problems which, I feel, ought to be known. The book recently published: *Combinatorics on words*, by Lothaire [8], gives many examples of this.

In this paper, I present two elegant combinatorial conjectures which are of some importance in automata theory. The first one, recently proposed by Perrin and Schützenberger [9], was originally stated in terms of coding theory. Let $A = \{a, b\}$ be a two-letter alphabet and let A^* be the free monoid generated by A. Recall that a subset C of A^* is a code whenever the submonoid of A^* generated by C is free with base C; i.e., if the relation $c_1 \cdots c_p = c'_1 \cdots c'_q$, where $c_1, \ldots, c_p, c'_1, \ldots, c'_q$ are elements of C implies $p = q$ and $c_i = c'_i$ for $1 \leq i \leq p$. Set, for any $d > 0$, $B_d = \{a^i ba^j \mid 0 \leq i + j \leq d\}$. One can now state the following conjecture:

The triangle conjecture. Let $d > 0$ and $X \subset B_d$. If X is a code, then $|X| \leq d + 1$.

The term “The triangle conjecture” originates from the following construction: if one represents every word of the form $a^i ba^j$ by a point $(i, j) \in \mathbb{N}^2$, the set B_d is represented by the triangle $\{(i, j) \in \mathbb{N}^2 \mid 0 \leq i + j \leq d\}$. The second conjecture was originally stated by Černý (for $k = n - 1$) [3] and extended by the author. Recall that a finite automaton A is a triple (Q, A, δ), where Q is a finite set (called the set of states), A is a finite set (called the alphabet) and $\delta : Q \times A \to Q$ is a map. Thus δ defines an action of each letter of A on Q. For simplicity, the action of the letter a on the state q is usually denoted by qa. This action can be extended to A^* (the free monoid on A) by the associativity rule

$$(qw)a = q(wa) \text{ for all } q \in Q, w \in A^*, a \in A$$

Thus each word $w \in A^*$ defines a map from Q to Q and the rank of w in A is the integer $\text{Card}\{qw \mid q \in Q\}$.

One can now state the following

Conjecture (C). Let A be an automaton with n states and let $0 \leq k \leq n - 1$. If there exists a word of rank $\leq n - k$ in A, there exists such a word of length $\leq k^2$.

2 The triangle conjecture

I shall refer to the representation of X as a subset of the triangle $\{(i,j) \in \mathbb{N}^2 \mid 0 \leq i + j \leq d\}$ to describe some properties of X. For example, “X has at most two columns occupied” means that there exist two integers $0 \leq i_1 < i_2$ such that X is contained in $a^{i_1}ba^* \cup a^{i_2}ba^*$.

Only a few partial results are known on the triangle conjecture. First of all the conjecture is true for $d \leq 9$; this result has been obtained by a computer, somewhere in Italy.

In [5], Hansel computed the number t_n of words obtained by concatenation of n words of B_d. He deduced from this the following upper bound for $|X|$.

Theorem 2.1 Let $X \subseteq B_d$. If X is a code, then $|X| \leq (1 + (1/\sqrt{2}))(d + 1)$.

Perrin and Schützenberger proved the following theorem in [9].

Theorem 2.2 Assume that the projections of X on the two components are both equal to the set $\{0, 1, \ldots, r\}$ for some $r \leq d$. If X is a code, then $|X| \leq r + 1$.

Two further results have been proved by Simon and the author [15].

Theorem 2.3 Let $X \subseteq B_d$ be a set having at most two rows occupied. If X is a code, then $|X| \leq d + 1$.

Theorem 2.4 Assume there is exactly one column of $X \subseteq B_d$ with two points or more. If X is a code, then $|X| \leq d + 1$.

Corollary 2.5 Assume that all columns of X are occupied. If X is a code, then $|X| \leq d + 1$.

Proof. Indeed assume that $|X| > d + 1$. Then one of the columns of X has two points or more. Thus one can find a set $Y \subseteq X$ such that: (1) all columns but one of Y contain exactly one point; (2) the exceptional column contains two points. Since $|Y| > d + 1$, Y is a non-code by Theorem 2.4. Thus X is a non-code. □

Of course statements 2.3, 2.4, 2.5 are also true if one switches “row” and “column”.

3 A conjecture on finite automata

We first review some results obtained for Conjecture (C) in the particular case $k = n - 1$:

“Let A be an automaton with n states containing a word of rank 1. Then there exists such a word of length $\leq (n - 1)^2$.”

First of all the bound $(n - 1)^2$ is sharp. In fact, let $A_n = (Q, \{a, b\}, \delta)$, where $Q = \{0, 1, \ldots, n - 1\}$, $ia = i$ and $ib = i + 1$ for $i \neq n - 1$, and $(n - 1)a = (n - 1)b = 0$.

Then the word $(ab^{n-1})^{n-2}a$ has rank 1 and length $(n - 1)^2$ and this is the shortest word of rank 1 (see [3] or [10] for a proof).
Moreover, the conjecture has been proved for \(n = 1, 2, 3, 4 \) and the following upper bounds have been obtained

\[
\begin{align*}
2^n - n - 1 & \quad (\text{Černý [2], 1964}) \\
\frac{1}{2} n^3 - \frac{3}{2} n^2 + n + 1 & \quad (\text{Starke [16, 17], 1966}) \\
\frac{1}{2} n^3 - n^2 + \frac{n}{2} & \quad (\text{Kohavi [6], 1970}) \\
\frac{1}{3} n^3 - \frac{3}{2} n^2 + \frac{25}{6} n - 4 & \quad (\text{Černý, Pirická et Rosenauerová [4], 1971}) \\
\frac{7}{27} n^3 - \frac{17}{18} n^2 + \frac{17}{6} n - 3 & \quad (\text{Pin [11], 1978})
\end{align*}
\]

For the general case, the bound \(k^2 \) is also the best possible (see [10]) and the conjecture has been proved for \(k = 0, 1, 2, 3 \) [10]. The best known upper bound was

\[
\frac{1}{3} k^3 - \frac{1}{3} k^2 + \frac{13}{6} k - 1[11]
\]

We prove here some improvements of these results. We first sketch the idea of the proof. Let \(A = (Q, A, \delta) \) be an automaton with \(n \) states. For \(K \subseteq Q \) and \(w \in A^* \), we shall denote by \(Kw \) the set \(\{qw \mid q \in K\} \). Assume there exists a word of rank \(\leq n - k \) in \(A \). Since the conjecture is true for \(k \leq 3 \), one can assume that \(k \geq 4 \). Certainly there exists a letter \(a \) of rank \(\neq n \). (If not, all words define a permutation on \(Q \) and therefore have rank \(n \).) Set \(K_1 = Qa \). Next look for a word \(m_1 \) (of minimal length) such that \(K_2 = K_1 m_1 \) satisfies \(|K_2| < |K_1| \). Then apply the same procedure to \(K_2 \), etc. until one of the \(|K_i| \)'s satisfies \(|K_i| \leq n - k \):

\[
Q \xrightarrow{a} K_1 \xrightarrow{m_1} K_2 \xrightarrow{m_2} \cdots K_{r-1} \xrightarrow{m_{r-1}} K_r \quad |K_r| \leq n - k
\]

Then \(am_1 \cdots m_{r-1} \) has rank \(\leq n - k \).

The crucial step of the procedure consists in solving the following problem:

Problem P. Let \(A = (Q, A, \delta) \) be an automaton with \(n \) states, let \(2 \leq m \leq n \) and let \(K \) be an \(m \)-subset of \(Q \). Give an upper bound of the length of the shortest word \(w \) (if it exists) such that \(|Kw| < |K| \).

There exist some connections between Problem P and a purely combinatorial Problem P'.

Problem P'. Let \(Q \) be an \(n \)-set and let \(s \) and \(t \) be two integers such that \(s + t \leq n \). Let \((S_i)_{1 \leq i \leq p} \) and \((T_i)_{1 \leq i \leq p} \) be subsets of \(Q \) such that

1. For \(1 \leq i \leq p \), \(|S_i| = s \) and \(|T_i| = t \).
2. For \(1 \leq i \leq p \), \(S_i \cap T_i = \emptyset \).
3. For \(1 \leq j < i \leq p \), \(S_j \cap T_i = \emptyset \).

Find the maximum value \(p(s, t) \) of \(p \).

We conjecture that \(p(s, t) = \binom{s+t}{s} = \binom{s+t}{t} \). Note that if (3) is replaced by

3' For \(1 \leq i \neq j \leq p \), \(S_i \cap T_j = \emptyset \).

then the conjecture is true (see Berge [1, p. 406]).

We now state the promised connection between Problems P and P'.

Proposition 3.1 Let \(A = (Q, A, \delta) \) be an automaton with \(n \) states, let \(0 \leq s \leq n - 2 \) and let \(K \) be an \((n - s)\)-subset of \(Q \). If there exists a word \(w \) such that \(|Kw| < |K| \), one can choose \(w \) with length \(\leq p(s, 2) \).
Proof. Let \(w = a_1 \cdots a_p \) be a shortest word such that \(|K\, w| < |K| = n - s\) and define \(K_1 = K, K_2 = K_1a_1, \ldots, K_p = K_{p-1}a_{p-1} \). Clearly, an equality of the form \(|K_i| = |K_{a_1} \cdots a_i| < |K|\) for some \(i < p \) is inconsistent with the definition of \(w \). Therefore \(|K_1| = |K_2| = \cdots = |K_p| = (n - s)\). Moreover, since \(|K_p a_p| < |K_p|\), \(K_p \) contains two elements \(x_p \) and \(y_p \) such that \(x_p a_p = y_p a_p \).

Define 2-sets \(T_i = \{x_i, y_i\} \subset K_i \) such that \(x_i a_i = x_{i+1} \) and \(y_i a_i = y_{i+1} \) for \(1 \leq i \leq p - 1 \) (the \(T_i \) are defined from \(T_p = \{x_p, y_p\} \)). Finally, set \(S_i = {\varnothing} \setminus K_i \). Thus we have
1. For \(1 \leq i \leq p \), \(|S_i| = s\) and \(|T_i| = 2\).
2. For \(1 \leq i \leq p \), \(S_i \cap T_i = {\varnothing} \).

Finally assume that for some \(1 \leq i < j \leq p \), \(S_i \cap T_i \neq {\varnothing} \), i.e., \(\{x_i, y_i\} \subset K_i \). Since
\[x_i a_i \cdots a_p = y_i a_i \cdots a_p, \]
it follows that
\[|K a_1 \cdots a_{j-1} a_i \cdots a_p| = |K_j a_i \cdots a_p| < n - s \]
But the word \(a_1 \cdots a_{j-1} a_i \cdots a_p \) is shorter than \(w \), a contradiction.

Thus the condition (3), for \(1 \leq j < i \leq p \), \(S_j \cap T_j \neq {\varnothing} \), is satisfied, and this concludes the proof. □

I shall give two different upper bounds for \(p(s) = p(2, s) \).

Proposition 3.2

1. \(p(0) = 1 \),
2. \(p(1) = 3 \),
3. \(p(s) \leq s^2 - s + 4 \) for \(s \geq 2 \).

Proof. First note that the \(S_i \)'s (\(T_i \)'s) are all distinct, because if \(S_i = S_j \) for some \(j < i \), then \(S_i \cap T_i = {\varnothing} \) and \(S_i \cap T_j \neq {\varnothing} \), a contradiction.

Assertion (1) is clear.

To prove (2) assume that \(p(1) > 3 \). Then, since \(T_4 \cap S_1 \neq {\varnothing} \), \(T_4 \cap S_2 \neq {\varnothing} \), \(T_4 \cap S_3 \neq {\varnothing} \), \(T_4 \cap S_4 \neq {\varnothing} \), two of the three 1-sets \(S_1, S_2, S_3 \) are equal, a contradiction.

On the other hand, the sequence \(S_1 = \{x_1\}, S_2 = \{x_2\}, S_3 = \{x_3\}, T_1 = \{x_2, x_3\}, T_2 = \{x_1, x_2\}, T_3 = \{x_1, x_2\} \) satisfies the conditions of Problem P'. Thus \(p(1) = 3 \).

To prove (3) assume at first that \(S_1 \cap S_2 = {\varnothing} \) and consider a 2-set \(T_i \) with \(i \geq 4 \). Such a set meets \(S_1, S_2, S_3 \). Since \(S_1 \) and \(S_2 \) are disjoint sets, \(T_i \) is composed as follows:

- either an element of \(S_1 \cap S_3 \) with an element of \(S_2 \setminus S_3 \),
- or an element of \(S_1 \cap S_3 \) with an element of \(S_2 \cap S_3 \),
- or an element of \(S_1 \setminus S_3 \) with an element of \(S_2 \cap S_3 \).

Therefore
\[
p(s) - 3 \leq |S_1 \cap S_3||S_2 \setminus S_3| + |S_1 \cap S_3||S_2 \setminus S_3| + |S_1 \setminus S_3||S_2 \cap S_3|
\]
\[
= |S_1 \setminus S_3||S_2| + |S_1||S_2 \cap S_3| - |S_1 \cap S_3||S_2 \cap S_3|
\]
\[
= s(|S_1 \cap S_3| + |S_2 \setminus S_3|) - |S_1 \cap S_3||S_2 \cap S_3|
\]

Since \(S_1, S_2, S_3 \) are all distinct, \(|S_1 \cap S_3| \leq s - 1\). Thus if \(|S_1 \cap S_3| = 0 \) or \(|S_2 \cap S_3| = 0 \) it follows that
\[
p(s) \leq s(s - 1) + 3 = s^2 - s + 3
\]
If \(|S_1 \cap S_3| \neq 0 \) and \(|S_2 \cap S_3| \neq 0 \), one has
\[
|S_1 \cap S_3||S_2 \cap S_3| \geq |S_1 \setminus S_3||S_2 \cap S_3| - 1,
\]

4
and therefore:

\[p(s) \leq 3 + (s - 1)(|S_1 \cap S_3| + |S_2 \cap S_3|) + 1 \leq s^2 - s + 4, \]

since \(|S_1 \cap S_3| + |S_2 \cap S_3| \leq |S_3| = s \).

We now assume that \(a = |S_1 \cap S_2| > 0 \), and we need some lemmata.

Lemma 3.3 Let \(x \) be an element of \(Q \). Then \(x \) is contained in at most \((s + 1)T_i \)'s.

Proof. If not there exist \((s + 2)\) indices \(i_1 < \ldots < i_{s+2} \) such that \(T_{i_j} = \{x, x_{i_j}\} \) for \(1 \leq j \leq s + 2 \). Since \(S_1 \cap T_{i_1} \neq \emptyset \), \(x \notin S_1 \). On the other hand, \(S_{i_1} \) meets all \(T_{i_j} \) for \(2 \leq j \leq s + 2 \) and thus the \(s \)-set \(S_{i_1} \) has to contain the \(s + 1 \) elements \(x_{i_2}, \ldots, x_{i_{s+2}} \), a contradiction. \(\Box \)

Lemma 3.4 Let \(R \) be an \(r \)-subset of \(Q \). Then \(R \) meets at most \((rs + 1)T_i \)'s.

Proof. The case \(r = 1 \) follows from Lemma 3.3. Assume \(r \geq 2 \) and let \(x \) be an element of \(R \) contained in a maximal number \(N_x \) of \(T_i \)'s. Note that \(N_x \leq s + 1 \) by Lemma 3.3. If \(N_x \leq s \) for all \(x \in R \), then \(R \) meets at most \(rs \) \(T_i \)'s. Assume there exists an \(x \in R \) such that \(N_x = s + 1 \). Then \(x \) meets \((s + 1)T_i \)'s, say \(T_{i_1} = \{x, x_{i_1}\}, \ldots, T_{i_{s+1}} = \{x, x_{i_{s+1}}\} \) with \(i_1 < \ldots < i_{s+1} \).

We claim that every \(y \neq x \) meets at most \(s \) \(T_i \)'s such that \(i \neq i_1, \ldots, i_{s+1} \). If not, there exist \(s + 1 \) sets \(T_{j_1} = \{y, y_{j_1}\}, \ldots, T_{j_{s+1}} = \{y, y_{j_{s+1}}\} \) with \(j_1 < \ldots < j_{s+1} \) containing \(y \). Assume \(i_1 < j_1 \) (a dual argument works if \(j_1 < i_1 \)). Since \(S_{i_1} \cap T_{i_1} = \emptyset \), \(x \notin T_{j_1} \) and since \(S_{i_1} \) meets all other \(T_{j_k} \), \(S_{i_1} = \{x_{i_2}, \ldots, x_{i_{s+1}}\} \). If \(y \in T_{i_1} \), \(y \) belongs to \((s + 2)T_i \)'s in contradiction to Lemma 3.3. Thus \(|S_{i_1}| > s \), a contradiction. This proves the claim and the lemma follows easily. \(\Box \)

We can now conclude the proof of (3) in the case \(|S_1 \cap S_2| = a > 0 \). Consider a \(2 \)-set \(T_i \) with \(i \geq 3 \). Since \(T_i \) meets \(S_1 \) and \(S_2 \), either \(T_i \) meets \(S_1 \cap S_2 \), or \(T_i \) meets \(S_1 \setminus S_2 \) and \(S_2 \setminus S_1 \). By Lemma 3.4, there are at most \((as + 1)T_i \)'s of the first type and at most \((s - a)^2T_i \)'s of the second type. It follows that

\[p(s) - 2 \leq (s - a)^2 + as + 1 \]

and hence \(p(s) \leq s^2 + a^2 - as + 3 \leq s^2 - s + 4 \), since \(1 \leq a \leq s - 1 \). \(\Box \)

Two different upper bounds were promised for \(p(s) \). Here is the second one, which seems to be rather unsatisfying, since it depends on \(n = |Q| \). In fact, as will be shown later, this new bound is better than the first one for \(s > \lfloor n/2 \rfloor \).

Proposition 3.5 Let \(a = n/(n - s) \). Then

\[p(s) \leq \frac{1}{2}ns + a = \left(\frac{a + 1}{2} \right)s^2 + (1 - a^2)ns + \left(\frac{a}{2} \right)n^2 + a \]

if \(n - s \) divides \(n \), and

\[p(s) \leq \left(\frac{a + 1}{2} \right)s^2 + (1 - a^2)ns + \left(\frac{a}{2} \right)n^2 + a + 1 \]

if \(n - s \) does not divide \(n \).
Proof. Denote by \(N_i \) the number of 2-sets meeting \(S_j \) for \(j < i \) but not meeting \(S_i \). Note that the conditions of Problem P’ just say that \(N_i > 0 \) for all \(i \leq p(s) \). The idea of the proof is contained in the following formula

\[
\sum_{1 \leq i \leq p(s)} N_i \leq \binom{n}{2} \tag{1}
\]

This is clear since the number of 2-subsets of \(Q \) is \(\binom{n}{2} \). The next lemma provides a lower bound for \(N_i \).

Lemma 3.6 Let \(Z_i = \bigcap_{j < i} S_j \setminus S_i \) and \(|Z_i| = z_i \). Then \(N_i \geq \binom{z_i}{2} + z_i(n - s - z_i) \).

Proof. Indeed, any 2-set contained in \(Z_i \) and any 2-set consisting of an element of \(Z_i \) and of an element of \(Q \setminus (S_i \cup Z_i) \) meets all \(S_j \) for \(j < i \) but does not meet \(S_i \).

We now prove the proposition. First of all we claim that

\[
\bigcup_{1 \leq i \leq p(s)} Z_i = Q
\]

If not,

\[
Q \setminus (\bigcup Z_i) = \bigcap_{1 \leq i \leq p(s)} S_i
\]

is nonempty, and one can select an element \(x \) in this set. Let \(T \) be a 2-set containing \(x \) and \(S \) be an \(s \)-set such that \(S \cap T = \emptyset \). Then the two sequences \(S_1, \ldots, S_{p(s)} \), \(S \) and \(T_1, \ldots, T_{p(s)}, T \) satisfy the conditions of Problem P’ in contradiction to the definition of \(p(s) \). Thus the claim holds and since all \(Z_i \)'s are pairwise disjoint:

\[
\sum z_i = n \tag{2}
\]

It now follows from (1) that

\[
p(s) \leq \binom{n}{2} - \sum_{1 \leq i \leq p(s)} (N_i - 1) \tag{3}
\]

Since \(N_i > 0 \) for all \(i \), Lemma 3.6 provides the following inequality:

\[
p(s) \leq \binom{n}{2} - \sum_{z_i > 0} f(z_i) \tag{4}
\]

where \(f(z) = \binom{z}{2} + z(n - s - z) - 1 \).

Thus, it remains to find the minimum of the expression \(\sum f(z_i) \) when the \(z_i \)'s are submitted to the two conditions

(a) \(\sum z_i = n \) (see (2)) and
(b) \(0 < z_i \leq n - s \) (because \(Z_i \subset Q \setminus S_i \)).

Consider a family \(\langle z_i \rangle \) reaching this minimum and which furthermore contains a minimal number \(\alpha \) of \(z_i \)'s different from \((n - s) \).

We claim that \(\alpha \leq 1 \). Assume to the contrary that there exist two elements different from \(n - s \), say \(z_1 \) and \(z_2 \). Then an easy calculation shows that

\[
f(z_1 + z_2) \leq f(z_1) + f(z_2) \quad \text{if } z_1 + z_2 \leq n - s,
\]

\[
f(n - s) + f(z_1 + z_2 - (n - s)) \leq f(z_1) + f(z_2) \quad \text{if } z_1 + z_2 > n - s.
\]

Thus replacing \(z_1 \) and \(z_2 \) by \(z_1 + z_2 \) — in the case \(z_1 + z_2 \leq n - s \)— or by \((n - s) \) and \(z_1 + z_2 - (n - s) \)— in the case \(z_1 + z_2 > n - s \) — leads to a family \(\langle z_i' \rangle \) such that \(\sum f(z_i') \leq \sum f(z_i) \) and containing at most \((\alpha - 1) \) elements \(z_i' \) different from \(n - s \), in
contradiction to the definition of the family \((z_i)\). Therefore \(\alpha = 1\) and the minimum of \(f(z_i)\) is obtained for
\[
z_1 = \cdots = z_\alpha = n - s \quad \text{if } n = a(n - s),
\]
and for
\[
z_1 = \cdots = z_\alpha = n - s, \quad z_{\alpha+1} = r \quad \text{if } n = a(n - s) + r \text{ with } 0 < r < n - s.
\]
It follows from inequality (4) that
\[
p(s) \leq \binom{n}{2} - af(n - s) \quad \text{if } n = a(n - s),
\]
\[
p(s) \leq \binom{n}{2} - af(n - s) - f(r) \quad \text{if } n = a(n - s) + r \text{ with } 0 < r < n - s.
\]
where \(f(z) = \binom{n}{2} + z(n - z) - 1\).
Proposition 3.5 follows by a routine calculation.

We now compare the two upper bound for \(p(s)\) obtained in Propositions 3.2 and 3.5 for \(2 \leq s \leq n - 2\).

Case 1. \(2 \leq s \leq (n/2) - 1\).
Then \(a = 1\) and Proposition 3.5 gives \(p(s) \leq s^2 + 2\). Clearly \(s^2 - s + 4\) is a better upper bound.

Case 2. \(s = n/2\).
Then \(a = 2\) and Proposition 3.5 gives \(p(s) \leq s^2 + 2\). Again \(s^2 - s + 4\) is better.

Case 3. \((n + 1)/2 \leq s \leq (2n - 1)/3\).
Then \(a = 2\) and Proposition 3.5 gives
\[
p(s) \leq 3s^2 - 3ns + n^2 + 3 = s^2 - s + 4 + (n - s - 1)(n - 2s + 1)
\leq s^2 - s + 4
\]

Case 4. \(2n/3 \leq s\).
Then \(a \geq 3\) and Proposition 3.5 gives
\[
p(s) \leq \left(\frac{a+1}{2}\right)s^2 + (1 - a^2)ns + \left(\frac{a}{2}\right)n^2 + a + 1
\leq s^2 - s + \frac{1}{2}(a - 1)(n - s)^2 - ((a - 1)(n - s) - 1)s + a + 1
\]
Since \(s \leq (1 - a)(n - s)\), a short calculation shows that
\[
p(s) \leq s^2 - s + 4 - \frac{1}{2}(a - 1)(n - s)^2 + (a - 1)(n - s) + (a - 3)
\]
Since \(a \geq 3\), \(-\frac{1}{2}(a - 1) \leq -1\) and thus
\[
p(s) \leq s^2 - s + 4 - (a - 2)(n - s)^2 + (a - 1)(n - s) + (a - 3),
\]
and it is not difficult to see that for \(n - s \geq 2\),
\[-(a - 2)(n - s)^2 + (a - 1)(n - s) + (a - 3) \leq 0\]
Therefore Proposition 3.5 gives a better bound in this case.

The next theorem summarizes the previous results.

7
Theorem 3.7 Let $\mathcal{A} = (Q, A, \delta)$ be an automaton with n states, let $0 \leq s \leq n - 2$ and let K be an $(n - s)$-subset of Q. If there exists a word w such that $|Kw| < |K|$, one can choose w with length $\leq \varphi(n, s)$ where $a = \lfloor n/(n - s) \rfloor$ and

$$
\varphi(n, s) = \begin{cases}
1 & \text{if } s = 0, \\
3 & \text{if } s = 3, \\
\frac{a + 1}{2} n^2 + (1 - a^2)ns + \left(\frac{a}{2}\right)n^2 + a = \frac{1}{2}ns + a & \text{if } n = a(n - s) \text{ and } s > n/2, \\
\frac{a + 1}{2} n^2 + (1 - a^2)ns + \left(\frac{a}{2}\right)n^2 + a + 1 & \text{if } n - s \text{ does not divide } n \text{ and } s > n/2.
\end{cases}
$$

We can now prove the main results of this paper.

Theorem 3.8 Let \mathcal{A} be an automaton with n states and let $0 \leq k \leq n - 1$. If there exists a word of rank $\leq n - k$ in \mathcal{A}, there exists such a word of length $\leq G(n, k)$ where

$$
G(n, k) = \begin{cases}
k^2 & \text{for } k = 0, 1, 2, 3, \\
\frac{1}{4}k^3 - k^2 + \frac{14}{3}k - 5 & \text{for } 4 \leq k \leq (n - 2) + 1, \\
9 + \sum_{3 \leq s \leq k-1} \varphi(n, s) & \text{for } k \geq (n + 3)/2.
\end{cases}
$$

Observe that in any case

$$G(n, k) \leq \frac{1}{3}k^3 - k^2 + \frac{14}{3}k - 5$$

Table 1 gives values of $G(n, k)$ for $0 \leq k \leq n \leq 12$.

<table>
<thead>
<tr>
<th>k \ n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>9</td>
<td>19</td>
<td>34</td>
<td>56</td>
<td>85</td>
<td>125</td>
<td>173</td>
<td>235</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>19</td>
<td>35</td>
<td>57</td>
<td>89</td>
<td>128</td>
<td>180</td>
<td>244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>19</td>
<td>35</td>
<td>59</td>
<td>90</td>
<td>133</td>
<td>186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>19</td>
<td>35</td>
<td>59</td>
<td>93</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>19</td>
<td>35</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Values of $G(n, k)$ for $0 \leq k \leq n \leq 12$.

Proof. Assume that there exists a word w of rank $\leq n - k$ in \mathcal{A}. Since Conjecture (C) has been proved for $k \leq 3$, we may assume $k \geq 4$ and there exists a word w_1 of length ≤ 9 such that $Qw_1 = K_1$ satisfies $|K_1| \leq n - 3$. It suffices now to apply the method described at the beginning of this section which consists of using Theorem 3.7 repetitively. This method shows that one can find a word of rank $\leq n - k$ in \mathcal{A} of length...
\[\leq 9 + \sum_{3 \leq s \leq k-1} \varphi(n, s) = G(n, k). \] In particular, \(\varphi(n, s) = s^2 - s + 4 \) for \(s \leq n/2 \) and thus
\[G(n, k) = \frac{1}{3}k^3 - k^2 + \frac{14}{3}k - 5 \text{ for } 4 \leq k \leq (n-2) + 1. \]
It is interesting to have an estimate of \(G(n, k) \) for \(k = n-1. \)

Theorem 3.9 Let \(A \) be an automaton with \(n \) states. If there exists a word of rank 1 in \(A \), there exists such a word of length \(\leq F(n) \) where
\[F(n) = \left(\frac{1}{2} - \frac{\pi^2}{36} \right)n^3 + o(n^3). \]

Note that this bound is better than the bound in \(\frac{7}{27}n^3 \), since \(\frac{7}{27} \approx 0.2593 \) and \(\left(\frac{1}{2} - \frac{\pi^2}{36} \right) \approx 0.2258. \)

Proof. Let \(h(n, s) = \binom{n+1}{2}s^2 + (1-a^2)ns + \binom{n}{2}a^2 + a + \varepsilon(s) \), where
\[\varepsilon(s) = \begin{cases} 0 & \text{if } n = a(n-s) \\ 1 & \text{if } n-s \text{ does not divide } n. \end{cases} \]
The above calculations have shown that for \(3 \leq s \leq n/2, \)
\[s^2 - s + 4 \leq h(n, s) \leq s^2 + 2. \]
Therefore
\[\sum_{0 \leq s \leq n/2} \varphi(n, s) \sim 9 + \sum_{3 \leq s \leq n-2} s^2 \sim \frac{1}{24}n^3 \sim \sum_{0 \leq s \leq n/2} h(n, s). \]
It follows that
\[F(n) = G(n, n-1) = \sum_{0 \leq s \leq n-2} h(n, s) + o(n^3) = \sum_{0 \leq s \leq n-1} h(n, s) + o(n^3) \]
A new calculation shows that
\[h(n, n-s) = n^2 + ([n/s] + 1)(\frac{1}{2}[n/s]s^2 - sn + 1) - \varepsilon(n-s) \]
Therefore
\[F(n) = \sum_{1 \leq i \leq 6} T_i(n) + o(n^3) \]
where
\[T_1 = \sum_{s=1}^{n} s^2 = n^3, \quad T_4 = -n \sum_{s=1}^{n} [n/s]s \]
\[T_4 = \frac{1}{2} \sum_{s=1}^{n} [n/s]s^2, \quad T_5 = -n \sum_{s=1}^{n} s, \]
\[T_3 = \frac{1}{2} \sum_{s=1}^{n} [n/s]s, \quad T_6 = \sum_{s=1}^{n} [n/s]s + 1 - \varepsilon(n-s). \]
Clearly \(T_5 = -\frac{1}{2}n^3 + o(n^3) \) and \(T_6 = o(n^3) \). The terms \(T_2, T_3 \) and \(T_4 \) need a separate study.
Lemma 3.10 We have $T_3 = \frac{1}{6} \zeta(3)n^3 + o(n^3)$ and $T_4 = -\frac{1}{2} \zeta(2)n^3 + o(n^3)$, where $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$ is the usual zeta-function.

These two results are easy consequences of classical results of number theory (see [7, p. 117, Theorem 6.29 and p. 121, Theorem 6.34])

\[
(a) \quad \sum_{s=1}^{n} \lfloor \frac{n}{s} \rfloor s = \sum_{d=1}^{n} \sum_{s=1}^{\lfloor n/d \rfloor} s = \frac{1}{2} \sum_{s=1}^{n} (\lfloor n/s \rfloor^2 + \lfloor n/s \rfloor) = \frac{1}{2} n^2 \sum_{k=1}^{n} \left\lfloor \frac{1}{k^2} \right\rfloor + o(n^2) = \frac{1}{2} \zeta(2)n^2 + o(n^2)
\]

Therefore $T_4 = -\frac{1}{2} \zeta(2)n^3 + o(n^3)$.

\[
(b) \quad \sum_{s=1}^{n} \lfloor \frac{n}{s} \rfloor^2 s^2 = \sum_{d=1}^{n} \sum_{s=1}^{\lfloor n/d \rfloor} s^2 = \frac{1}{2} \sum_{s=1}^{n} (2\lfloor n/s \rfloor^3 + 3\lfloor n/s \rfloor^2 + \lfloor n/s \rfloor) = \frac{1}{3} n^3 \left(\sum_{k=1}^{n} \frac{1}{s^2} \right) + o(n^3) = \frac{1}{3} \zeta(3)^3 + o(n^3)
\]

Therefore $T_3 = \frac{1}{6} \zeta(3)n^3 + o(n^3)$.

Lemma 3.11 We have $T_2 = \frac{1}{6} (2\zeta(2) - \zeta(3))n^3 + o(n^3)$.

Proof. It is sufficient to prove that

\[
\lim_{n \to \infty} \frac{1}{n^3} \sum_{s=1}^{n} \lfloor n/s \rfloor^2 s^2 = \frac{1}{6} (2\zeta(2) - \zeta(3))
\]

Fix an integer n_0. Then

\[
\frac{1}{n^3} \sum_{j=1}^{n_0} j^2 \sum_{s=\lfloor n/(j+1) \rfloor + 1}^{\lfloor n/j \rfloor} s^2 \leq \frac{1}{n^3} \sum_{s=1}^{n} \lfloor n/s \rfloor^2 s^2 \leq \frac{1}{n} \left\lfloor \frac{n}{n_0 + 1} \right\rfloor + \frac{1}{n^3} \sum_{j=1}^{n_0} j^2 \sum_{s=\lfloor n/(j+1) \rfloor + 1}^{\lfloor n/j \rfloor} s^2
\]

Indeed, $\lfloor n/s \rfloor s \leq n$ implies the inequality

\[
\frac{1}{n^3} \sum_{s=1}^{\lfloor n/(n_0+1) \rfloor} \frac{n}{s}^2 s^2 \leq \frac{1}{n} \left\lfloor \frac{n}{n_0 + 1} \right\rfloor
\]

Now

\[
\lim_{n \to \infty} \frac{1}{n^3} \sum_{s=\lfloor n/(j+1) \rfloor + 1 \leq s \leq \lfloor n/j \rfloor} s^2 = \frac{1}{3} \left(\frac{1}{j^3} - \frac{1}{(j+1)^3} \right)
\]
It follows that for all \(n_0 \in \mathbb{N} \)
\[
\frac{1}{2} \sum_{j=1}^{n_0} j^2 \left(\frac{1}{j^2} - \frac{1}{(j+1)^2} \right) \leq \lim \inf_{n \to \infty} \frac{1}{n^3} \sum_{k=1}^{n} \left(\frac{n}{k} \right)^2 k^2 \\
\leq \lim \sup_{n \to \infty} \frac{1}{n^3} \sum_{k=1}^{n} \left(\frac{n}{k} \right)^2 k^2 \\
\leq \lim \sup_{n \to \infty} \frac{1}{n} \left| \frac{n}{n_0 + 1} \right| + \frac{1}{3} \sum_{j=1}^{n_0} j^2 \left(\frac{1}{j^3} - \frac{1}{(j+1)^3} \right)
\]
Since
\[
\lim \sup_{n \to \infty} \frac{1}{n} \left| \frac{n}{n_0 + 1} \right| = \frac{1}{n_0 + 1}
\]
We obtain for \(n_0 \to \infty \),
\[
\lim_{n \to \infty} \frac{1}{n^3} \sum_{s=1}^{n} \left\lfloor \frac{n}{s} \right\rfloor^2 s^2 = \frac{1}{3} \sum_{j=1}^{\infty} j^2 \left(\frac{1}{j^3} - \frac{1}{(j+1)^3} \right) \\
= \frac{1}{3} \sum_{j=1}^{\infty} \frac{2j - 1}{j^3} = \frac{1}{3} (2\zeta(2) - \zeta(3))
\]
Finally we have
\[
F(n) = n^3 \left(1 + \frac{1}{6} (2\zeta(2) - \zeta(3)) + \frac{1}{6} \zeta(3) - \frac{1}{2} \zeta(2) - \frac{1}{2} \right) + o(n^3) \\
= \left(\frac{1}{2} - \frac{1}{6} \zeta(2) \right) n^3 + o(n^3) \\
= \frac{1}{2} \frac{\pi^2}{36} n^3 + o(n^3)
\]
which concludes the proof of Theorem 3.9.

Note added in proof

(1) P. Shor has recently found a counterexample to the triangle conjecture.
(2) Problem P' has been solved by P. Frankl. The conjectured estimate \(p(s, t) = \binom{s+t}{s} \) is correct. It follows that Theorem 3.8 can be sharpened as follows: if there exists a word of rank \(\leq n-k \) in \(A \) there exists such a word of length \(\leq \frac{1}{6} k(k+1)(k+2) - 1 \) (for \(3 \leq k \leq n-1 \)).

References

