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This paper arose during the preparation of [11], a paper on pro-p topolo-
gies extending the results of [12]. After recollecting various assertions on
profinite topologies, we tried to improve existing statements and to arrange
our notes into a readable form. We soon realized that many results were
spread out in the literature, some of them not being stated in the way we
wished and some other ones simply missing. At the end, we decided there
was place for a self-contained presentation of this material. This is the way
this paper was born.

Let us describe the framework of this paper. We consider pro-V uni-
formities associated with a variety of finite monoids, but in contrast with
the standard literature [2, 3, 4], we work with arbitrary monoids and not
only with free or free profinite monoids. A more general framework could be
achieved by associating uniformities with varieties of finite ordered monoids,
like in [13], or even with lattices of recognizable sets, like in [8], but the
present level of generality is sufficient for the applications we have in mind
in [11].

Thus we fix an arbitrary monoid M and a variety of finite monoids V.
The intuitive idea underlying the definition of the pro-V uniformity on M
is that any morphism ϕ from M onto a monoid of V defines an entourage,
which consists of the pairs of elements of M that cannot be distinguished
by ϕ. The aim of this paper is to address two general questions on these
uniform structures and a few more specialized ones that were motivated by
our paper [11].

A first question is whether pro-V uniformities can be defined by a metric
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or a pseudometric. This is a nontrivial question, since the pseudometric
naturally associated a variety of finite monoids V does not necessarily define
the pro-V uniformity, even if this uniformity is metrizable. . . We clarify this
question in Section 3 (see in particular Propositions 3.1 and 3.2).

The second question of general interest is the description of continous
and uniformly continuous functions. We first give a characterization of these
functions in term of recognizable sets (Theorem 4.1) and use it to extend a
result of Reutenauer and Schützenberger on continuous functions for the pro-
group topology (Corollary 4.3). Next we introduce the notion of hereditary
continuity and discuss the behaviour of our three main properties (continu-
ity, uniform continuity, hereditary continuity) under composition, product
or exponential.

The last section is more specialized and is mainly motivated by the
applications to [11]. We analyse the properties of V-uniform continuity
when V is the intersection — or the join — of a family of varieties and we
discuss in some detail the case where V is commutative.

1 Topology and uniform structures

This section surveys the basic definitions and results on uniform spaces
which will be needed in the sequel. For more details, the reader is referred
to [6, 7].

1.1 Uniform spaces

Let X be a set. The subsets of X × X can be viewed as relations on X.
In particular, if U and V are subsets of X ×X, we use the notation UV to
denote the composition of the two relations, that is, the set

UV =
{
(x, y) ∈ X ×X | there exists z ∈ X, (x, z) ∈ U and (z, y) ∈ V

}
.

Given a relation U , the transposed relation of U is the relation

tU =
{
(x, y) ∈ X ×X | (y, x) ∈ U

}

A relation U is symmetrical if tU = U . Finally, if x ∈ X and U ⊆ X ×X,
we write U(x) for the set {y ∈ X | (x, y) ∈ U}.

A uniformity on a set X is a non empty set U of subsets of X × X
satisfying the following properties:

(1) if a subset U of X ×X contains an element of U , then U ∈ U ,

(2) the intersection of any two elements of U contains an element of U ,

(3) each element of U contains the diagonal of X ×X,

(4) for each U ∈ U , tU ∈ U ,

(5) for each U ∈ U , there exists V ∈ U such that V V ⊆ U .
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If U is a uniformity on the set X, the elements of U are called entourages.
Note that X ×X is always an entourage. The pair (X,U) (or the set X if
U is understood) is called a uniform space.

For each x ∈ X, let U(x) = {U(x) | U ∈ U}. There exists a unique
topology on X, called the topology induced by U , for which U(x) is the filter
of neighborhoods of x for each x ∈ X. A uniform space (X,U) is Hausdorff
if the induced topology is Hausdorff. This is equivalent to requiring that the
intersection of all the entourages of U is equal to the diagonal of X ×X.

A basis of a uniformity U is a subset B of U such that each element of
U contains an element of B. In particular, U consists of all the relations on
X containing an element of B. We say that U is generated by B. A set B
of subsets of X ×X is a basis of some uniformity if and only if it satisfies
properties (2), (3), (5) and (4’):

(4′) for each U ∈ B, there exists U ′ ∈ B such that U ′ ⊆ tU .

An entourage U is transitive if UU ⊆ U . A uniformity is said to be transitive
if it has a basis consisting of transitive entourages. It is said to be totally
bounded if, for each entourage U , there exist finitely many subsetsB1, . . . , Bn
of X such that X =

⋃
iBi and

⋃
i(Bi × Bi) ⊆ U . The interest of totally

bounded uniformities lies in the following result, which is a consequence of
[7, TG.II.29, Thm. 3].

Proposition 1.1 Let (X,U) be an Hausdorff uniform space. Then the com-
pletion of X is compact if and only if U is totally bounded.

Example 1.1 Let X be a set. Given a finite partition P = {P1, . . . , Pn} of
X, let

UP =
⋃

16i6n

Pi × Pi

The sets of the form UP , where P runs over the class of finite partitions of X,
form the basis of a transitive, totally bounded uniformity. By Proposition
1.1, the profinite completion of X is compact.

If (X,U) and (Y,V) are uniform spaces, a function ϕ : X → Y is said
to be uniformly continuous if, for each entourage V of V, (ϕ × ϕ)−1(V ) is
an entourage of U , or, equivalenty, there exists an entourage U ∈ U such
that ϕ(U) ⊆ V . Naturally, (simple) continuity of ϕ refers to the induced
topologies.

1.2 Pseudometrics

Recall that a metric on a set X is a mapping d : X×X → R
+ satisfying the

following conditions:

(1) for all x, y ∈ X, d(x, y) = 0 if and only if x = y.

(2) for all x, y ∈ X, d(x, y) = d(y, x),
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(3) if x, y, z ∈ X, then d(x, z) 6 d(x, y) + d(y, z).

A pseudometric satisfies conditions (2), (3) and the following weaker version
of condition (1):

(1′) for every x ∈ X, d(x, x) = 0.

Finally, a pseudometric is ultrametric if it satisfies the following stronger
version of condition (3):

(3′) For each x, y, z ∈ X, d(x, z) 6 max(d(x, y), d(y, z)).

In this paper, we are mostly interested in pseudo-ultrametrics, that we sim-
ply call pu-metrics to keep a short name.

A pseudometric d on a set X naturally defines a uniformity U on X. A
basis of U is given by the subsets of X ×X of the form

Uε = {(x, y) ∈ X ×X | d(x, y) < ε} (ε > 0)

If d is a pu-metric, the uniformity is transitive. Two pu-metrics on the set
X are said to be uniformly equivalent if they define the same uniformity.

It is easily verified that if d and d′ are pseudometrics, respectively on X
and on Y , and if U and U ′ are the uniformities defined by these pseudomet-
rics, then a function ϕ : (X,U) → (X ′,U ′) is uniformly continuous if and
only if for all ε > 0, there exists δ > 0 such that, for all x, y ∈ X, d(x, y) < δ
implies d′(ϕ(x), ϕ(y)) < ε.

The uniformities that can be defined by a pu-metric are characterized
by the following property (see [6, TG.IX.2, Theorem 1]).

Proposition 1.2

(1) A transitive uniformity can be defined by a pu-metric if and only if it
has a countable basis.

(2) A transitive Hausdorff uniformity can be defined by an ultrametric if
and only if it has a countable basis.

2 Varieties

2.1 Definitions

A Birkhoff variety of monoids is a class of monoids closed under taking
submonoids, quotients and direct products.

A variety of finite monoids (also called pseudovariety in the literature)
is a class of finite monoids closed under taking submonoids, quotients and
finite direct products. In the sequel, we shall use freely the term variety
instead of variety of finite monoids. Examples include the variety A of
finite aperiodic monoids and the variety G of finite groups.

The join of a family of varieties (Vi)i∈I is the smallest variety containing
all the varieties Vi, for i ∈ I.
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Let M be a monoid. Recall that a subset L of M is recognizable if there
exists a finite monoid F and a surjective morphism ϕ : M → F such that
L = ϕ−1(ϕ(L)). More generally, if V is a variety of finite monoids, we say
that L is V-recognizable if there exists a finite monoid F ∈ V and a surjective
morphism ϕ : M → F such that L = ϕ−1(ϕ(L)). It is a well-known fact
that the V-recognizable subsets of a monoid form a Boolean algebra.

2.2 Uniform structure associated with a variety

In the next subsections, V denotes a fixed variety of finite monoids.
Given a morphism ϕ from a monoid M onto a finite monoid F , let

Uϕ = {(u, v) ∈M ×M | ϕ(u) = ϕ(v)}

Since F is finite, Uϕ can be written as a finite union

Uϕ =
⋃

s∈F

(
ϕ−1(s) × ϕ−1(s)

)
(2.1)

The sets of the form Uϕ, where ϕ runs over the class of all morphisms from
M onto a monoid of V, form the basis of a uniformity on M , called the
pro-V uniformity (see [13] for more details). The topology defined by the
pro-V uniformity is called the pro-V topology.

The following result is a consequence of the results of [13], but we give
a direct proof for the convenience of the reader.

Proposition 2.1 Let M be a monoid. Then the pro-V uniformity is tran-
sitive and totally bounded.

Proof. The pro-V uniformity is transitive, since the relations Uϕ are tran-
sitive. Let ϕ : M → F a morphism from M onto a monoid of V. The
decomposition (2.1), together with the equality M =

⋃
s∈F ϕ

−1(s), show
that the pro-V uniformity is totally bounded.

We now turn to a more precise description of the pro-V topology.

Proposition 2.2 Let M be a monoid. Then the V-recognizable sets of M
form a basis of clopen subsets of the pro-V topology.

Proof. It follows from [13, Proposition 3.6] that the sets of the form ϕ−1(s),
where ϕ : M → F a morphism from M onto a monoid of V and s ∈ F
form a basis of clopen sets. These sets are by construction V-recognizable
and every V-recognizable set is a finite union of such sets. Therefore,
the V-recognizable sets also form a basis of clopen subsets of the pro-V
topology.

Note that the recognizable pro-V clopen subsets of M are not necessarily
V-recognizable, even if M is a free monoid. For instance, if A = {a, b},
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M = A∗ and V is the variety of monoids with central idempotents, defined
by the profinite identity xωy = yxω, then the pro-V topology on A∗ is trivial.
Indeed, the syntactic monoid of any finite language belongs to V and hence,
every finite language is pro-V clopen. It follows immediately that every
language is pro-V clopen and thus the pro-V topology is trivial. Now the
language aA∗ is recognizable and pro-V clopen, but it is not a V-language
since its syntactic monoid does not belong to V.

Group varieties are a singular exception. The following result was proved
in [10, Corollary 3.6] for the variety G and in [15, Corollary 6.2] for arbitrary
varieties of groups.

Proposition 2.3 Let H be a variety of groups an let A be a finite set. A
recognizable language of A∗ is clopen in the pro-H topology if and only if it
is a H-language.

2.3 Pseudometric associated with a variety

Let M be a monoid and let u, v ∈M . We say that a monoid N separates u
and v if there exists a monoid morphism ϕ : M → N such that ϕ(u) 6= ϕ(v).

To each variety V of finite monoids, one can attach a pu-metric dV on
M defined as follows. Set, for all u, v ∈M ,

rV(u, v) = min
{
|N | N is in V and separates u and v

}

with the convention min ∅ = ∞. This valuation satisfies the following prop-
erties, for all u, v in M :

(1) rV(u, v) = rV(v, u)

(2) rV(u,w) > min {rV(u, v), rV(v,w)}

Finally, we put
dV(u, v) = 2−rV(u,v)

with the convention 2−∞ = 0. Then dV is a pu-metric.

2.4 Hausdorff property

A monoid M is residually V if any two distinct elements of M are separated
by a monoid in V. The next result follows immediately from the definitions.

Proposition 2.4 The following conditions are equivalent

(1) M is residually V,

(2) the pro-V topology is Hausdorff,

(3) dV is an ultrametric.

Propositions 1.1 and 2.1 now give the following result.

Proposition 2.5 If a monoid is residually V, its completion for the pro-V
uniformity is compact.
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3 Metrizability and related questions

The question arises to know when the pro-V uniformity can be defined by
a pu-metric, or even by an ultrametric. The answer is given in the next
proposition.

Proposition 3.1 Let M be a monoid. The following conditions are equiv-
alent:

(1) the pro-V uniformity on M has a countable basis,

(2) there are at most countably many V-recognizable sets in M ,

(3) for each monoid F ∈ V, there are only countably many morphisms
from M onto F ,

(4) the pro-V uniformity on M can be defined by a pu-metric.

If these conditions are satisfied, the pro-V uniformity can be defined by a
metric if and only if M is residually V.

Proof. The equivalence of (1) and (4) follows from Proposition 1.2.
(2) implies (1). The entourages Uϕ form a basis of the pro-V uniformity
and (2.1) shows that there are countably many such sets.
(3) implies (2). First, V contains at most a countable number of noniso-
morphic monoids. The result follows, since a countable union of countable
sets is still countable.
(1) implies (3). Let ϕ : M → F , ϕ′ : M → F ′ be morphisms from M onto
monoids in V. We have Uϕ ⊆ Uϕ′ if and only if there exists some morphism
θ : F → F ′ such that ϕ′ = θ ◦ϕ. It follows that each Uϕ is contained in only
finitely many Uϕ′ . Let now B be a countable basis of the pro-V uniformity.
For each B ∈ B, there exists a morphism ϕB such that UϕB

is contained in
B. Furthermore, for every morphism ϕ, Uϕ contains some B ∈ B and hence
UϕB

. Therefore

U =
⋃

B∈B

{Uϕ | UϕB
⊆ Uϕ}

and thus the basis of the pro-V uniformity formed by the Uϕ is itself count-
able, as a countable union of finite sets. Hence (3) holds.

The final part of the statement follows from Proposition 2.4.

If the conditions of Proposition 3.1 are satisfied, does it imply that dV
defines the pro-V uniformity? The full answer to this question is given by
the next proposition.

Proposition 3.2 Let M be a monoid. The following conditions are equiv-
alent:

(1) for each monoid F ∈ V, there are only finitely many morphisms from
M onto F ,

(2) the pro-V uniformity is defined by dV.
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Proof. Let U ′ be the uniformity on M defined by dV. A basis of U ′ is given
by the subsets of M ×M

U ′
ε = {(x, y) ∈M ×M | dV(x, y) < ε} (ε > 0)

We first prove the inclusion U ⊆ U ′ by showing that the relation

U ′
2−|F | ⊆ Uϕ (3.2)

holds for every morphism ϕ from M onto a monoid F ∈ V.
Indeed, if (u, v) ∈ U ′

2−|F | , then dV(u, v) < 2−|F | and so rV(u, v) > |F |.
Hence ψ(u) = ψ(v) for every morphism ψ from M onto a monoid of V of
size at most |F |. In particular, ϕ(u) = ϕ(v) and so (u, v) ∈ Uϕ. Thus (3.2)
holds.

(1) implies (2). Let ε > 0. Take n ∈ N such that 2−n < ε. Let
ϕi : M → Fi (i = 1, . . . , k) be an enumeration of all morphisms from M onto
(nonisomorphic) monoids of V of size at most 2−n. Let ϕ be the morphism
from M into F1 × . . . × Fk defined by ϕ(u) = (ϕ1(u), . . . , ϕk(u)) and let
F = ϕ(M). Then F belongs to V and ϕ induces a surjective morphism
from M onto F . We claim that

Uϕ ⊆ U ′
ε. (3.3)

Indeed, ϕ(u) = ϕ(v) implies ϕi(u) = ϕi(v) for i = 1, . . . , k and thus u and v
cannot be separated by a morphism onto a monoid of V of size at most n.
Hence rV(u, v) > n and so dV(u, v) < 2−n < ε, which proves the claim.

It follows from (3.2) and (3.3) that U ′ coincides with the pro-V unifor-
mity, which proves (2).

(2) implies (1). Let n ∈ N and let F be a monoid of V of size n. For
every morphism ϕ : M → F , one has U ′

2−n ⊆ Uϕ by (3.2). Since U ′ is the
pro-V uniformity on M , there exists some morphism ψ : M → N onto a
monoid of V such that Uψ ⊆ U ′

2−n . Thus Uψ ⊆ Uϕ and there exists some
morphism θ : N → F such that ϕ = θ ◦ ψ. Since there are only finitely
many morphisms between the finite monoids N and F , (1) holds.

If M is a finitely generated monoid and F is a finite monoid, there
are only finitely many morphisms from M onto F . Therefore, we get the
following corollary.

Corollary 3.3 On a finitely generated monoid, the pro-V uniformity can
be defined by dV.

It is important to note that the conclusion of Corollary 3.3 may fail if M
is not finitely generated. We give two instructive counterexamples. In both
cases, the uniform structure is associated with the variety M of all finite
monoids and is simply called the profinite uniformity. Similarly, we simplify
the notation dM to d.
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Proposition 3.4 On (N,max), the metric d is discrete, but the profinite
uniformity is not.

Proof. It is easy to see that any two distinct elements of N can be separated
by a morphism onto the two-element semilattice. Then d can only take the
values 0 or 1/4 and hence d is discrete.

However, the diagonal of N does not belong to the profinite uniformity
since any morphism from N onto a finite monoid is necessarily noninjective.

Note also that being countably generated plays its role: for instance, the
group (Z/2Z)R is residually finite but the pro-V uniformity on it cannot be
defined by a pu-metric in view of Proposition 3.1. We now consider the case
of a free monoid.

Proposition 3.5 Let A be a set. Then the following properties hold:

(1) The completion of A∗ for the profinite uniformity is compact.

(2) The completion of A∗ for d is compact if and only if A is finite.

In particular, the profinite uniformity is defined by d if and only if A is
finite.

Proof. Property (1) follows from Proposition 2.5, since A∗ is residually
finite. Further Corollary 3.3 shows that if A is finite, the profinite uniformity
is defined by d and hence its completion is compact. Now, if a and b are
letters of A, the value of d(a, b) is 0 or 1/4. It follows that if A is infinite, any
infinite sequence of pairwise distinct letters of A has no Cauchy subsequence
and cannot converge in the completion of (A∗, d).

4 Continuous functions

In this section, we study continuous and uniformly continuous functions.

4.1 Continuity and recognizable sets

Let V and W be two varieties of finite monoids and let M and N be two
monoids. We say that a function f from M to N is (V, W)-continuous if
it is continuous with respect to the pro-V topology on M and the pro-W
topology on N . Similarly, a function f from M to N is (V, W)-uniformly
continuous if it is uniformly continuous with respect to the pro-V uniformity
on M and the pro-W uniformity on N . When V = W, we simply refer to
V-(uniform) continuity.

If M is compact (not necessarily Hausdorff) for the pro-V uniformity,
then V-continuity is equivalent to V-uniform continuity, but in general V-
uniform continuity is a stronger property than V-continuity. For instance,
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consider the monoid N of nonnegative integers under addition. It is shown
in [11] that all functions from N to N are A-continuous. However, a function
from N to N is A-uniformly continuous if and only if it is eventually constant
or tends to infinity when n tends to infinity.

We now give a simple characterization of these topological notions in
terms of recognizable sets.

Theorem 4.1 Let M and N be two monoids and let f : M → N be a
mapping. Then

(1) f is (V, W)-uniformly continuous if and only if for any W-recognizable
subset L of N , f−1(L) is a V-recognizable subset of M .

(2) f is (V, W)-continuous if and only if for any W-recognizable subset
L of N , f−1(L) is a (possibly infinite) union of V-recognizable subsets
of M .

Proof. (1) Let L be a W-recognizable subset of N . Then there exists a
monoid F of W, a morphism ϕ : N → F such that L = ϕ−1(ϕ(L)). If f is
(V, W)-uniformly continuous, there is a morphism ψ from M onto a monoid
S of V such that the condition (u, v) ∈ Uψ implies (f(u), f(v)) ∈ Uϕ. In
other words, ψ(u) = ψ(v) implies ϕ(f(u)) = ϕ(f(v)). We claim that

ψ−1(ψ(f−1(L))) = f−1(L)

First, f−1(L) is clearly a subset of ψ−1(ψ(f−1(L))). To prove the opposite
inclusion, let u ∈ ψ−1(ψ(f−1(L))). Then ψ(u) ∈ ψ(f−1(L)), that is, ψ(u) =
ψ(v) for some v ∈ f−1(L). Thus ϕ(f(u)) = ϕ(f(v)) and, since f(v) ∈ L,
one gets f(u) ∈ ϕ−1(ϕ(L)) and finally f(u) ∈ L since L = ϕ−1(ϕ(L)). This
proves the claim and shows that f−1(L) is V-recognizable.

Suppose now that, for any W-recognizable subset L of N , f−1(L) is a
V-recognizable subset of M . Let ϕ be a morphism from N onto a monoid
F of W. For each r ∈ F , ϕ−1(r) is a W-recognizable subset of N and hence
f−1(ϕ−1(r)) is a V-recognizable subset of M , recognized by some morphism
ψr from M onto a monoid Fr of V. Let ψ : M →

∏
r∈F Fr be the morphism

defined by ψ(x) = (ψr(x))r∈F and let T = ψ(M). As a submonoid of a finite
product of monoids of V, T also belongs to V. Now, if (u, v) ∈ Uψ, then
ψ(u) = ψ(v) and hence ψr(u) = ψr(v) for all r ∈ F . Since ψr recognizes
f−1(ϕ−1(r)), it follows that u ∈ f−1(ϕ−1(r)) if and only if v ∈ f−1(ϕ−1(r)),
that is, f(u) ∈ ϕ−1(r) if and only if f(v) ∈ ϕ−1(r). Therefore (f(u), f(v)) ∈
Uϕ, which shows that f is (V, W)-uniformly continuous.

(2) By Proposition 2.2, the V-recognizable sets form a basis B of clopen
sets for the pro-V topology. It follows that a set is open if and only if it is
a union of V-recognizable sets. Now f is (V, W)-continuous if and only if,
for every B ∈ B, f−1(B) is open, which is another way to state (2).

An interesting case arises when M is a free monoid and V = G.
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Theorem 4.2 Let A be a finite set and let M be a monoid. Let f : A∗ →M
be a mapping such that, for every W-recognizable subset of M , f−1(L) is
recognizable. Then the following conditions are equivalent:

(1) f is (G, W)-continuous,

(2) f is (G, W)-uniformly continuous,

(3) for any W-recognizable subset L of M , f−1(L) is a group language.

Proof. The equivalence of (2) and (3) follows from Theorem 4.1. Since
(2) implies (1), it remains to prove that (1) implies (3). Suppose that f is
(G,W)-continuous and let L be a W-recognizable subset of M . Then L is
clopen for the pro-W topology and since f is (G, W)-continuous, f−1(L) is
clopen for the pro-group topology and it is also a recognizable language by
the assumption on f . It follows by Proposition 2.3 that f−1(L) is a group
language, which proves (3).

If W = G and M = B∗, we get the following corollary, which extends a
result of Reutenauer and Schützenberger [14].

Corollary 4.3 Let A and B be two finite sets and let f : A∗ → B∗ be a
mapping such that, for every group language of B∗, f−1(L) is recognizable.
Then the following conditions are equivalent:

(1) f is continuous for the pro-group topology,

(2) f is uniformly continuous for the pro-group uniformity,

(3) for any group language L of B∗, f−1(L) is a group language.

The original statement of Reutenauer and Schützenberger required f to
be a rational function, but this condition is not mandatory. For instance,
the function from A∗ into itself defined by f(u) = u2 is not rational, but it
is continuous for the pro-group topology.

4.2 Hereditary continuity

Let V be a variety of finite monoids. A function is V-hereditarily continuous
if it is W-uniformly continuous for each subvariety W of V.

Note that V-hereditary continuity is in general a stronger property than
V-uniform continuity. For instance, it is shown in [11] that a function f
from Z to Z is G-uniformly continuous if and only if, for all r ∈ N, there
exists s ∈ N such that for all u, v ∈ Z,

u ≡ v (mod s) implies f(u) ≡ f(v) (mod r)

On the other hand, f is G-hereditarily continuous if and only if, for all
u, v ∈ Z, u − v divides f(u) − f(v). It follows that the function f : Z → Z

defined by

f(n) =

{
0 if n is even

1 if n is odd.
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is G-uniformly continuous but not G-hereditarily continuous.
Morphisms provide a first general example of hereditarily continuous

functions.

Proposition 4.4 Every monoid morphism is V-hereditarily continuous.

Proof. Let θ : M → N be a morphism of monoids. Let ϕ be a morphism
from N onto a monoid F of V. Then ψ = ϕ ◦ θ is a morphism from M
onto a monoid of V. Since ψ(u) = ψ(v) implies ϕ(θ(u)) = ϕ(θ(v)) for all
u, v ∈ M trivially, it follows that θ is V-uniformly continuous. Since V is
arbitrary, it is V-hereditarily continuous as well.

The following result is quite useful to deal with unions of chains of vari-
eties.

Proposition 4.5 Let V be a non finitely generated variety. Then a function
is V-hereditarily continuous if and only if it is W-uniformly continuous for
every proper subvariety W of V.

Proof. By definition of hereditary continuity, it suffices to prove that if a
function f : M → N is W-uniformly continuous for every proper subvariety
W of V, then it is V-uniformly continuous.

Let ϕ be a morphism from N onto a monoid F of V. Since V is non
finitely generated, F belongs to some proper subvariety W of V. Now since
f is W-uniformly continuous, there exists a morphism ψ from M onto some
monoid of W such that, for all x, y ∈M , (x, y) ∈ Uψ implies (f(x), f(y)) ∈
Uϕ. Since W ⊆ V, it follows that f is V-uniformly continuous.

4.3 Closure properties

We now show that composition, product and exponential behave well with
respect to continuity, uniform continuity and hereditarily continuity.

In this section V, W and X denote three varieties.

Proposition 4.6 Let M , N and R be monoids and let f : M → N and
g : N → R be mappings.

(1) If f is (V,W)-[uniformly ] continuous and g is (W,X)-[uniformly ]
continuous, then g ◦ f is (V,X)-[uniformly ] continuous.

(2) If f and g are V-hereditarily continuous, then g ◦ f is V-hereditarily
continuous.

Proof. Condition (1) follows from the general fact that the composition of
two [uniformly] continuous functions is [uniformly] continuous.

Condition (2) follows from (1).

Given two functions f, g from a monoid M into a monoid N , the product of
f and g is the function fg from M to N defined by (fg)(x) = f(x)g(x).
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Theorem 4.7 Let f, g be functions from a monoid M into a monoid N .

(1) If f and g are both (V, W)-[uniformly ] continuous, so is fg.

(2) If f and g are both V-hereditarily continuous, so is fg.

Proof. Let L be a W-recognizable subset of N and let ϕ be a monoid
morphism from N onto some monoid F of W recognizing L. We claim that

(fg)−1(L) =
⋃

{(r,s)∈F×F |rs∈ϕ(L)}

f−1(ϕ−1(r)) ∩ g−1(ϕ−1(s)) (4.4)

Denote by R the right member of (4.4) and let u ∈ (fg)−1(L). Setting
r = ϕ(f(u)) and s = ϕ(g(u)), we get

rs = ϕ(f(u))ϕ(g(u)) = ϕ(f(u)g(u)) = ϕ((fg)(u))

and since (fg)(u) ∈ L, then rs ∈ ϕ(L). Further, u ∈ f−1(ϕ−1(r)) ∩
g−1(ϕ−1(s)) and hence u belongs to R. This proves that (fg)−1(L) is con-
tained in R.

To establish the opposite inclusion, consider an element u ∈ R. Then
u ∈ f−1(ϕ−1(r)) ∩ g−1(ϕ−1(s)) for some elements r and s of F such that
rs ∈ ϕ(L). One gets ϕ(f(u)) = r and ϕ(g(u)) = s, whence ϕ(f(u)g(u)) =
rs ∈ ϕ(L) and thus f(u)g(u) ∈ ϕ−1(ϕ(L)) = L. Thus u ∈ (fg)−1(L) which
proves (4.4).

(1) Suppose now that f and g are (V, W)-continuous. As each of the
sets ϕ−1(r) and ϕ−1(s) is W-recognizable by construction, then by Theorem
4.1, the sets f−1(ϕ−1(r)) and f−1(ϕ−1(s)) are open and by (4.4), (fg)−1(L)
is open. Thus fg is (V, W)-continuous.

Suppose now that f and g are (V, W)-uniformly continuous. Then by
Theorem 4.1, the sets f−1(ϕ−1(r)) and f−1(ϕ−1(s)) are V-recognizable and
hence (fg)−1(L) is V-recognizable. Thus fg is (V, W)-uniformly continu-
ous.

(2) The case of V-hereditarily continuous functions follows immediately
from (1).

Given a function f from a monoid M into a monoid N and a function g from
M to N, the exponential of f by g is the function f g from M to N defined by
(fg)(x) = f(x)g(x). If N is a group, the exponential can be actually defined
for every function g from M to Z.

Theorem 4.8 Let f be a function from a monoid M into a monoid N and
let g be a function from M to the additive monoid N of nonnegative integers.

(1) If f and g are both (V, W)-[uniformly ] continuous, so is f g.

(2) If f and g are both V-hereditarily continuous, so is f g.
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Proof. Let L be a W-recognizable subset of N and let ϕ be a monoid
morphism from N onto some monoid F of W recognizing L. We claim that,
for each r ∈ F , the set

Er = {n ∈ N | rn ∈ ϕ(L)}

is a W-recognizable subset of N (considered as an additive monoid) and that

(f g)−1(L) =
⋃

r∈F

f−1(ϕ−1(r)) ∩ g−1(Er) (4.5)

Let r ∈ F . Since F ∈ W, the submonoid 〈r〉 of F generated by r belongs to
W. Further, the map π from N to 〈r〉 defined by π(n) = rn is a morphism.
Thus Er is equal to π−1(ϕ(L)) and hence is recognizable.

Denote by R the right member of (4.5) and let u ∈ (f g)−1(L). Setting
r = ϕ(f(u)) and n = g(u), we get

ϕ((f g)(u)) = ϕ(f(u)g(u)) = ϕ(f(u)n) = rn

Since (f g)(u) ∈ L, one has ϕ((f g)(u)) ∈ ϕ(L), whence rn ∈ ϕ(L) and finally
n ∈ Er. It follows that u ∈ f−1(ϕ−1(r)) ∩ g−1(Er) and this proves that
(f g)−1(L) is contained in R.

To establish the opposite inclusion, consider an element u ∈ R. Then
u ∈ f−1(ϕ−1(r))∩g−1(n) for some r ∈ F and n ∈ Er. Therefore ϕ(f(u)) = r
and g(u) = n, whence ϕ(f(u)g(u)) = rn ∈ ϕ(L) since n ∈ Er. It follows that
f(u)g(u) ∈ ϕ−1(ϕ(L)) = L. Thus u ∈ (f g)−1(L) which proves (4.5).

The end of the proof is similar to that of Theorem 4.7.

If N is a group, Theorem 4.8 can be extended as follows.

Theorem 4.9 Let f be a function from a monoid M into a group G and
let g be a function from M to the additive group of integers Z.

(1) If f and g are both (V, W)-[uniformly ] continuous, so is f g.

(2) If f and g are both V-hereditarily continuous, so is f g.

Proof. The proof is almost identical to that of Theorem 4.8, and is therefore
omitted.

5 Intersection and join

In this section, we study (V,W)-uniform (resp. V-hereditary) continuity
when V or W is the intersection or the union of a family of varieties, with
special attention to the case where V is a variety of finite commutative
monoids.
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5.1 Intersection of varieties

Consider three varieties V, W and X and let f be a (V,W)-uniformly con-
tinuous function. In this section, we address the following type of questions:
when is f (V, W ∩ X)-uniformly continuous (resp. (V ∩ X, W)-uniformly
continuous, (V ∩ X,W ∩ X)-uniformly continuous)?

We say that a monoid M has finite V-quotients if every finite quotient of
M is in V. Note that a monoid with finite V-quotients does not necessarily
belong to the Birkhoff variety generated by V. For instance, the bicyclic
monoid has finite commutative quotients, but is not commutative.

Proposition 5.1 Let f : M → N be a function.

(1) If N has finite X-quotients, then f is (V,W)-uniformly continuous if
and only if it is (V, W ∩ X)-uniformly continuous.

(2) If M has finite X-quotients, then f is (V, W)-uniformly continuous
if and only if it is (V ∩X, W)-uniformly continuous.

Proof. (1) The direct implication is trivial.
Let ϕ be a morphism from N onto a monoid F of W. Since N has

finite X-quotients, we have F ∈ W ∩ X. Since f is (V, W ∩ X)-uniformly
continuous, there exists some morphism ψ from M onto a monoid S of V

such that ψ(u) = ψ(v) implies ϕ(f(u)) = ϕ(f(v)) for all u, v ∈M . Therefore
f is (V, W)-uniformly continuous.

(2) The proof is a straighforward adaptation of the proof of (1) and can
be omitted.

Corollary 5.2 Let M and N have finite X-quotients and let f : M → N
be a function. Then f is (V,W)-uniformly continuous if and only if it is
(V ∩ X,W ∩ X)-uniformly continuous.

Proof. It follows from a double application of Proposition 5.1.

Corollary 5.3 Let N be a monoid with finite X-quotients and let f : M →
N be a function. Then f is V-hereditarily continuous if and only if f is
(V ∩ X)-hereditarily continuous.

Proof. The direct implication is trivial since any subvariety of V ∩ X is a
subvariety of V.

Conversely, let W be a subvariety of V. Since f is (V ∩X)-hereditarily
continuous, then f is (W∩X)-uniformly continuous and hence (W∩X,W)-
uniformly continuous by Proposition 5.1 (1). Therefore f is W-uniformly
continuous and thus V-hereditarily continuous.

Applying this result when X is the variety of finite commutative monoids,
we get:
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Proposition 5.4 A function from a monoid into a commutative monoid is
V-hereditarily continuous if and only if it is (V∩Com)-hereditarily contin-
uous.

5.2 Join of varieties

To deal with joins of varieties, we introduce the following concept, inherited
from ring theory. Let us say that a monoid N is V-projective if the following
property holds: if α : N → R is a morphism and if β : T → R is a surjective
morphism, with T (and hence R) in V, then there exists a morphism γ :
N → T such that α = β ◦ γ.

N

RT

α
γ

β

For instance, every free monoid is V-projective for any V. Also note that any
V-projective monoid is W-projective for any subvariety W of V. Further
examples of V-projective monoids are given by the following result.

Proposition 5.5 Let V be a variety of finite monoids and let V̂ be any
Birkhoff variety containing V. Then every V̂-free monoid is V-projective.

Proof. Let A be a set and let FbV
(A) be the V̂-free monoid on A. Let

also ι : A → FbV
(A) be the canonical mapping. Let α : FbV

(A) → R be a
morphism and let β : T → R be a surjective morphism, with T in V. Since
β is surjective, there exists a function δ : A → T such that β ◦ δ = α ◦ ι.
Since T ∈ V, V is contained in V̂ and FbV

(A) is V̂-free on A, there exists a
morphism γ : FbV

(A) → T such that γ ◦ ι = δ.

A FbV
(A)

RT

δ

ι

α
γ

β

Thus β ◦ γ ◦ ι = β ◦ δ = α ◦ ι, whence β ◦ γ = α since ι(A) generates FbV
(A).

Therefore FbV
(A) is V-projective.

16



The importance of projective monoids in the study of hereditarily con-
tinuous functions stems from the property stated in Proposition 5.7 below.
We first need a weak form of distributive law for commutative varieties.

Lemma 5.6 Let V be the join of a family (Vi)i∈I of varieties of commuta-
tive monoids and let W be a subvariety of a variety V. Then

W = V ∩W =
(∨

i∈I

Vi

)
∩W =

∨

i∈I

(Vi ∩ W)

Proof. The corresponding result for varieties in the Birkhoff sense follows
from [9]. The lemma now follows from the fact that, if V is a Birkhoff
variety, and Vfin is the variety of all finite members of V, the lattice of
all subvarieties of Vfin inherits all lattice identities from the lattice of all
subvarieties of V. This result follows implicitly from a general result by Ash
[5] and is explicitly contained in [1].

Proposition 5.7 Let V be the join of a family (Vi)i∈I of varieties of com-
mutative monoids. A function from a monoid into a V-projective monoid is
V-hereditarily continuous if and only if it is Vi-hereditarily continuous for
all i ∈ I.

Proof. Let f be a function from a monoid M into a V-projective monoid
N . If f is V-hereditarily continuous, it is also Vi-hereditarily continuous
for all i ∈ I, since Vi is a subvariety of V.

Suppose now that f is Vi-hereditarily continuous for all i ∈ I. Let W

be a subvariety of V. Setting, for every i ∈ I, Wi = Vi ∩ W, one has by
Lemma 5.6

W = V ∩ W =
(∨

i∈I

Vi

)
∩ W =

∨

i∈I

(Vi ∩W) =
∨

i∈I

Wi

Let ϕ be a morphism from N onto a monoid F of W. Then there is a
submonoid T of a direct product of the form R1 × . . .×Rk, with Rj ∈ Wij

for 1 6 j 6 k, and a surjective morphism from T onto F . Let us denote by
πj : R1 × · · · × Rk → Rj the natural projection. Since W is a subvariety
of V, T belongs to V and since N is V-projective, there exists a morphism
γ : N → T such that β ◦ γ = ϕ. Setting, for 1 6 j 6 k, αj = πj ◦ γ, we get
the following commutative diagram:

M N

FRj R1 × · · · ×Rk ⊇ T

f

ϕ
γ

αj

βπj
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Note that αj(N) belongs to Wij . Since f is Vij -hereditarily continuous, it
is also Wij -uniformly continuous, and there exists a morphism ψj from M
onto some monoid Ej of Wij such that, for all x, y ∈M ,

(x, y) ∈ Uψj
implies (f(x), f(y)) ∈ Uαj

. (5.6)

Let ψ : M → E1 × . . . × Ek be the diagonal morphism defined by ψ(x) =
(ψ1(x), . . . , ψk(x)). We claim that, for all x, y ∈M ,

(x, y) ∈ Uψ implies (f(x), f(y)) ∈ Uϕ. (5.7)

Indeed, if ψ(x) = ψ(y), then for all j ∈ {1, . . . , k}, we get ψj(x) = ψj(y) and
by (5.6), αj(f(x)) = αj(f(y)). Since αj = πj◦γ, it follows that πj(γ(f(x)) =
πj(γ(f(y)) for all j and finally γ(f(x)) = γ(f(y)). Composing with β, we
obtain β(γ(f(x))) = β(γ(f(y))), that is, ϕ(f(x)) = ϕ(f(y)), which proves
(5.7).

Since ψ(M) belongs to W, it follows that f is W-uniformly continuous
and therefore V-hereditarily continuous.

5.3 The commutative case

In this section, we consider the case where V is a variety of finite commu-
tative monoids.

We denote by Ab the variety of finite commutative groups, and, for each
prime p, by Abp the variety of finite commutative groups whose order is a
power of p. The fundamental decomposition theorem for finite commutative
groups gives imediately

Ab =
∨

p prime

Abp (5.8)

We also denote by CA the variety of finite aperiodic and commutative
monoids and, for each t > 0, by CAt the variety of finite commutative
monoids M such that, for all x ∈M , xt = xt+1.

Proposition 5.8 Let f be a function into a V-projective monoid. Then

(1) f is V-hereditarily continuous if and only if it is both (V ∩ Ab)-
hereditarily continuous and (V ∩ CA)-hereditarily continuous;

(2) f is (V ∩ Ab)-hereditarily continuous if and only if it is (V ∩ Abp)-
hereditarily continuous for every prime p.

Proof. (1) By [2, Lemma 6.1.9(b)], Com is generated by the finite mono-
genic commutative monoids. Since each such monoid embeds in the direct
product of a finite cyclic group by a finite monogenic aperiodic monoid,
it follows that Com = Ab ∨ CA. Since V ⊆ Com, it follows that
V = V∩ (Ab∨CA) and hence by Lemma 5.6, V = (V∩Ab)∨ (V∩CA).
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Let N be a V-projective monoid and let f : M → N be a function. It
follows by Proposition 5.7 that f is V-hereditarily continuous if and only
if it is both (V ∩ Ab)-hereditarily continuous and (V ∩ CA)-hereditarily
continuous.

(2) It follows from (5.8) and Lemma 5.6 that

V ∩Ab = V ∩

( ∨

p prime

Abp

)
=

∨

p prime

(V ∩ Abp)

Since N is V-projective it is also (V∩Ab)-projective. Now the result follows
from Proposition 5.7.

The next characterization of (V∩CA)-hereditarily continuous functions
does not require the projectivity of N .

Proposition 5.9 A function is (V ∩ CA)-hereditarily continuous if and
only if it is (V ∩ CAt)-uniformly continuous for every t > 0.

Proof. It follows from Proposition 4.5 since CA is non finitely generated
and its proper subvarieties are precisely the varieties CAt [2].

These decompositions are applied in [11] to get results such as:

Theorem 5.10 [11] Let f be a function from N to N. Then f is M-
hereditarily continuous if and only if f is constant or satisfies the two fol-
lowing conditions:

(1) for all u, v ∈ N, u− v divides f(u) − f(v),

(2) for all u ∈ N, f(u) > u.
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