A negative answer to a question of Wilke on varieties of ω -languages

Jean-Eric Pin (*)

Abstract. In a recent paper, Wilke asked whether the boolean combinations of ω -languages of the form \overrightarrow{L} , for L in a given +-variety of languages, form the ω -part of an ∞ -variety. We provide a negative answer to this question.

Varieties were introduced by Eilenberg in 1976 to give a unified framework to the algebraic theory of recognizable languages. Recall that a +variety associates to every alphabet A a set $A^+\mathcal{V}$ of recognizable languages of A^+ satisfying the following properties:

- (1) for each alphabet A, $A^+ \mathcal{V}$ is closed under finite union and complement,
- (2) for each morphism $\varphi: A^+ \to B^+, L \in B^+ \mathcal{V}$ implies $L\varphi^{-1} \in A^+ \mathcal{V}$,
- (3) if $X \in A^+ \mathcal{V}$, then, for all $u \in A^*$, $u^{-1}X, Xu^{-1} \in A^+ \mathcal{V}$.

Eilenberg's well-known variety theorem states that +-varieties are in oneto-one correspondence with varieties of finite semigroups, that is, classes of finite semigroups closed under taking subsemigroups, quotients and finite direct products.

This result is such a powerful tool for classyfying recognizable languages that it was natural to try to extend it to ω -languages. After some pioneering work by Perrin [3] and Pécuchet [1,2], the right definition was given by Wilke [4,6]. It turns out that it does not suffice to work only with infinite words, but that finite words have to be considered at the same time. More precisely, when A is a finite alphabet, denote by A^{ω} the set of infinite words on A, and set $A^{\infty} = A^+ \cup A^{\omega}$. A subset X of A^{∞} is identified with the pair $(X_+, X_{\omega}) = (X \cap A^+, X \cap A^{\omega})$. In particular, X is said to be *recognizable* if both X_+ and X_{ω} are. An extension of the usual notion of quotients is in

^(*) LITP/IBP, Université Paris VI et CNRS, Tour 55-56, 2 place Jussieu, 75251 Paris Cedex 05, FRANCE. e-mail: pin@litp.ibp.fr

order for the main definition. For $u \in A^*$, put

$$u^{-1}X = \{x \in A^{\infty} \mid ux \in X\}$$
$$Xu^{-\omega} = \{x \in A^+ \mid (xu)^{\omega} \in X\}$$

Similarly, for $u \in A^{\omega}$, put

$$Xu^{-1} = \{ x \in A^+ \mid xu \in X \}$$

Now, an ∞ -variety associates to every alphabet A a set $A^{\infty}\mathcal{V}$ of recognizable sets of A^{∞} satisfying the following properties:

- (1) for each alphabet A, $A^{\infty}\mathcal{V}$ contains \emptyset , A^+ and A^{ω} and is closed under finite union and complement,
- (2) for each map $\varphi : A \to B^+$, which defines a morphism from $\varphi : A^{\infty} \to B^{\infty}, X \in B^{\infty}\mathcal{V}$ implies $X\varphi^{-1} \in A^{\infty}\mathcal{V}$,
- (3) if $X \in A^{\infty}\mathcal{V}$, then, for all $u \in A^*$, $u^{-1}X, Xu^{-\omega} \in A^{\infty}\mathcal{V}$ and, for all $u \in A^{\omega}, Xu^{-1} \in A^{\infty}\mathcal{V}$.

Note that by property (1), if $X \in A^{\infty}\mathcal{V}$, then $X_{+} = X \cap A^{+}$ and $X_{\omega} = X \cap A^{\omega}$ are also in $A^{\infty}\mathcal{V}$. Furthermore, the class of languages which associates to each alphabet A, the set of languages of the form X_{+} , where $X \in A^{\infty}\mathcal{V}$, is a +variety, called the +-part of \mathcal{V} . Similarly, the ω -part of \mathcal{V} associates to each alphabet A, the set of languages of the form X_{ω} , where $X \in A^{\infty}\mathcal{V}$.

There is also a variety theorem for ∞ -varieties, but the algebraic counterpart is more involved. Since it will not be used in this article, we just refer the interested reader to [4,6] for more information.

There are several natural connections between languages and ω -languages. One of the simplest one is to consider a finite deterministic automaton as a Büchi automaton. In terms of languages, this defines, for a given language L of A^+ , the set \overrightarrow{L} of ω -words of A^{ω} that have an infinite number of prefixes in L. It is well-known that an ω -language is of the form \overrightarrow{L} for some language L if and only if it is accepted by a deterministic Büchi automaton. For this reason, we will use the term *deterministic* to designate the ω -languages of this form.

McNaughton has shown that any recognizable ω -language is a boolean combination of deterministic recognizable ω -languages. In view of a possible extension of McNaugthon's theorem to varieties, Pécuchet considered, for a given +-variety, the class $\overrightarrow{\mathcal{V}}$ defined as follows: for each alphabet $A, A^{\omega} \overrightarrow{\mathcal{V}}$ is the set of all boolean combinations of ω -languages of the form \overrightarrow{L} , where $L \in A^+\mathcal{V}$. Wilke [6] asked whether such classes $\overrightarrow{\mathcal{V}}$ form the ω -part of an ∞ -variety. As it was shown by Perrin [3], the answer is positive if \mathcal{V} is closed under product, that is, if, for each alphabet $A, L, L' \in A^+ \mathcal{V}$ implies $LL' \in \mathcal{V}$. The answer is also positive for all the varieties studied by Pecuchet [1,2]. The aim of this paper is to provide a negative answer to the question raised by Wilke.

Let BA_2 be the five element Brandt aperiodic semigroup, that is, the semigroup with zero presented on $\{a, b\}$ by the relations aba = a, bab = b and $a^2 = b^2 = 0$. This semigroup can also be defined as the syntactic semigroup of the language $(ab)^+$ over the two-letter alphabet $\{a, b\}$, or as the semigroup of partial functions given in the following table

Alternatively, BA_2 is the semigroup of two-by-two matrices

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

under the usual matrix multiplication.

Let V be the variety of finite semigroups generated by BA_2 . It was shown in [5] that V is defined by the identities

$$xyx = xyxyx$$
 $x^{2}y^{2} = y^{2}x^{2}$ $x^{2} = x^{3}$ (0.1)

Let \mathcal{V} be the +-variety corresponding to **V**. The aim of this paper is to prove the following negative result.

Theorem The class $\overrightarrow{\mathcal{V}}$ is not closed under inverse morphisms.

In particular, this gives a negative answer to the question proposed by Wilke.

Corollary The class $\overrightarrow{\mathcal{V}}$ is not the ω -part of an ∞ -variety.

Proof. Let $A = \{a, b\}, B = \{a, b, c\}$ and $\varphi : A^+ \to B^+$ be the morphism defined by $a\varphi = ac$ and $b\varphi = b$. Let $L = \{b, ac\}^*a$. A simple computation shows that the syntactic semigroup of L is BA_2 and thus $L \in B^+\mathcal{V}$.

Let $X = \overrightarrow{L} \varphi^{-1}$. It is easily verified that X is the set of ω -words over A containing an infinite number of a's, that is $X = \overrightarrow{A^*a}$. We claim that X is not a boolean combination of ω -languages of the form \overrightarrow{K} , with $K \in A^+ \mathcal{V}$.

Let us first describe the languages of $A^+\mathcal{V}$. Every semigroup of \mathbf{V} generated by A is a quotient of the relatively free semigroup $F_A\mathbf{V}$, that is, the semigroup presented on A by the relations

(1) xyx = xyxyx (2) $x^2y^2 = y^2x^2$ (3) $x^2 = x^3$ for all $x \in A^+$

It is easy to derive from (1), (2), (3) the identities

(4)
$$xyxzx = xzxyx$$
 (5) $x^2y^2 = x^2y^2x = x^2y^3$ (6) $x^2yx = x^2y^2$

Indeed, consider the following derivations, where the identity used at each step is indicated above the equality symbol.

$$xyxzx \stackrel{(1)}{=} xyxyxzxzx \stackrel{(2)}{=} xzxzxyxyx \stackrel{(1)}{=} xzxyx$$

$$x^{2}y^{2} \stackrel{(2)}{=} y^{2}x^{2} \stackrel{(3)}{=} y^{2}x^{3} \stackrel{(2)}{=} x^{2}y^{2}x$$

$$x^{2}y^{2} \stackrel{(3)}{=} x^{2}y^{3}$$

$$x^{2}yx \stackrel{(1)}{=} xxyxyx \stackrel{(4)}{=} xyxxyx \stackrel{(1)}{=} xyxxyxyx \stackrel{(2)}{=} xyyxyxxx$$

$$\stackrel{(3)}{=} xyyxyxx \stackrel{(4)}{=} xyxyyxx \stackrel{(2)}{=} xyxxyy \stackrel{(3)}{=} xyxyy$$

$$\stackrel{(2)}{=} xyyyxx \stackrel{(3)}{=} xyyxx \stackrel{(2)}{=} xxxyy \stackrel{(3)}{=} xxyy$$

Using these identities, one gets a 17 element semigroup whose right representation is shown in the graph below. The edges of this graph are of the form $s \xrightarrow{a} sa$ for $s \in F_A \mathbf{V}$ and $a \in A$, but the arrows ending in 0 are omitted. Thus aaba = aabb = abbaa = abbab = abaa = ababb = babb = babaa = baaba = baaba = bbab = 0.

 $\mathbf{4}$

For instance, babab = bab since there is an arrow of label b from baba to bab.

It is not difficult to see from this diagram that the languages recognized by $F_A \mathbf{V}$ (that is, the languages of $A^+ \mathcal{V}$) are unions of languages of one of the following categories:

- (1) $aa^+, bb^+, abb^+, baa^+, ab(ab)^+, (ab)^+a, ba(ba)^+, (ba)^+b$
- (2) a finite language
- $(3) \ R = A^*(a^2ba + a^2b^2 + aba^2 + bab^2 + b^2a^2 + b^2ab + b^3)A^*$

Now, if F is finite, $\overrightarrow{F} = \emptyset$. Therefore, every ω -language of the form \overrightarrow{K} , where $K \in A^+ \mathcal{V}$, can be written as a union of ω -languages of the form a^{ω} , b^{ω} , ab^{ω} , ba^{ω} , $(ab)^{\omega}$, $(ba)^{\omega}$ or \overrightarrow{R} . But now, if Z is one of these ω -languages, one has $(aab)^{\omega} \in Z$ if and only if $aab^{\omega} \in Z$. Therefore this property also holds if Z is a boolean combination of these ω -languages. Now, since $(aab)^{\omega} \in X$ but $aab^{\omega} \notin X$, X cannot be expressed as a boolean combination of ω -languages of the form \overrightarrow{K} , where $K \in A^+ \mathcal{V}$. Thus $X \notin A^{\omega} \overrightarrow{\mathcal{V}}$. \Box

Acknowledgements

The author would like to thank the anonymous referee for pointing out an error in the computation of $F_A \mathbf{V}$ in the first version of this article.

References

- J. P. Pécuchet, Variétés de semigroupes et mots infinis, in B. Monien and G. Vidal-Naquet eds., STACS 86, Lecture Notes in Comput. Sci. 210, Springer, (1986), 180–191.
- [2] J. P. Pécuchet, Etude syntaxique des parties reconnaissables de mots infinis, in Proc. 13th ICALP, Kott ed.) Lecture Notes in Comput. Sci. 226, (1986), 294–303.
- [3] D. Perrin, Variétés de semigroupes et mots infinis, C.R. Acad. Sci. Paris 295, (1982), 595–598.
- [4] D. Perrin and J.-E. Pin, Semigroups and automata on infinite words, Semigroups, Formal Languages and Groups, J. Fountain (ed.), Kluwer Academic Publishers (1995), 49–72.
- [5] A. N. Trahtman, Identities of a five-element 0-simple semigroup, Semigroup Forum 48, (1994), 385–387.
- [6] T. Wilke, An algebraic theory for regular languages of finite and infinite words, Algebra and Computation 3, (1993), 447–489.