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1 Introduction

This paper is an introduction to the algebraic theory of infinite words. Infi-
nite words are widely used in computer science, in particular to model the
behaviour of programs or circuits. From a mathematical point of view, they
have a rich structure, at the cross-roads of logic, topology and algebra. This
paper emphasizes the combinatorial and algebraic aspects of this theory but
the interested reader is referred to the survey articles [34, 44] or to the report
[30] for more information on the other aspects. In particular, the important
topic of the complexity of the algorithms on infinite words is not treated in
this paper.

The paper is written with the perspective of generalizing the results on
recognizable sets of finite words to infinite words. This does not exactly
follow the historical development of the theory, but it gives a good idea of
the type of problems that occur in this field. Some of these problems are still
open, or have been solved quite recently so that the definitions and results
presented below may not be as yet finalized.

The first result to be generalized is the equivalence between finite au-
tomata, finite deterministic automata and rational expressions. If one adds
infinite iteration (“omega” operation) to the standard rational operations,
union, product and star, one gets a natural definition of the ω-rational sets
of infinite words that extends the definition of rational sets of finite words.
Büchi [5] was the first to propose a definition of finite automata acting on
infinite words. This definition suffices to extend Kleene’s theorem to infinite
words: the sets of infinite words recognized by finite Büchi automata are
exactly the ω-rational sets. This result is now known as Büchi’s theorem.

However, Büchi’s definition is not totally satisfying since deterministic
Büchi automata are not equivalent to non deterministic ones. The con-
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nection between deterministic and non deterministic Büchi automata was
enlightened by a deep theorem of McNaughton: a set of infinite words is rec-
ognized by a non deterministic Büchi automaton if and only if it is a finite
boolean combination of sets recognized by deterministic Büchi automata.
This result was prepared by a suitable definition for automata on infinite
words given by Muller [22]. These automata have the same power as the
Büchi automata, but this time, non deterministic automata are equivalent
to deterministic ones.

It is a well known fact that finite semigroups can be viewed as a two-
sided algebraic counterpart of finite automata that recognize finite words.
Several attempts have been made to find an algebraic counterpart of finite
automata that recognize infinite words. Since the notion of infinite word is
asymmetrical, finite semigroups are not suitable any more. They can be re-
placed by ω-semigroups, which are, roughly speaking, semigroups equipped
with an infinite product. The basic definitions are quite promising, but a
technical difficulty arises almost immediately. Indeed, in order to design al-
gorithms on finite ω-semigroups one needs a finite representation for them,
but the definition of the infinite product apparently requires an infinite ta-
ble, even for a 2-element ω-semigroup. However, a Ramsey-type argument
shows that the structure of a finite ω-semigroup is totally determined by
three operations of finite signature. That is, finite ω-semigroupsare equiva-
lent to certain finite algebras of finite signature, the Wilke algebras. Now,
the definitions of a recognizable set, of a syntactic congruence, etc., become
natural and most results valid for finite words can be adapted to infinite
words. Carrying on the work of Arnold [1], Pécuchet [24, 23] and the first
author [25, 26, 27], Wilke [45, 46] has pushed the analogy with the theory
for finite words sufficiently far to obtain a counterpart of Eilenberg’s vari-
ety theorem for finite or infinite words. This is approximatively the point
reached by the algebraic approach today, although current research may al-
ready have passed beyond. In any case, this is the place where our article
finishes.

The paper is organized as follows: the basic definitions on words and
ω-rational sets are given in sections 2 and 3. Büchi automata are defined in
section 4, deterministic Büchi automata in section 5 and Muller automata
in section 6. The equivalence between finite ω-semigroups and finite Wilke
algebras is established in section 7 and their connections with automata are
presented in sections 8, 9 and 10. Syntactic ω-semigroups are introduced
in section 11 and the variety theorem and its consequences are discussed in
section 12. Section 13 presents the conclusion of the article.
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2 Words

Let A be a finite set called an alphabet, whose elements are letters. A finite
word is a finite sequence of letters, that is, a function u from a finite set of
the form {0, 1, 2, . . . , n} into A. If one puts u(i) = ai for 0 6 i 6 n, the word
u is usually denoted by a0a1 · · · an, and the integer |u| = n+ 1 is the length
of u. The unique word of length 0 is the empty word, denoted by 1. An
infinite word is a function u from N into A, usually denoted by a0a1a2 · · · ,
where u(i) = ai for all i ∈ N. A word is either a finite word or an infinite
word.

Intuitively, the concatenation or product of two words u and v is the
word uv obtained by writing u followed by v. More precisely, if u is finite
and v is finite or infinite, then uv is the word defined by

(uv)(i) =

{

u(i) if i < |u|

v(i − |u|) if i > |u|

We denote respectively by A∗, A+, AN the set of all finite words, finite non-
empty words, and infinite words, respectively. We also denote by A∞ =
A+ ∪ AN the set of all non empty words. A word x is a factor of a word w
if there exist two words u and v (possibly empty) such that w = uxv.

3 Rational sets

The rational operations are the four operations union, product, plus and
star, defined on the set of subsets of A∗ as follows

(1) Union: L1 ∪ L2 = {u | u ∈ L1 or u ∈ L2}

(2) Product: L1L2 = {u1u2 | u1 ∈ L1 and u2 ∈ L2}

(3) Plus: L+ = {u1 · · · un | n > 0 and u1, . . . , un ∈ L}

(4) Star: L∗ = {u1 · · · un | n > 0 and u1, . . . , un ∈ L}

Thus we have the relations

L+ = LL∗ = L∗L and L∗ = L+ ∪ {1}

The set of rational subsets ofA∗ is the smallest set of subsets of A∗ containing
the finite sets and closed under finite union, product and star. For instance,
(a ∪ ab)∗ab ∪ (ba∗b)∗ denotes a rational set.

Similarly, the set of rational subsets of A+ is the smallest set of subsets
of A+ containing the finite sets and closed under finite union, product and
plus. It is not difficult to verify that the rational subsets of A+ are exactly
the rational subsets of A∗ that do not contain the empty word.

It is possible to generalize the concept of rational sets to infinite words
as follows. First, the product can be extended, by setting, for X ⊂ A∗ and
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Y ⊂ AN,
XY = {xy | x ∈ X and y ∈ Y }.

Next, we define an infinite iteration ω by setting, for every subset X of A+

Xω = {x0x1 · · · | for all i > 0, xi ∈ X}

Equivalently, Xω is the set of infinite words obtained by concatenating an
infinite sequence of words of X. In particular, if u = a0a1 · · · an, we set

uω = a0a1 · · · ana0a1 · · · ana0a1 · · · ana0a1 · · ·

The set Rat(A∞) of ω-rational subsets of A∞ is the smallest set R of subsets
of A∞ such that

(a) ∅ ∈ R and for all a ∈ A, {a} ∈ R,

(b) R is closed under finite union,

(c) For every subset X of A+ and for every subset Y of A∞, X ∈ R and
Y ∈ R imply XY ∈ R,

(d) For every subset X of A+, X ∈ R implies X+ ∈ R and Xω ∈ R.

In other words, the set of ω-rational subsets of A∞ is the smallest set of
subsets of A∞ containing the finite sets of A+ and closed under finite union,
finite product, plus and omega. The ω-rational sets which are contained in
AN are called, by abuse of language, the ω-rational subsets of AN. There is a
very simple characterization of these sets, which is often used as a definition.

Proposition 3.1 A subset of AN is ω-rational if and only if it is a finite
union of subsets of the form XY ω where X and Y are non-empty rational
subsets of A+.

Example 3.1 The set of infinite words on the alphabet {a, b} having only
a finite number of b’s is given by the expression {a, b}∗aω.

4 Automata

A finite (non deterministic) automaton is a triple A = (Q,A,E) where
Q is a finite set (the set of states), A is an alphabet, and E is a subset
of Q × A × Q, called the set of transitions. Two transitions (p, a, q) and
(p′, a′, q′) are consecutive if q = p′. A path in A is a finite sequence of
consecutive transitions

e0 = (q0, a0, q1), e1 = (q1, a1, q2), . . . , en−1 = (qn−1, an−1, qn)

also denoted
q0

a0−→ q1
a1−→ q2 · · · qn−1

an−1

−→ qn
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The state q0 is the origin of the path, the state qn+1 is its end, and the word
x = a0a1 · · · an is its label.

An infinite path in A is a sequence p of consecutive transitions indexed
by N.

e0 = (q0, a0, q1), e1 = (q1, a1, q2), . . .

also denoted
q0

a0−→ q1
a1−→ q2 · · ·

The state q0 is the origin of the infinite path and the infinite word a0a1 · · ·
is its label. A state q occurs infinitely often in p if qn = q for infinitely many
n.

Example 4.1 Let A = (Q,A,E) be the automaton represented in Figure
4.1. Then Q = {1, 2}, A = {a, b}, E = {(1, a, 1), (2, b, 1), (1, a, 2), (2, b, 2)}
and

(1, a, 2)(2, b, 2)(2, b, 1)(1, a, 2)(2, b, 2)(2, b, 1)(1, a, 2)(2, b, 2)(2, b, 1)(1, a, 2) · · ·

is an infinite path of A.

1a 2 b

a

b

Figure 4.1: A finite automaton.

A finite Büchi automaton is a quintuple A = (Q,A,E, I, F ) where

(1) (Q,A,E) is a finite automaton,

(2) I and F are subsets of Q, called the set of initial and final states,
respectively.

A finite path in A is successful if its origin is in I and its end is in F . An
infinite path p is successful if its origin is in I and if some state of F occurs
infinitely often in p.

The set of finite (respectively infinite) words recognized by A is the set,
denoted L+(A) (respectively Lω(A)), of the labels of all successful finite
(respectively infinite) paths of A. A set of finite (respectively infinite) words
X is recognizable if there exists a finite Büchi automaton A such that X =
L+(A) (respectively X = Lω(A)).

Example 4.2 Let A be the Büchi automaton obtained from example 4.1 by
taking I = {1} and F = {2}. Initial states are represented by an incoming
arrow and final states by an arrow going out.

5



1a 2 b

a

b

Figure 4.2: A Büchi automaton.

Then L+(A) = a{a, b}∗ is the set of all finite words whose first letter is an
a, Lω(A) = a(a∗b)ω is the set of infinite words whose first letter is an a and
containing an infinite number of b’s.

Example 4.3 Let A be the Büchi automaton represented below. Then
Lω(A) = A∗aω is the set of all infinite words containing a finite number of
b’s.

1

a, b

2 ab

Figure 4.3: The automaton A recognizing A∗aω.

Let A′ be the automaton obtained from A by taking only 1 as initial state.
Then Lω(A′) = A∗baω.

Example 4.4 Let A be the Büchi automaton represented below

1a, b 2 b, c

b, c

a

Figure 4.4:

Then Lω(A) = (a{b, c}∗ ∪ {b})ω.

The relationship between rational and recognizable sets of finite words is
given by the famous theorem of Kleene.

Theorem 4.1 A subset of A∗ is rational if and only if it is recognizable.

The counterpart of Kleene’s theorem for infinite words is due to Büchi [4].

Theorem 4.2 A subset of AN is ω-rational if and only if it is recognizable.

6



Sketch of the proof.

(1) Let A = (Q,A,E, I, F ) be a finite Büchi automaton. For p, q ∈ Q,
denote by L+(E, p, q) the set of non empty finite words recognized by the
automaton (Q,A,E, {p}, {q}). By Theorem 4.1, all these sets are rational.
Furthermore, it is not difficult to see that

X = Lω(A) =
⋃

i∈I

⋃

f∈F

L+(E, i, f)
(

L+(E, f, f)
)ω

It follows that Lω(A) is ω-rational.
(2) It is easy to see that recognizable sets are closed under finite union.

Indeed, the disjoint union of two automata A1 and A2 recognizes exactly the
union of the sets recognized respectively by A1 and A2. In order to prove
that every ω-rational set is recognizable, it remains to show that every set
of the form XX ′ω , where X and X ′ are non-empty rational subsets of A+,
is recognizable. A small combinatorial argument shows that every rational
set can be recognized by a normal automaton, that is, an automaton with
exactly one initial state i, exactly one final state f and no transition starting
from f or ending in i. Now, if A and A′ are normal automata recognizing X
andX ′, then the automaton obtained by identifying f , i′ and f ′, as indicated
in the figure below, recognizes XX ′ω :

i A f = i′ = f A′

Figure 4.5: An automaton recognizing X(X ′)ω.

5 Deterministic Büchi automata

A Büchi automaton A = (Q,A,E, I, F ) is said to be deterministic if I is a
singleton and if E contains no pair of transitions of the form (q, a, q1), (q, a, q2)
with q1 6= q2. In other words, given a state q and a letter a, there is at most
one state q′ such that (q, a, q′) ∈ E. In particular, each word u is the label
of at most one path starting from the initial state. A finite word u is ac-
cepted if the end of this unique path is a final state. And an infinite word
is accepted if the unique path visits infinitely often a final state. It follows
that an infinite word is accepted by A if and only if it has infinitely many
prefixes accepted by A. This leads to the following definition: for any subset
L of A∗, put

−→
L = {u ∈ AN | u has infinitely many prefixes in L}.

Then one can state
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Proposition 5.1 If A is a finite deterministic Büchi automaton, then Lω(A) =
−−−−→
L+(A).

Example 5.1 If A = {a, b} and L = a∗b, then
−→
L = ∅.

1

a

2
b

Figure 5.1: L+(A) = a∗b and Lω(A) = ∅.

Consider now the set L of all finite words of the form anb. Then
−→
L = (a∗b)ω,

the set of infinite words containing infinitely many b’s.

1a 2 b

b

a

Figure 5.2: L+(A) = (a∗b)+ = {a, b}∗b and Lω(A) = (a∗b)ω.

A set of infinite words is deterministic if it is recognized by a finite Büchi
automaton. Landweber [14] has shown the existence of non deterministic
recognizable sets.

Proposition 5.2 The set {a, b}∗aω is not deterministic.

Proof. Let X = {a, b}∗aω and suppose that X =
−→
L for some subset L of

A∗. Then baω has a prefix u1 = ban1 in L and similarly, ban1baω has a prefix
u2 = ban1ban2 in L, etc. so that the infinite word u = ban1ban2ban3 · · · has

infinitely many prefixes in L. Thus u ∈
−→
L , a contradiction, since u has an

infinite number of b’s.

6 Muller automata

We have seen that non deterministic Büchi automata are not equivalent
to deterministic ones. This lead Muller [22] to introduce a more satisfying
definition.

A finite Muller automaton is a quintuple A = (Q,A,E, I,T ) where

(1) (Q,A,E) is a finite automaton,

(2) I is a subset of Q, called the set of initial states.

(3) T = {T1, . . . , Tn} (the state table) is a set of subsets T1, . . . , Tn of Q.
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A path p is successful in A if Infinite(p) ∈ T , where Infinite(p) is the set
of states that are visited infinitely often by p. The set Lω(A) (also de-
noted Lω(E, i,T )) of infinite words accepted by A is the set of labels of all
successful paths.

Example 6.1 Let A = {a, b}. The automaton below, with the state table
T = {{2}}, recognizes the set A∗bω of all infinite words containing a finite
number of a’s.

1a 2 b

b

a

Figure 6.1: A Muller automaton.

The automaton A′ obtained by taking as state table T ′ = {{1}, {2}},
recognizes the set A∗aω ∪A∗bω.

A finite Muller automaton A = (Q,A,E, I,T ) is deterministic if I is a
singleton and if E contains no pair of transitions of the form (q, a, q1), (q, a, q2)
with q1 6= q2. This time, deterministic automata are equivalent to non de-
terministic ones. The following result, mainly due to McNaughton [19],
summarizes several equivalences.

Theorem 6.1 Let X be a subset of AN. The following conditions are equiv-
alent:

(1) X is ω-rational,

(2) X is recognized by a finite Muller automaton,

(3) X is recognized by a finite deterministic Muller automaton,

(4) X is recognized by a finite Büchi automaton,

(5) X is a boolean combination of sets recognized by a finite deterministic
Büchi automaton.

Sketch of the proof. (3) implies (2) is clear.
(2) implies (1). Let A = (Q,A,E, I,T ) be a deterministic Muller au-

tomaton with T = {T1, . . . , Tn}. Then, it is easy to see that

Lω(A) =
⋃

16j6n

Lω(E, i, {Tj})

In other words, we may assume that the table T contains only one set of
states T = {t0, . . . , tk−1}. Let X = L+(E, i, t0) and, for 0 6 i 6 k − 1,
let Xi be the set of labels of all finite paths from ti to ti+1 visiting only
states of T (where the indices i are calculated modulo k). Now a path p is
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successful if and only if it starts in i and Infinite(p) = T . In this case, p can
be factorized as follows: a (finite) path from i to t0, one from t0 to t1, one
from t1 to t2, . . . , one from tk−2 to tk−1, one from tk−1 to t0, one from t0 to
t1, etc. Therefore

Lω(E, i, {T}) = X(X0X1 · · ·Xk−1)
ω

and thus Lω(E, i, {T}) is ω-rational.
(1) implies (4) follows from Theorem 4.2.
(4) implies (3) is the more difficult part of the proof. We shall present in

section 10 a semigroup theoretic proof of this result. The best known algo-
rithm to convert a Büchi automaton into a deterministic Muller automaton
is Safra’s construction, which, given a n-state Büchi automaton, produces
an equivalent deterministic Muller automaton with at most nn states. The
reader is referred to the original article of Safra [37] or to [30] for a presen-
tation of this difficult algorithm.

Thus conditions (1) to (4) are equivalent. We conclude by showing that
(2) implies (5) and (5) implies (1).

(2) implies (5). Let A = (Q,A,E, I,T ) be a deterministic Muller au-
tomaton. As above, we may assume that T = {T}. Then, for an infinite
path p, the condition Infinite(p) = T is equivalent to the conjunction of the
two conditions

(1) p visits every t ∈ T infinitely often,

(2) p visits every t /∈ T finitely often.

This can be converted into the following formula, which gives (5)

Lω(E, i, {T}) =
⋂

t∈T

Lω(E, i, t) \
⋂

t/∈T

Lω(E, i, t)

(5) implies (1). By Theorem 4.2, every set recognized by a finite deter-
ministic Büchi automaton is ω-rational. Furthermore, since (1) and (3) are
equivalent, ω-rational sets are closed under boolean operations.

Corollary 6.2 The recognizable sets of AN are closed under finite boolean
operations, morphisms and inverse morphisms between free semigroups.

7 ω-semigroups

As it is shown elsewhere in this volume [33], one can use finite semigroups in
place of automata to define the recognizable sets of finite words. It is possible
to extend this idea to infinite words by replacing semigroups by ω-semi-
groups, which are, basically, algebras in which infinite products are defined.
Although these algebras do not have a finitary signature, standard results on
algebras still hold. In particular, A∞ appears to be the free algebra on the
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set A and recognizable sets can be defined, as before, as the sets recognized
by finite algebras. However, a problem arises since these finite algebras have
an infinitary signature and thus are not finite objects. This problem can be
solved by a Ramsey type argument showing that the structure of these finite
algebras is totally determined by only three operations of finite signature.
This defines a new type of algebras of finite signature, the Wilke algebras,
that suffice to deal with infinite products. 1

We now come to the precise definitions. An ω-semigroup is a two-sorted
algebra S = (Sf , Sω) equipped with the following operations:

(a) A binary operation defined on Sf and denoted multiplicatively,

(b) A mapping Sf × Sω → Sω, called mixed product, that associates to
each pair (s, t) ∈ Sf × Sω an element of Sω denoted st,

(c) A mapping π : SN

f → Sω, called infinite product

These three operations satisfy the following properties :

(1) Sf , equipped with the binary operation, is a semigroup,

(2) for every s, t ∈ Sf and for every u ∈ Sω, s(tu) = (st)u,

(3) for every increasing sequence (kn)n>0 and for all (sn)n∈N ∈ SN

f ,

π(s0s1 · · · sk1−1, sk1sk1+1 · · · sk2−1, . . .) = π(s0, s1, s2, . . .)

(4) for every s ∈ Sf and for every (sn)n∈N ∈ SN

f

sπ(s0, s1, s2, . . .) = π(s, s0, s1, s2, . . .)

Conditions (1) and (2) can be thought of as an extension of associativity.
Conditions (3) and (4) show that one can replace the notation π(s0, s1, s2, . . .)
by the notation s0s1s2 · · · without ambiguity . We shall use this simplified
notation in the sequel. Intuitively, an ω-semigroup is a sort of semigroup in
which infinite products are defined.

A ω-semigroup S = (Sf , Sω) is complete if every element of Sω can be
written as an infinite product of elements of Sf . It is a harmless hypothesis
to assume that all the ω-semigroups considered in this paper are complete.

Example 7.1 We denote by A∞ the ω-semigroup (A+, AN) equipped with
the usual concatenation product.

Given two ω-semigroups S = (Sf , Sω) and T = (Tf , Tω), a morphism of
ω-semigroups S is a pair ϕ = (ϕf , ϕω) consisting of a semigroup morphism
ϕf : Sf → Tf and of a mapping ϕω : Sω → Tω preserving the mixed product
and the infinite product: for every sequence (sn)n∈N of elements of Sf ,

ϕω(s0s1s2 · · · ) = ϕf (s0)ϕf (s1)ϕf (s2) · · ·

1Actually, the chronology is a little bit different. Ramsey type arguments have been
used for a long time in semigroup theory [18, 40, 9], the Wilke algebras were introduced
by Wilke in [45] under the name of binoids to clarify the approach of Arnold [1], Pécuchet
[23] and Perrin [25] and the idea of using infinite products on semigroups came last [30].
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and for every s ∈ Sf , t ∈ Sω,

ϕf (s)ϕω(t) = ϕω(st)

In the sequel, we shall often omit the subscripts, and use the simplified
notation ϕ instead of ϕf and ϕω.

Algebraic concepts like ω-subsemigroup, quotient and division are easily
adapted to ω-semigroups. The semigroup A+ is called the free semigroup
on the set A because it satisfies the following property (which defines free
objects in the general setting of category theory): every map from A into a
semigroup S can be extended in a unique way into a semigroup morphism
from A+ into S. Similarly, it is not difficult to see that the free ω-semigroup
on (A, ∅) is the ω-semigroup A∞.

A key result is that when S is finite, the infinite product is totally deter-
mined by the elements of the form sω = sss · · · , according to the following
result of Wilke [46].

Theorem 7.1 Let Sf be a finite semigroup and let Sω be a finite set. Sup-
pose that there exists a mixed product Sf × Sω → Sω and a map from Sf

into Sω, denoted s → sω, satisfying, for every s, t ∈ Sf , the equations

s(ts)ω = (st)ω

(sn)ω = sω for every n > 0

Then the pair S = (Sf , Sω) can be equipped, in a unique way, with a structure
of ω-semigroup such that for every s ∈ S, the product sss · · · is equal to sω.

This is a non trivial result, based on a consequence of Ramsey’s theorem
which is worth mentioning:

Theorem 7.2 Let ϕ : A+ → S be a morphism from A+ into a finite semi-
group S. For every infinite word u ∈ AN, there exist a pair (s, e) of elements
of S such that se = s, e2 = e, and a factorization u = u0u1 · · · of u as a
product of words of A+ such that ϕ(u0) = s and ϕ(un) = e for every n > 0.

This motivates the following definition: a linked pair in a finite semigroup
S is a pair (s, e) ∈ S × S such that e is idempotent and se = s. Two linked
pairs (s, e) and (s′, e′) are conjugate (notation (s, e) ∼ (s′, e′)) if there exist
x, y ∈ S1 such that e = xy, e′ = yx and s′ = sx. Note that these conditions
also imply s = s′y, since s′y = sxy = se = s.

A Wilke algebra is a two-sorted algebra (Sf , Sω) equipped with three
operations: an associative product on Sf , a mixed product Sf × Sω → Sω

and a map from Sf into Sω, denoted s → sω, satisfying, for every s, t ∈ Sf ,
the equations

s(ts)ω = (st)ω

(sn)ω = sω for every n > 0
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A Wilke algebra is complete if every element of Sω can be written as stω

for some s, t ∈ Sf . Theorem 7.1 states that every finite ω-semigroup is
equivalent with a finite Wilke algebra.

One can attach to every finite semigroup S a finite complete ω-semigroup
S̄ = (S, Sω), constructed as follows. Denote by π the exponent of S, that
is, the smallest positive integer n such that sn is idempotent for all s ∈ S.
Let [s, e] be the conjugacy class of a linked pair (s, e). One defines Sω as the
set of conjugacy classes of linked pairs of S. The pair S̄ is equipped with a
structure of Wilke algebra by setting, for all [s, e] ∈ Sω and t ∈ S,

t[s, e] = [ts, e] and tω = [tπ, tπ]

The definition is coherent, since if (s′, e′) and (s, e) are conjugate linked
pairs, then (ts′, e′) and (ts, e) are conjugate linked pairs. One can prove
that S̄ is a complete Wilke algebra such that every semigroup morphism
ϕ : A+ → S can be extended into a morphism of ω-semigroups ϕ : A∞ → S̄
defined by ϕ̄f = ϕ and ϕ̄ω(u) = [s, e], where (s, e) is a linked pair associated
with u.

The ω-semigroup S̄ has the following universal property.

Proposition 7.3 Let T = (Tf , Tω) be a finite ω-semigroup and let S be a
finite semigroup. For every semigroup morphism ϕ from S into Tf , there
exists a unique morphism of ω-semigroups ϕ̄ : S̄ → T that extends ϕ. Fur-
thermore, if ϕ(S) generates T as an ω-semigroup, then ϕ̄ is onto.

In particular, every finite ω-semigroup is a quotient of an ω-semigroup
of the form S̄.

Corollary 7.4 Every finite complete ω-semigroup S = (Sf , Sω) is a quo-
tient of S̄f .

Example 7.2 Let S = {a, b} be the finite semigroup given by the multi-
plication table aa = a, ab = a, ba = b and bb = b. There are four linked
pairs and two conjugacy classes: (a, a) ∼ (a, b) and (b, a) ∼ (b, b). Thus,
Sω = {[a, a], [b, b]} and the ω-power and the mixed product are given in the
following tables

aω = [a, a] bω = [b, b]

a[a, a] = a[b, b] = [a, a] b[a, a] = b[b, b] = [b, b]

Example 7.3 Let S be the five element Brandt semigroup: S is the semi-
group with zero presented on the set {a, b} by the relations a2 = 0, b2 = 0,
aba = a and bab = b. Thus S = {a, b, ab, ba, 0} and the D-class structure of
S is represented in the figure below:
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∗
ab a

b
∗
ba

∗
0

There are seven linked pairs and four conjugacy classes: (0, ab) ∼ (0, ba),
(a, ba) ∼ (ab, ab), (b, ab) ∼ (ba, ba) and (0, 0). Thus,

Sω = {[ab, ab], [ba, ba], [0, ab], [0, 0]}

and the ω-power and the mixed product are given in the following tables

(ab)ω = [ab, ab] (ba)ω = [ba, ba] aω = bω = [0, 0]

a[ab, ab] = [0, ab] a[ba, ba] = [ab, ab] a[0, ab] = [0, ab] a[0, 0] = [0, 0]

b[ab, ab] = [ba, ba] b[ba, ba] = [0, ab] b[0, ab] = [0, ab] b[0, 0] = [0, 0]

ab[ab, ab] = [ab, ab] ab[ba, ba] = [0, ab] ab[0, ab] = [0, ab] ab[0, 0] = [0, 0]

ba[ab, ab] = [0, ab] ba[ba, ba] = [ba, ba] ba[0, ab] = [0, ab] ba[0, 0] = [0, 0]

0[ab, ab] = [0, ab] 0[ba, ba] = [0, ab] 0[0, ab] = [0, ab] 0[0, 0] = [0, 0]

A surjective morphism of ω-semigroups ϕ : A∞ → S recognizes a subset X
of AN if there exists a subset P of Sω such that X = ϕ−1(P ). By extension,
an ω-semigroup S recognizes X if there exists a surjective morphism of ω-
semigroups ϕ : A∞ → S that recognizes X. This definition can be extended
to subsets of A∞ as follows. A morphism of ω-semigroups ϕ : A∞ → S
recognizes a subset X of A∞ if and only if ϕ−1ϕ(X) = X, that is, if there
exists a subset P = (Pf , Pω) of (Sf , Sω) such that X ∩ A+ = ϕ−1

f (Pf ) and

X ∩A∞ = ϕ−1
ω (Pω). A consequence of Corollary 7.4 is that every subset of

A∞ recognized by a finite ω-semigroup is recognized by an ω-semigroup of
the form S̄.

Proposition 7.5 Let S = (Sf , Sω) be a finite ω-semigroup recognizing a
subset X of A∞. Then S̄f also recognizes X.

Example 7.4 Let S = ({a, b}, {aω , bω}), where the finite product is given
by the equalities aa = a, ab = a, ba = b, bb = b and the infinite product
is given by the rules ax1x2 · · · = aω and bx1x2 · · · = bω. One recognizes
here the ω-semigroup of Example 7.2. Let ϕ : A∞ → S be the morphism of
ω-semigroups defined by ϕ(a) = a and ϕ(b) = b. Then ϕ−1(aω) = aAω.

As for finite words, the following theorem holds.

Theorem 7.6 A subset of AN is recognizable if and only if it is recognized
by a finite ω-semigroup.
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In other words, finite ω-semigroups can be converted into automata and
vice versa. It is not difficult to see that a subset of AN recognized by a
finite ω-semigroup is ω-rational and thus, by Theorem 4.2, recognizable.
Indeed, if ϕ : A∞ → S recognizes X, then X is a finite union of sets of the
form ϕ−1(s)ϕ−1(e)ω . The algorithm to pass from a finite ω-semigroup to a
Büchi automaton presented in section 9 gives a direct proof of this result,
without using Theorem 4.2. In the opposite direction, an algorithm to pass
from Büchi automata to ω-semigroups is presented in section 8. Finally, the
algorithm to pass from a finite ω-semigroup to a Muller automaton given in
section 10 gives a proof of McNaughton’s theorem.

8 From Büchi automata to ω-semigroups

We give in this section the construction to pass from a finite (Büchi) au-
tomaton to a finite ω-semigroup. This construction is much more involved
than the corresponding construction for finite words.

Given a finite Büchi automaton A = (Q,A,E, I, F ) recognizing a subset
of X of AN, we would like to obtain a finite ω-semigroup recognizing X. Our
construction makes use of the semiring k = {−∞, 0, 1} in which addition
is the maximum for the ordering −∞ < 0 < 1 and multiplication, which
extends the boolean addition, is given in the following table

−∞ 0 1

−∞ −∞ −∞ −∞
0 −∞ 0 1

1 −∞ 1 1

Table 1: The multiplication table.

To each letter a ∈ A is associated a matrix µ(a) with entries in k defined by

µ(a)p,q =











−∞ if (p, a, q) /∈ E

0 if (p, a, q) ∈ E and p /∈ F and q /∈ F

1 if (p, a, q) ∈ E and (p ∈ F or q ∈ F )

We have already used a similar technique to encode automata, but now we
want to keep track of the visits of final states. We would like to extend µ
into a morphism of ω-semigroups. It is easy to extend µ to a semigroup
morphism from A+ to the multiplicative semigroup of Q×Q-matrices over
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k. If u is a finite word, one gets

µ(u)p,q =































−∞ if there exists no path of label u from p to q,

1 if there exists a path from p to q with label u

going through a final state,

0 if there exists a path from p to q with label u

but no such path goes through a final state

However, trouble arises when one tries to equip kQ×Q with a structure of
ω-semigroup. The solution consists in coding infinite paths not by square
matrices, but by column matrices, in such a way that each coefficient µ(u)p
codes the existence of an infinite path of label u starting at p.

Let S = (Sf , Sω) where Sf = kQ×Q is the set of square matrices of size
CardQ with entries in k and Sω = kQ is the set of column matrices with
entries in {−∞, 1}.

In order to define the operation ω on square matrices, we need the fol-
lowing definition. If s is a matrix of Sf , we call infinite s-path starting at
p a sequence p = p0, p1, . . . of elements of Q such that, for 0 6 i 6 n − 1,
spi,pi+1

6= −∞.
The s-path p is successful if spi,pi+1

= 1 for an infinite number of coeffi-
cients. Then sω is the element of Sω defined, for every p ∈ Q, by

sωp =

{

1 if there exists a successful s-path of origin p,

−∞ otherwise

Note that the coefficients of this matrix can be effectively computed. Indeed,
computing sωp amounts to checking the existence of circuits containing a
given edge in a finite graph. Then one can verify that S, equipped with these
operations, is an ω-semigroup. The morphism µ can now be extended in a
unique way as a morphism of ω-semigroups from A∞ into S. Furthermore,
we have the following result.

Proposition 8.1 The morphism of ω-semigroups from A∞ into S induced
by µ recognizes the set Lω(A).

The ω-semigroup µ(A∞) is called the ω-semigroup associated with A.

Example 8.1 Let X = (a{b, c}∗ ∪ {b})ω . This set is recognized by the
Büchi automaton represented below:

1a, b 2 b, c

a

b, c

Figure 8.1:
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The ω-semigroup associated with this automaton contains 9 elements

a =

(

1 1
−∞ −∞

)

b =

(

1 −∞
1 0

)

c =

(

−∞ −∞
1 0

)

ba =

(

1 1
1 1

)

ca =

(

−∞ −∞
1 1

)

aω =

(

1
−∞

)

bω =

(

1
1

)

cω =

(

−∞
−∞

)

(ca)ω =

(

−∞
1

)

It is defined by the following relations

a2 = a ab = a ac = a b2 = b bc = c

cb = c c2 = c (ba)ω = bω aaω = aω abω = aω

acω = cω a(ca)ω = aω baω = bω bbω = bω bcω = cω

b(ca)ω = (ca)ω caω = (ca)ω cbω = (ca)ω ccω = cω c(ca)ω = (ca)ω

9 From Wilke algebras to Büchi automata

Given a morphism of ω-semigroups recognizing a subset X of AN, we con-
struct a Büchi automaton that recognizes X. By Proposition 7.5, we may
suppose that the ω-semigroup is of the form S̄ = (S, Sω). Thus, let ϕ :
A∞ → S̄ be a morphism of ω-semigroups recognizing X and let P = ϕ(X).
The construction of a Büchi automaton that recognizes X relies on the fol-
lowing result of Pécuchet [24] which gives, for each idempotent e of S, a
representation of S by relations in S1.

Lemma 9.1 Let S be a finite semigroup and e an idempotent of S. The
map ϕe : S → B

S1×S1

defined, for all s ∈ S and for all p, q ∈ S1 by

ϕe(s)p,q =

{

1 if sq = p or if sq = pe

0 otherwise

is a semigroup morphism.

Let us consider, for every idempotent e of S, the Büchi automaton

Ae = (S1, A,Ee, Ie, {1}) with Ie = {s ∈ S | (s, e) ∈ P} and

Ee = {(p, a, q) ∈ S1 ×A× S1 | ϕ(a)q = p or ϕ(a)q = pe}

Then the Büchi automaton A that recognizes X is the disjoint union of the
automata Ae, where e ranges over the set of idempotents of S.

Example 9.1 Let S̄ = ({a, b}, {aω , bω}) be the ω-semigroup considered in
Example 7.2 and let ϕ : A∞ → S̄ be the morphism of ω-semigroups defined
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by ϕ(a) = a and ϕ(b) = b. The automaton A is represented in the figure
below.

a b

1

a

a b

a

a

a
b

a

b

a b

1

a

a b

b

a

b

b

a

b

Figure 9.1: The automata Aa (on the left) and Ab (on the right).

10 From Wilke algebras to Muller automata

Given a semigroup morphism ϕ : A+ → S recognizing a subset X of A+,
it is easy to build a deterministic automaton recognizing X. Denote by
S1 the monoid equal to S if S has an identity and to S ∪ {1} other-
wise. Take the right representation of A+ on S1 defined by s.a = sϕ(a).
This defines a deterministic automaton AS = (S1, A,E, {1}, P}, where
E = {(s, a, s.a) | s ∈ S1, a ∈ A}, which recognizes L. It is tempting to
do the same construction to obtain a deterministic Muller automaton, given
a finite ω-semigroup S̄ = (S, Sω) recognizing a subset X of AN. B. Le Saec
[15] has observed that such a construction is possible if the right stabilizers
of S are bands. Given a finite semigroup S and an element s of S recall
that the right stabilizer of s is the subsemigroup Stab(s) of S defined by
Stab(s) = {t | st = s}.

Theorem 10.1 Let S̄ = (S, Sω) be a finite ω-semigroup such that the right
stabilizers of S are idempotent semigroups. Let ϕ : A∞ → S be a mor-
phism of ω-semigroups recognizing a subset X of AN. Then the automa-
ton AS = (S1, A,E, {1},T ), where E = {(s, a, s.a) | s ∈ S1, a ∈ A} and
T = {Infinite(u) | u ∈ X} is a Muller automaton recognizing X.

Example 10.1 Let S̄ = ({a, b}, {aω , bω}) be the ω-semigroup considered in
Examples 7.2 and 9.1 and let ϕ : A∞ → S̄ be the morphism of ω-semigroups
defined by ϕ(a) = a and ϕ(b) = b. Let P = {aω}, so that ϕ−1(aω) = aAω.
Then the transitions of the automaton AS are represented below and its
table is T = {{a}}.
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1

a b

a b

a, b a, b

Figure 10.1: A deterministic Muller automaton recognizing aAω.

Unfortunately, the right stabilizer of an element of a finite semigroup is
not always an idempotent semigroup. However, it is shown in [16, 17] that
every finite semigroup is a quotient of a finite semigroup in which the right
stabilizer of every element is an idempotent semigroup. In fact, a slightly
stronger result holds.

Theorem 10.2 Every finite semigroup is a quotient of a finite semigroup
in which the right stabilizer of every element is a semigroup which satisfies
the identities x = x2 and xy = xyx.

Therefore, one can associate with every morphism from A∞ onto a finite
ω-semigroup S a Muller automaton as follows: first compute a finite semi-
group T whose right stabilizers are idempotent and commutative such that
Sf is a quotient of T and then apply the result of Le Saec. This gives the
proof of (4) implies (3) in Theorem 6.1. To sum up, we have obtained the
following result.

Theorem 10.3 Let X be a set of infinite words. The following conditions
are equivalent:

(1) X is recognizable,

(2) X is recognized by a finite ω-semigroup,

(3) X is ω-rational.

11 Syntactic ω-semigroup

Let S = (Sf , Sω) be an ω-semigroup. A congruence of ω-semigroup on S is
a pair ∼ = (∼f ,∼ω) where ∼f is a semigroup congruence on Sf and ∼ω is
an equivalence on Sω such that

(1) for all s, s′ ∈ Sf and for all t, t′ ∈ Sω, s ∼f s′ and t ∼ω t′ imply
st ∼ω s′t′

(2) for all infinite sequences s0, s1, s2, . . . and s′0, s
′
1, s

′
2, . . . of elements of

Sf such that si ∼f s′i for all i, s0s1 · · · ∼ω s′0s
′
1 · · ·
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If S is a finite ω-semigroup, then one may replace (2) by the weaker condition
(2′)

(2′) for all s, s′ ∈ Sf , s ∼f s′ implies sω ∼ω s′ω.

In the sequel, we shall often omit the subscripts, and use the simplified
notation ∼ instead of ∼f and ∼ω.

Let X be a subset of A∞. A congruence of ω-semigroup ∼ on A∞

recognizes X if the morphism of ω-semigroup ϕ : A∞ → A∞/∼ recognizes
X. Contrary to the case of finite words, the lower bound of the congruences
that recognize X does not always recognize X. If this lower bound still
recognizes X, it is called the syntactic congruence of X and is denoted ∼X .

Arnold has shown that the syntactic congruence always exists if X is rec-
ognized by a finite ω-semigroup [1]. The reason is that a finite ω-semigroup
can be considered as a finite Wilke algebra and that syntactic congruences
can be defined on Wilke algebras as on any algebra of finite signature. More
precisely, a congruence on a Wilke algebra S is a pair ∼ = (∼f ,∼ω) where
∼f is a semigroup congruence on Sf and ∼ω is an equivalence relation on
Sω that is compatible with the ω-power and the mixed product. In practice,
it is convenient to omit the subscripts f and ω and write ∼ for both ∼f and
∼ω.

A congruence ∼ on S saturates a subset P = (Pf , Pω) of S if for all
x, y ∈ Sf (resp. Sω), x ∼ y and x ∈ Pf (resp. Pω) implies y ∈ Pf (resp. Pω).
Now the lower bound of the congruences that saturate P also saturates P
and is called the syntactic congruence of P . It is the congruence ∼P defined
on Sf by u ∼P v if and only if, for every x, y ∈ S1

f and for every z ∈ Sf ,

xuyzω ∈ Pω ⇐⇒ xvyzω ∈ Pω

x(uy)ω ∈ Pω ⇐⇒ x(vy)ω ∈ Pω

and on Sω by u ∼P v if and only if, for every x ∈ S1
f ,

xu ∈ Pω ⇐⇒ xv ∈ Pω (11.1)

The syntactic Wilke algebra of P is the quotient of S by the syntactic con-
gruence of P .

Now, to compute the syntactic ω-semigroup of a set X recognized by
a finite Büchi automaton A, one first computes the finite ω-semigroup S
associated with A and the image P of X in S and then one computes the
syntactic Wilke algebra of P in S. This provides an algorithm to compute
the syntactic ω-semigroup of a recognizable set.

The syntactic congruence ∼X of a recognizable set X of A∞ can also be
defined directly as follows. On A+, u ∼X v if and only if, for every x, y ∈ A∗

and for every z ∈ A+,

xuyzω ∈ X ⇐⇒ xvyzω ∈ X

x(uy)ω ∈ X ⇐⇒ x(vy)ω ∈ X
(11.2)

20



and on AN, u ∼X v if and only if, for every x ∈ A∗,

xu ∈ X ⇐⇒ xv ∈ X (11.3)

The syntactic ω-semigroup of X is the quotient of A∞ under the congruence
of ω-semigroup ∼X . This is also the minimal (with respect to the quotient
ordering) complete finite ω-semigroup recognizing X.

Example 11.1 We come back to the example 8.1. The set X = (a{b, c}∗ ∪
{b})ω is recognized by the ω-semigroup S = {a, b, c, ba, ca, aω , bω, (ca)ω , 0},
defined by the following relations:

a2 = a ab = a ac = a b2 = b bc = c

cb = c c2 = c cω = 0 (ba)ω = bω aaω = aω

abω = aω a(ca)ω = aω baω = bω bbω = bω b(ca)ω = (ca)ω

caω = (ca)ω cbω = (ca)ω c(ca)ω = (ca)ω

Since P = {aω, bω}, the congruence ∼P is defined by

a ∼P ba et aω ∼P bω

Therefore, the syntactic ω-semigroup is S(X) = {a, b, c, ca, aω , (ca)ω , 0},
with the following relations

a2 = a ab = a ac = a ba = a b2 = b

bc = c cb = c c2 = c bω = aω cω = 0

aaω = aω a(ca)ω = aω baω = aω b(ca)ω = (ca)ω caω = (ca)ω

c(ca)ω = (ca)ω

12 Varieties

So far, we have extended to infinite words the notions of finite automata, of a
semigroup recognizing a set of words and finally of syntactic semigroup. The
next natural step in this process is to extend the variety theorem. Pécuchet
[24, 23] made a first attempt in this direction, but the result of Wilke [45]
is more satisfactory.

A variety of finite Wilke algebras is a class of finite Wilke algebras closed
under the taking of finite direct products, quotients and complete subalge-
bras.

Let X ⊂ A∞ and let u ∈ A+. We set

u−1X = {v ∈ A∞ | uv ∈ X}

Xu−ω = {v ∈ A+ | (vu)ω ∈ X}

Xu−1 = {v ∈ A+ | vu ∈ X}

21



An ∞-variety V associates with every alphabet A a set V(A∞) of recogniz-
able sets of A∞ such that

(1) for every alphabet A, V(A∞) contains ∅, A+, AN and A∞ and is closed
under finite boolean operations (finite union and complement),

(2) for every semigroup morphism ϕ : A+ → B+, X ∈ V(B∞) implies
ϕ−1(X) ∈ V(A∞),

(3) If X ∈ V(A∞) and u ∈ A∗, then u−1X ∈ V(A∞), Xu−1 ∈ V(A∞) and
Xu−ω ∈ V(A∞).

It is important to notice that one works with A∞ (and not with AN) in this
definition. In other words, the elements of a ∞-variety are sets of finite or
infinite words.

If V is a variety of finite Wilke algebras, we denote by V(A∞) the set of
recognizable sets of A∞ whose syntactic ω-semigroup belongs to V. This is
also the set of sets of A∞ recognized by an ω-semigroup of V.

An ∞-class of recognizable sets is a correspondence which associates
with every finite alphabet A, a set C(A∞) of recognizable sets of A∞. In
particular, the correspondence V → V associates with every variety of finite
Wilke algebras a ∞-class of recognizable sets.

The theorem of Wilke, which extends the corresponding theorem of
Eilenberg, can now be stated as follows.

Theorem 12.1 The correspondence V → V defines a bijection between the
varieties of finite Wilke algebras and the ∞-varieties.

We conclude by giving four examples of correspondence between vari-
etiesof finite Wilke algebras and ∞-varieties. The first and the second one
extend to infinite words well known results on finite words (the characteri-
zation of star-free and locally testable languages), but the last two examples
are less familiar since they concern two topological classes.

We refer to our article [33] in this volume for the definitions of the star-
free and locally testable languages. The set of star-free subsets of A∞ is
the smallest set S of subsets of A∞ containing the star-free languages of A+

which is closed under finite boolean operations and such that if X is a star-
free subset of A+ and Y ∈ S, then XY ∈ S. Equivalent characterizations
of the star-free subsets of AN were proposed by Thomas [41, 42].

Theorem 12.2 Let X be a subset of AN. The following conditions are
equivalent:

(1) X is star-free,

(2) X is a finite union of sets of the form UV ω where U and V are star-
free subsets of A+ and V 2 ⊂ V ,

(3) X is a boolean combination of sets of the form
−→
L where L is a star-free

language.
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The syntactic characterization is given in [26]. A finite ω-semigroup
(Sf , Sω) is aperiodic if the semigroup Sf is aperiodic.

Theorem 12.3 A recognizable set of A∞ is star-free if and only if its syn-
tactic ω-semigroup is aperiodic.

It follows in particular that the star-free sets form a ∞-variety. Similar
results hold for the locally testable sets. A subset of A∞ is locally testable if
and only if it is a finite boolean combination of sets of the form uA∗, A∗u,
A∗uA∗, uAω, A∗uAω and A∗(uA∗)ω, for all u ∈ A+. The following results
are due to Pécuchet [24, 23]

Theorem 12.4 Let X be a subset of AN. The following conditions are
equivalent:

(1) X is locally testable,

(2) X is a finite union of sets of the form UV ω where U and V are locally
testable subsets of A+ and V 2 ⊂ V ,

(3) X is a boolean combination of sets of the form
−→
L where L is a locally

testable language.

A finite ω-semigroup (Sf , Sω) is locally idempotent and commutative if
the semigroup Sf is locally idempotent and commutative.

Theorem 12.5 A recognizable set of A∞ is locally testable if and only if its
syntactic ω-semigroup is locally idempotent and commutative.

One can define a topology on AN by considering A as a discrete space and
by taking the product topology. The open sets of AN are the sets of the form
XAN for some X ⊂ A+. A set is closed if its complement is open. The sets
of ∆1 are the clopen sets, sets which are at the same time closed and open.
The sets of ∆2 are at the same time countable unions of closed sets and
countable intersection of open sets. One can show that the recognizable sets
of ∆2 are the sets which are accepted by a deterministic Büchi automaton
as well as their complement. The characterization of these two classes in
terms of ω-semigroups is due to Wilke [46]. In these statements, xπ denotes
the unique idempotent of the semigroup generated by x.

Theorem 12.6 The class ∆1 form a ∞-variety. The corresponding vari-
ety of finite Wilke algebras is the class of algebras defined by the equation
xπyzω = xπy′z′ω.

Theorem 12.7 The class ∆2 form a ∞-variety. The corresponding vari-
ety of finite Wilke algebras is the class of algebras defined by the equation
(xπyπ)πxω = (xπyπ)πyω.
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13 Conclusion

Most known results on automata on finite words have found their coun-
terpart on infinite words. However, the complexity of the solutions is ap-
parently increased by an order of magnitude. This is true for instance for
the equivalence between deterministic and non deterministic automata and
for the variety theorem. Furthermore, several questions which are solved
for finite words are still open for infinite words, but one can be reasonably
optimistic about them.
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