
Competitive Recommendation Systems

Petros Drineas
∗

Computer Science
Department

Yale University

Iordanis Kerenidis
†

Computer Science Division
University of California,

Berkeley

Prabhakar Raghavan
‡

Verity, Inc.
Sunnyvale, CA

ABSTRACT
A recommendation system tracks past purchases of a group
of users to make product recommendations to individual
members of the group. In this paper we present a notion
of competitive recommendation systems, building on recent
theoretical work on this subject. We reduce the problem
of achieving competitiveness to a problem in matrix recon-
struction. We then present a matrix reconstruction scheme
that is competitive: it requires a small overhead in the num-
ber of users and products to be sampled, delivering in the
process a net utility that closely approximates the best pos-
sible with full knowledge of all user-product preferences.

1. INTRODUCTION
Consider m users each of whom has a non-negative real

utility for each of n products. This is conveniently viewed
as an m × n matrix A underlying the preferences of users.
These utilities (matrix entries) are not all known in advance;
rather, we learn their values as users express preferences
through transactions, marketing surveys, feedback ratings,
etc. The goal of a recommendation system is to infer, based
on the past actions of users, which products are likely to be
of the greatest utility to each user. Such a system makes rec-
ommendations for a user based not only on his prior actions,
but also on the actions of “similar” (in their past actions)
users. In this latter guise, the process is sometimes known
as collaborative filtering. There is a wealth of empirical lit-
erature [18, 21, 29, 30, 31, 32, 34, 35] on these ideas, and
indeed quite a few commercial products have resulted.

The primary metric of performance here and in the prior
literature is the quality (made precise below) of the recom-

∗Part of the work was done while the author was a summer
intern at Verity Inc. Also supported by NSF Grant CCR-
9820850. E-mail: drineas@cs.yale.edu
†Part of the work was done while the author was a sum-
mer intern at Verity Inc. Also supported by ARO grant
DAAD19-03-1-0082. E-mail:jkeren@cs.berkeley.edu
‡E-mail: pragh@verity.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’02,May 19-21, 2002, Montreal, Quebec, Canada.
Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

mendations. Computational performance metrics are also
important, but typically less so than quality. Most algo-
rithms used in practice are very computationally simple,
and even those proposed in the theoretical literature en-
tail only basic linear algebra. How does one evaluate these
algorithms? Most empirical work [18, 21, 27, 30, 31] has
employed the methodology of machine learning. In such
evaluations one begins with a complete preference matrix.
Some of its entries (usually chosen randomly) are deleted,
and the remainder are fed to the recommendation algorithm
as known preferences. The algorithm then recommends the
products of highest utility to each user; its success is mea-
sured by some function that measures how much utility each
user gets from the recommendations. Latent in this descrip-
tion is the notion that the algorithm is “reconstructing” the
entries of highest utility in each row of the m×n preference
matrix. In fact, many previous algorithms implicitly recon-
struct approximations to all the entries of the matrix, even
though entries of low value are not essential to the recom-
mendation process.

1.1 Prior theoretical work
Kumar et al. [26] introduced a simple model in which each

product fell into one of k equivalence classes. The prefer-
ence matrix was then reduced to an m× k matrix, since all
items within a class were assumed to have the same utility
for a user. Under the further assumption that each user’s
utility vector (i.e., each row of the matrix) summed up to
one, Kumar et al. [26] introduced a natural idea – that each
row vector is sampled to yield that user’s prior preferences.
This captures the notion that prior data on a user is more
likely to include products that have relatively high utility
for the user. This paper gives simple algorithms for small
values of k, measuring the sum of the utilities of the recom-
mendations over the users. It also underscores that in order
to provide good recommendations, an algorithm need not
reconstruct all entries. It did however point out a number
of unresolved issues: in practice products do not fall into
equivalence classes within which all utilities are the same,
the equivalence classes in the analysis had to be of roughly
the same size, and the competitiveness of the algorithms
rapidly diminished with increasing k.

Azar et al. [3] explicitly identified matrix reconstruction
as central to recommendation systems, aiming to recon-
struct the entire utility matrix (rather than only the highest
values in each row). Their work assumes a probabilistic
omission process that controls which entries in the matrix
are available for the recommendation system to examine.
They present a procedure which is guaranteed to recon-

struct a good approximation to the entire matrix using the
entries that remain provided that the overall preference ma-
trix has a rather strong ”gap” property (see below); this
gap requirement grows as the fraction of the matrix omitted
grows. Their work motivates the present work in the follow-
ing sense: we seek to understand whether directed sampling
of the preference matrix can be used as a tool to simultane-
ously reduce the number of entries that are examined and
the spectral gap required.

A very interesting result in matrix reconstruction appeared
in [1]. The authors described an algorithm that samples a
few elements of A (uniformly at random), thus creating a

much sparser matrix Ã. They show that a low rank approx-
imation to Ã is close to A with respect to the 2-norm. They
also prove a similar (but weaker) bound for the Frobenius
norm distance of the two matrices. In section 4 we present a
reconstruction algorithm with a reconstruction error (with
respect to the Frobenius norm) which seems more suitable
for our application.

Similar work has been done by Drineas et. al. [12, 13]. Al-
though these papers assume full knowledge of the input ma-
trices and then approximate Singular Value Decompositions
or products of matrices, they can also be viewed as matrix
reconstruction results. In particular, for a matrix A, [13]
reconstructs the product AAT given only a few columns of
A. Observe that this result is not useful in our situation;
we need to reconstruct A and not AAT and there is no easy
way to reconstruct A from AAT . But, in [14] it is shown
that A can be efficiently approximated using similar ideas
from a sample of rows and columns of A. This algorithm
(called CUR decomposition in [14]) is subsequently used for
property testing in graphs. In Section 4, we adapt this al-
gorithm to the problem of matrix reconstruction. Our goal
is to show that we can efficiently approximate A using only
partial information about A.

1.2 Our main results
In this paper we propose a notion of competitive rec-

ommendation systems, building on prior work [3, 26]. We
then reduce the problem of competitive recommendation to
a form of matrix reconstruction (intuitively motivated be-
low, and formalized in Section 3). Next, we develop algo-
rithms for the reconstruction problem that ask a “small”
number of users for all their preferences, and the remaining
users for preferences on a “small” number of products (Sec-
tion 4). Here “small” (as we formalize below) is a number
that is typically within a constant of the best possible on
every instance, supporting our notion of competitive recom-
mendation systems. Nonetheless, our algorithms are able
to achieve a total utility close to the best possible with full
knowledge of the matrix. As we will show, the number of
samples of utilities is thus significantly smaller than in prior
work. Moreover, some prior work [3, 28] requires a fairly
stringent “gap” assumption on the preference matrix in or-
der to apply Stewart’s theorem [19] without motivating the
nature of matrices generating such gaps. In avoiding this
gap requirement we make recourse to a particular, plausible
model for generating preference matrices. Finally, the run-
ning time of our algorithm is O(mn); we briefly compare it
with previous techniques in Section 4.

2. PRELIMINARIES

2.1 Competitive recommendations
As is clear from the preceding discussion, we have at least

two important metrics for measuring the quality of an algo-
rithm. First, as already mentioned, we must quantify the
overall quality and utility of the recommendations. Second,
we would like the algorithm to demand as little prior knowl-
edge as possible, as measured by the number of samples of
utility values. In analyzing the latter we adopt the view
that although there are m users, the majority of them are
likely to fall into a relatively small set of “types”. Users of
the same type need not have identical utility vectors, but
do have relatively similar vectors – this is formalized be-
low. Let k be the number of such types; we envision k as
being considerably smaller than m. In practice we believe
that k would typically be a constant independent of m; for
the remainder of the paper we will refer to k as a constant
in all qualitative discussion, even though our theorems will
eventually be quantified in terms of their dependence on k.

We introduce the following notions in the spirit of com-
petitive analysis. We will say an algorithm is c-competitive
for sampling if it only uses prior information from ck rows
and columns of the matrix. Intuitively (to within the con-
stant c), one cannot hope for much better in this style of
sampling — for otherwise, we risk the possibility of totally
missing information on a type of user and thus failing to
deliver any useful recommendations to that type. We say
an algorithm is f-competitive for utility if it delivers a to-
tal utility (formally defined below) in recommendations that
is at least f times the utility yielded by an algorithm that
has full knowledge of the utility matrix. We thus seek algo-
rithms that are c-competitive for sampling for a small value
of c, and simultaneously f-competitive for utility for a large
value of f . In fact, the algorithm we describe achieves these
objectives even if almost all (rather than all) users fall into
one of k dominant types.

2.2 Singular value decompositions
The singular value decomposition of an m by n matrix A

is a factorization of the form:

A = UΣV T

where U and V are orthogonal m ×m and n × n matrices
and Σ is the diagonal matrix whose diagonal entries are the
singular values σi of A. By σi(A) we denote the i-th largest
singular value of A. Let us define the m× n matrix Ak as

Ak = UkΣkV T
k = UkUT

k A = AVkV T
k ,

where Uk is the m×k matrix consisting of the first k columns
of U , Σk is the k × k diagonal matrix consisting of the k
largest singular values, and Vk is the n×k matrix consisting
of the first k columns of V .

Then, the matrix Ak is the best rank k approximation to
A with respect to the 2-norm and the Frobenius norm of
the matrix, i.e., the error |A − Ak|2,F is minimum over all
possible k-rank approximations to A. See [19] for a more
detailed discussion on SVD.

Also, the 2-norm of an m× n matrix A is defined as

|A|2 = max
|x|2=1

|Ax|2

and the Frobenius norm as

‖A‖F =

vuut mX
i=1

nX
j=1

a2
ij .

A well-known fact about the norms is that

|A|2 ≤ ‖A‖F .

Finally, for a matrix A, A(i) denotes the i-th column of A,
A(i) the i-th row of A and Tr(A) the trace of A (the sum of
its diagonal elements).

3. OUR MODEL AND SOME REDUCTIONS
We first define the notion of a “good” recommendation

(Section 3.1). Next, we reduce the problem of good recom-
mendations to a matrix reconstruction problem (Section 3.2).
We then introduce the notion of important user types (Sec-
tion 3.3). Finally, we show that if there exist relatively few
such types, making recommendations based on a low rank
approximation of the preference matrix gives competitive re-
sults (Section 3.4). In what follows A is an m×n preference
matrix and its rows are normalized (their length is 1).

3.1 Defining a “good” recommendation
Let Â be the approximation derived by an algorithm for

the matrix A. A recommendation for a user i consists of
the top r elements of Â(i), where r is a reasonably small
constant, say 5 ≤ r ≤ 10. Denote by ai1, . . . , air the top r
elements in the row A(i).

Definition 1. A product j is called good for user i if
Aij > air − δ, for some small constant δ.

Definition 2. A recommendation for a user i is good
if it contains at least one good product for the user.

This is a somewhat weak definition of a good recommen-
dation, but nevertheless a reasonable one. Intuitively a good
recommendation is one that leads to a purchase. If we rec-
ommend five products to a user, one of which has high utility
(i.e., very close to the top five products) then this is suffi-
cient.

Definition 3. A recommendation algorithm is called f-
competitive for utility, if it is expected to deliver good rec-
ommendations for at least f ·m users.

Obviously, f ≤ 1. Also, a recommendation algorithm that
has full knowledge of the preference matrix is 1-competitive.
We will parameterize the competitiveness of our algorithm
using the above definitions of a good recommendation and
some properties of the preference matrix. Our goal is to
show that, under rather natural assumptions, we can achieve
high values of f while keeping the algorithm c-competitive
for sampling for some small c. Under these definitions,
the algorithm of [3] is (1 − o(1))-competitive for utility and
O(m/k)-competitive for sampling. We should stress that the
algorithm of [3] is (1− o(1))-competitive for utility even un-
der more stringent definitions of f -competitiveness. It is
not clear though that such definitions make a recommenda-
tion system more useful; there should not be much differ-
ence between recommending the highest utility product and
something close to it.

3.2 Good recommendations from good matrix
reconstruction

Suppose that we have an approximation Â that is close
to A under the Frobenius norm. We will show that this im-
plies guarantees on the quality of recommendations derived
from Â. A bound in the Frobenius norm does not actually
give element-wise guarantees for the approximation, but, for
competitive recommendations, element-wise guarantees are
not necessary. It suffices if the high valued elements of A
remain high in the approximately reconstructed matrix Â.
Note that the high valued elements of A cannot be distorted
a lot, since they contribute to the error with respect to the
Frobenius norm more than the light elements.

So let us assume that we have approximated the matrix
A with Â such that ‖A − Â‖2F ≤ ε‖A‖2F . We want an up-
per bound on the probability of a “bad” recommendation,
which will give us the value of the f -competitiveness of our
algorithm.

Lemma 1. Assuming that we have an approximation Â
to A such that ‖A− Â‖2F ≤ ε‖A‖2F , the probability of a bad
recommendation is

Pr[bad recommendation] ≤ 2ε

rδ2
.

Proof: We note that δ and r come from Section 3.1. Then, a
bad recommendation arises when all our recommendations
for a user i, i.e., the r top elements of Â(i), have utility less
than air − δ. We will compute the smallest contribution of
a bad recommendation to the error ‖A− Â‖2F . It is easy to
see that the error takes the smallest value when the top r
products in A(i) have utility u and the next r products all
have utility u − δ. In this case, we have to minimize the
error over all values x, such that in Â(i) the r top products
of A(i) have utility ≤ x and the r products with utility u−δ

now have entries ≥ x. This happens for x = u − δ
2
. The

error in this case is

r · (u− δ

2
− u)2 + r · (u− δ − u +

δ

2
)2 =

rδ2

2
.

Therefore, if we assume that λm users get a bad recommen-
dation, the total error is λmrδ2/2. Since we know that the
error is bounded by ε‖A‖2F and ‖A‖2F = m we get

Pr[bad recommendation] ≤ 2ε

rδ2
.

2

In a plausible scenario, we can have an approximation
with ε = 0.01 and take r = 10 and δ = 0.1. Then the above
bound implies that the algorithm will give good recommen-
dations for 80% of all users. Thus, our algorithm would be
at least 0.8-competitive for utility. Of course, the compet-
itiveness of our algorithm also depends on the value of δ.
In practice the algorithm will be very competitive even for
worse values of the parameters (larger ε, smaller δ), since
we anticipate the error to be distributed in a more random
way amongst the elements and not adversarially.

This crude upper bound holds without making any as-
sumptions about the utilities of the users. Making reason-
able assumptions about these utilities, e.g., that there are a
few high valued elements and many small elements in each
row can give us better performance guarantees. Nonethe-
less, it is clear that a bound on the Frobenius norm of the

“reconstruction” error will return competitive recommenda-
tions, since the high valued elements cannot be distorted a
lot.

3.3 Modelling the users
In any large set of users, we would expect that most users

belong to a small number of “well-separated” types. Then, a
recommendation system will be competitive if it can produce
good recommendations for this majority of users. We make
this intuition more precise now in our model. We assume `
types of users (with ` possibly of the order of m), character-

ized by the vectors v(1), . . . , v(`) ∈ [0, 1]n. These types are
unit vectors (their length is one) and “well-separated”. Intu-
itively, this means that our types should not be linearly de-
pendent or near-linearly dependent, since in this case some
of the types are redundant.

Definition 4. The vectors v(1), . . . , v(`) are δ-separated

if for all pairs (i, j) such that i 6= j, v(i)T · v(j) ≤ δ.

Observe that a set of types (each represented by a vector)
that is 0-separated contains types that are orthogonal to
each other and of unit length. If we define an l× n “matrix
of types”, then as types become more and more dependent
on each other, the smallest singular value of this matrix
shrinks. Thus, the matrix has a good approximation of rank
less than ` or, equivalently, one of our types is close to being
linearly dependent to the other types.

Imagine for the moment that all of our m users fall in one
of the above types, so that our preference matrix has the
following form:

A =

26664
T1

T2

...
T`

37775
where each of the Ti is a ti × n matrix, with ti identical
rows (copies of v(i)). Thus, ti is the number of users that

are of type i. Also,
P`

i=1 ti = m. Assume that the types
are ordered so that t1 ≥ t2 ≥ · · · ≥ t`. Although we have `
disjoint user types, we believe that most of the users belong
to one of the few k “effective” user types. Intuitively, an
effective user type is defined as a user type that contains a
significant number of users.

Definition 5. A preference matrix in the form of A is
called (λ, k)-effective if

kX
i=1

ti ≥ λ ·m.

We will mostly be interested in matrices such that λ is close
to 1 and k = O(1). Thus, for such a matrix, most of its
Frobenius norm (λ‖A‖2F = λm) is contained in the sub-
matrices T1 . . . Tk. As a result, this matrix has an excellent
low-rank approximation. More specifically,

Lemma 2. For a (λ, k)-effective matrix in the form of A,

‖A−Ak‖2F ≤ (1− λ)‖A‖2F .

Proof: Ak is the optimal rank k approximation. By con-
struction, using the above definitions, A has a rank k ap-
proximation (call it Bk) such that ‖A−Bk‖2F ≤ (1−λ)‖A‖2F .

More specifically, if Bk is the sum of k m×n matrices (each
of rank 1)

Bk =

26664
T1

0
...
0

37775+

26664
0
T2

...
0

37775+ . . . +

266664
0
...

Tk

...

377775
it follows that Ak can only be an even better approximation.

2

Note that there may be up to (1− λ)m users that belong
to the remaining ` − k types. Assuming that our types are
δ-separated, if the number of users that do not belong to an
effective type is Ω(m) and δ is sufficiently small, then our
matrix does not have an ω(

√
m + n) gap as required in [3].

This is easy to see if our types are 0-separated. On the other
hand [3] does not require our matrix form.

Following the lines of [28] and [3], we model the deviation
of our users from their corresponding types by adding to A
a matrix E. We define Eij to be a random variable with
mean zero and variance Var(Eij) = O(ε2/m + n) for some
small 0 < ε < 1. Thus, we define a new matrix

Ã = A + E.

This new matrix Ã is our users-products matrix.

3.4 Bounds on the low rank approximation
Our first goal is to demonstrate that Ãk and A are close.

Thus, if we could approximate the optimal low rank ap-
proximation to Ã, we could efficiently recreate the matrix A
and thus accurately recommend a high utility product. Our
analysis will allow us to bound the error of the approxima-
tion and closely follows similar analyses in [3, 28].

We now prove that if A is δ-separated, (λ, k)-effective and
the top k types contain a significant number of users, then
there is sufficient gap in A to apply Lemma 1 of [28].

Lemma 3. If σ1, . . . σk are the singular values of A, A
is δ-separated with δ = O(1/n) and tk/tk+1 ≥ β1t1/tk for
some large constant β1, then

σk/σk+1 ≥ β2σ1/σk

for some constant β2 = O(
√

β1).

Proof: Our first step is to approximate the singular values
of A. Observe that if A were 0-separated its singular values
would be

√
t1, . . . ,

√
t` and the above theorem would hold

with β2 =
√

β1. The fact that A is not 0-separated slightly
perturbs its singular values. We use the notation Aδ to de-
note a δ separated matrix A and A0 to denote a 0 separated
matrix A. Then, AδA

T
δ is a matrix with entries at most δ

when rows belonging to different types are multiplied and
exactly 1 when rows belonging to the same type are multi-
plied. Thus, AδA

T
δ −A0A

T
0 has entries of absolute value at

most δ. Thus, its 2-norm is at most n · δ ≤ O(1). Using
standard perturbation theory results for the singular values
of symmetric matrices (see e.g., [19]), it is easy to conclude
that the singular values of Aδ are perturbed by at most O(1).
Choosing β1 and β2 carefully the result holds. We defer this
to the final version of the paper.

2

Now we can use Lemma 1 of [28] to prove that the rows

(Ãk)(i) and (Ak)(i) are close.

Lemma 4. Since |E|2 = O(ε), then, with probability 1-
o(1), for all i = 1 . . . m,

|(Ãk)(i) − (Ak)(i)|2 ≤ O(ε)

Proof: Using Theorem 3 of [1], the 2-norm of E is at most
O(ε) with probability 1-o(1) (assuming that m + n ≥ 20).
Applying Lemma 1 of [28] or a similar lemma of [3] we see

that Ṽk = VkR+G for some orthonormal matrix R and some
matrix G such that |G|2 ≤ O(ε). Then, using RRT = I,

|(Ãk)(i) − (Ak)(i)|2 =

= |Ã(i)ṼkṼ T
k −A(i)VkV T

k |2
= |Ã(i)(VkR + G)(RT V T

k + GT)−A(i)VkV T
k |2

≤ |(Ã(i) −A(i))VkV T
k + Ã(i)VkRGT |2

+ |Ã(i)GRT V T
k + Ã(i)GGT |2.

But, since the 2-norm of any orthogonal matrix is 1, using
the definition Ã(i) = A(i) + E(i) and the above derivation

|(Ãk)(i) − (Ak)(i)|2 ≤
≤ |Ã(i) −A(i)|2 + 2O(ε)|Ã(i)|2 + O(ε2)|Ã(i)|2
≤ |Ã(i) −A(i)|2 + O(ε)|Ã(i)|2
≤ |E(i)|2 + O(ε)|E(i)|2 + O(ε)|A(i)|2.

Now, |E(i)|22 =
Pn

j=1 E2
ij . Using our definitions, the expec-

tation of |E(i)|2 is O(nε2/m+n) = O(ε2). A simple Chernoff

bound shows that |E(i)|22 is tightly concentrated around its
mean. Thus, with probability 1-o(1),

|(Ãk)(i) − (Ak)(i)|2 ≤ |E(i)|2 + O(ε)|E(i)|2 + O(ε) ≤ O(ε)

since |A(i)|2 = 1.
2

The following corollary is now obvious (simply sum the
result of the above lemma for i = 1 . . . m).

Corollary 1. With probability 1− o(1), Ãk and Ak are
close w.r.t. the Frobenius norm, namely,

‖Ãk −Ak‖2F ≤ O(ε)m = O(ε)‖A‖2F .

Finally, if A is (λ, k)-effective it follows that ‖A− Ak‖ ≤
(1− λ)‖A‖2F .

Corollary 2. Ãk and A are close w.r.t. the Frobenius
norm, namely,

‖A− Ãk‖2F ≤ (O(ε) + 1− λ)‖A‖2F .

3.5 Unknown Ã

In the previous section we showed that A and Ãk are in-
deed close. However we cannot compute Ãk, since Ã is not
known! As proposed in [3] if the gap in A is ω(

√
m + n),

sampling Ω(mn) entries from Ã suffice to approximate Ãk

(and thus A) with o(1) element-wise error. We seek an al-
gorithm that samples O(m + n) elements, within our user
model. We briefly outline the algorithm and prove that it
returns competitive recommendations when applied to the
model of Section 3.3. We will prove the correctness of the
algorithm using the users-products matrix A instead of Ã;
the generalization of the proof to Ã is straight forward.

In the following description k is the number of effective
types, as defined in Section 3.3. To simplify the presenta-
tion, we assume that each effective type has a non-negligible

number of users. More formally, we assume that ti ≥ λ ·
m/100k, i = 1 . . . k. Recall that ti denotes the number of

users with characteristic vector v(i).

1. Pick uniformly at random ak (out of m) users and ask
for their utilities for all n products.

We will see later that a is O(ln k).

2. Pick ak products and ask the remaining users their
utilities about βk specific products.

We will describe later how to pick these products; β >
1 is a constant.

3. Classify each user.

The above algorithm can be viewed as picking O(k log k(m+
n)) elements of the users-products matrix in order to approx-
imate the missing utilities. These elements are not totally
random elements; instead, we need a constant number of
rows and columns. From a practical standpoint we believe
that such sampling is in fact reasonable; we expand on this
now.

A constant number of columns means that all the users
who are interested in getting recommendations should ini-
tially answer a small questionnaire. Indeed, a user should
expect to give out some information about his or her prefer-
ences, in order to acquire accurate and effective recommen-
dations. Since we only need a constant number of columns,
the size of the questionnaire will be small.

A constant number of rows means that we need to know
the preferences of a few users on all products. Of course, we
do not expect people to be willing to answer such question-
naires without compensation. However, it is common for
companies to test the market by paying people to try out
their new products. Note that we only need a small number
of very typical users.

Let us assume that after running the above algorithm we
identify the effective types v(1), . . . , v(k) and let V be the
k × n matrix of these vectors.

Lemma 5. If we randomly pick O(k ln k) users the prob-
ability of not observing all top k types is less that 1%.

Proof: The probability of not observing all top k types isPk
i=1(1− ti/m)ak. Using ti ≥ λ ·m/100k, i = 1 . . . k,

kX
i=1

(1− ti/m)ak =

≤
kX

i=1

(1− λ/100k)ak

= k(1− λ/100k)(100k/λ)(aλ/100)

≤ ke−aλ/100.

It is easy to see that setting a = 100 ln(100k)/λ reduces the
probability of not observing all the effective types to 1%.

2

We will now describe steps 2 and 3 of the algorithm. We
start by observing that given a user vector x we can classify
the user into one of the k effective types based on the values
of the dot products x · v(i), where v(i), i = 1 . . . k are the
k effective user types. Unfortunately, x is not fully known:
instead we are only given βk elements of x. Recall that x

is an n-vector of unit length. We now describe how to deal
with this difficulty.

Once we have formed V (the k × n matrix of effective
types), we pick a set of βk products (columns of V) to ask
questions for, where the probability of picking a particular
product V (i) is |V (i)|2/‖V ‖2F = |V (i)|2/k, i = 1 . . . n. This
essentially means that we ask questions about heavier prod-
ucts in V with higher probability. We decide on the above
set of products once and we use it for all the remaining users.
The following lemma shows that this amount of information
suffices for the classification of a user.

Lemma 6. If we discover the utilities of βk products for a
user-vector x (as described above), we can approximate V ·x
by ṽ such that

|V x− ṽ|22 ≤ 1

βp

holds with probability at least 1− p, 0 < p < 1.

Sketch of the proof: We only sketch a simple proof and defer
a more elaborate proof — using martingales to get a factor
of log p instead of p in the denominator — to the final paper.

We follow the lines of [13]. It suffices to analyze the fol-
lowing algorithm that approximates V · x by ṽ, which is the
product of Ṽ (a k × βk matrix) and x̃ (a βk vector).

• for t = 1 to βk independently

– Pick it ∈ {1 . . . n} at random with pi = Prob(it =

i) = |V (i)|2/k, i = 1 . . . n.

– Include V (it)/
p

βkpit as a column of Ṽ and

xit/
p

βkpit as an element of x̃.

• Return ṽ = Ṽ · x̃ as the approximation to V x.

Once a customer answers his questionnaire, we can com-
pute x̃ and, since we know Ṽ we can compute ṽ. The
rest of the proof follows from first principles: observe that
E(ṽ) = V ·x and we can bound the variance of ṽ to conclude
the proof.

2

Corollary 3. If β = 10/9p and our matrix is 0.1-separated,
with probability at least 1− p we can exactly classify all the
users belonging to the effective types. Thus, our algorithm
is λ-competitive for utility.

Unfortunately, although generalizing the above algorithm
to arbitrary preference matrices (i.e., matrices not neces-
sarily generated by the model of Section 3.3) is straight-
forward, a proof of its performance is not. The performance
of this algorithm seems to depend a lot on the assumptions
of our model and even small deviations from such assump-
tions cause substantial loss in competitiveness.

To sum up, our model assumes that most of the users
belong to a small number of well-separated types. In this
case, low-rank approximations allow for good recommenda-
tions for the users of the effective types. Therefore, it is
reasonable to believe that a recommendation system that
can accurately approximate the low-rank approximation of
the matrix A with a small number of samples will be com-
petitive. This is the subject of the next section.

4. APPROXIMATING A FROM SAMPLES
Based on the model described in Section 3.3 but also using

the philosophical justifications of [3], we can assume that the
user-products matrix A has a good low rank approximation.
In this section, we will show that picking O(k) rows and
columns of the matrix is sufficient to learn the preferences
of the users. Let us note that previous algorithms based on
the SVD of the matrix A and standard perturbation results,
need Ω(mn) elements of the matrix for a reconstruction with
small error.

Our goal is to reconstruct the “hidden” m × n matrix
A, based on partial information; namely only a constant
number of rows and columns of A. We call the reconstructed
matrix Â and we provide error bounds for ‖A− Â‖2F .

The intuition behind our algorithm is simple (see also [12,
13, 14]). If the Singular Value Decomposition of A is A =
UΣV T , then the “optimal” rank k approximation is given
by Ak = UkUT

k A, where Uk is the m×k matrix of the top k
left singular vectors of A. In [12], we have essentially shown
how to efficiently approximate A by

A ≈ ŨkŨT
k A (1)

given only a few columns of A. The computation of Ũk does
not involve A at all; only the sampled columns 1.

However, in the case of recommendation systems, A is
“hidden”. Thus, the algorithm of [12] is not sufficient. But,

instead of using A in equation (1), we can use a matrix Ã

of the same dimensions such that E(Ã) = A. One could
reasonably expect

A ≈ ŨkŨT
k A ≈ ŨkŨT

k Ã (2)

We define Ã as follows: its rows are either scaled versions of
the corresponding rows of A (if these rows are revealed as
part of the input) or all-zero vectors.

Before formally describing our algorithm, we should stress
that we make no assumptions about the matrix A. Indeed,
the algorithm (and its error bounds) apply to any matrix,
regardless of its rank. Obviously, we will not assume that A
conforms to the model of Section 3.3. The algorithm does
not even need the user vectors (rows of A) to be of unit
length; for clarity of exposition though we will retain this
assumption.

We define two sets of probabilities: pi, i = 1 . . . m and
qj , j = 1 . . . n such that:

1. pi ≥ α|A(i)|2/‖A‖2F , for some constant α ≤ 1.

2. qj ≥ β|A(j)|2/‖A‖2F for some constant β ≤ 1.

3.
Pm

i=1 pi =
Pn

j=1 qj = 1.

Our algorithm assumes that we can sample rows (columns)
of A with respect to the pi (qj). One could philosophically
argue that such sampling is possible, even if A is unknown:
our goal is to sample columns of A with probabilities pro-
portional to their lengths, or, equivalently, products that
seem more popular. This should be a rather realistic as-
sumption, since we usually have some prior knowledge of a
product’s popularity over all users2. We emphasize that the

1The goal of [12] was to efficiently approximate Uk, in less
space and time than full SVD.
2A similar justification could be given for the rows of A.

exact lengths of rows and columns of A are not necessary;
the use of α and β allows us to approximate them.

To make our exposition clearer, we assume that the rows
of A are of unit length. Then, sampling rows of A (users)
w.r.t. the pi is trivial: uniform sampling will do (α = 1).
We now formally describe the algorithm.

Input:

1. r rows of A (A(i1), . . . , A(ir)), where the proba-
bility of picking the i-th row is pi.

2. c columns of A (A(j1), . . . , A(jc)), where the prob-
ability of picking the j-th column is qj .

Output: An m× n matrix Â that approximates A.

The algorithm:

1. (as in [12]) We create an m × c matrix C with

columns A(jt)/
√

cqjt , t = 1 . . . c. We compute the
top k left singular vectors of C and we denote
them by the m× k matrix Ũk.

2. We create an m× n matrix Ã such that

Ã(i) =

�
A(i)/rpi ,if i = it, t = 1 . . . r
0n ,otherwise

where 0n is the all-zeros n-vector. Obviously,
E(Ã) = A.

3. Return Â = ŨkŨT
k Ã.

One could easily see that in forming Ã, all pit are known
and equal to 1/m. Similarly, in forming C, |A(jt)| is known
(since this particular column is input to the algorithm).
Thus qjt is also known, since ||A||2F = m.

Before stating our main theorem, we observe that Ã can
be alternatively defined as Ĩ ·A, where Ĩ is an m×m diagonal
matrix, such that

Ĩii =

�
1/rpi , if i = it, t = 1 . . . r
0 , otherwise.

Our main theorem is:

Theorem 1. Let σt, t = 1, . . . , ρ denote the singular val-
ues of A (ρ is the rank of A). Then, using the above algo-
rithm,

E
�
‖A− ŨkŨT

k Ã‖2F
�
≤

ρX
t=k+1

σ2
t +

 s
k

βc
+

k

αr

!
‖A‖2F .

Proof: Using Ã = Ĩ ·A and adding and subtracting ŨkŨT
k A

to the left-hand side,

‖A− ŨkŨT
k ĨA‖2F =

= ‖A− ŨkŨT
k A + ŨkŨT

k A− ŨkŨT
k ĨA‖2F

≤ ‖A− ŨkŨT
k A‖2F + ‖ŨkŨT

k A− ŨkŨT
k ĨA‖2F

= ‖A− ŨkŨT
k A‖2F + ‖ŨkŨT

k (I − Ĩ)A‖2F . (3)

We now present two simple lemmas to bound the quanti-
ties on the right side of the above inequality.

Lemma 7. Given the notation of Theorem 1,

E(‖A− ŨkŨT
k A‖2F) ≤

ρX
t=k+1

σ2
t +

s
k

βc
‖A‖2F .

Proof: This is essentially Lemma 4.1 from [12] (after an
application of Markov’s inequality to eliminate the expecta-
tion).

2

Lemma 8. Given the notation of Theorem 1,

‖ŨkŨT
k (I − Ĩ)A‖2F = ‖ŨT

k (I − Ĩ)A‖2F .

Proof: Using that Tr(NT N) = ‖N‖2F ,

‖ŨkŨT
k (I − Ĩ)A‖2F =

= Tr(AT (I − Ĩ)ŨkŨT
k ŨkŨT

k (I − Ĩ)A)

= Tr(AT (I − Ĩ)ŨkŨT
k (I − Ĩ)A)

= ‖ŨT
k (I − Ĩ)A‖2F .

2

Before proceeding we observe that

(I − Ĩ)ii =

�
1− 1/rpi , with probability rpi

1 , with probability 1− rpi.

Thus, E
h
(I − Ĩ)ii

i
= 0 and

E
h
(I − Ĩ)2ii

i
=

1

rpi
− 1 ≤ ‖A‖2F

αr|A(i)|2 .

We are now ready for

Lemma 9. Given the notation of Theorem 1,

E(‖ŨT
k (I − Ĩ)A‖2F) ≤ k

αr
‖A‖2F

Proof:

‖ŨT
k (I − Ĩ)A‖2F =

=

kX
i=1

nX
j=1

(ŨT
k (I − Ĩ)A)2ij

=

kX
i=1

nX
j=1

mX

l=1

(ŨT
k)il(I − Ĩ)llAlj

!2

=

kX
i=1

nX
j=1

mX
l0=1

mX
l1=1

(ŨT
k)il0(I − Ĩ)l0l0Al0j(Ũ

T
k)il1(I − Ĩ)l1l1Al1j .

We observe now that E
h
(I − Ĩ)l0l0(I − Ĩ)l1l1

i
is zero if

l0 6= l1. Also, the length of any row of ŨT
k is 1. Thus,

E
�
‖ŨT

k (I − Ĩ)A‖2F
�

=

= E

kX

i=1

nX
j=1

mX
l=1

(ŨT
k)2il(I − Ĩ)2llA

2
lj

!
=

kX
i=1

mX
l=1

(ŨT
k)2ilE(I − Ĩ)2ll|A(l)|2

≤
kX

i=1

mX
l=1

(ŨT
k)2il

‖A‖2F
rα|A(l)|2 |A

(l)|2

=

kX
i=1

‖A‖2F
αr

=
k

αr
‖A‖2F .

2

Combining Lemmas 9,7 and equation (3), we get the state-
ment of Theorem 1. We could also present a bound for the
2-norm of the error, but it only adds intuition in our case.
Such a bound is presented in [14], where it plays a central
role.

2

Observe that Theorem 1 provides the guarantees that we
are seeking; assuming that A has a good rank k approxima-
tion (e.g. ||A−Ak||2F ≤ µ‖A‖2F),

E
�
‖A− ŨkŨT

k Ã‖2F /‖A‖2F
�
≤ µ +

 s
k

βc
+

k

αr

!
= µ + ε.

Thus, picking O(k/ε) rows and O(k/ε2) columns bounds
the expectation of the relative error of the approximation
by µ + ε. Using Markov’s inequality, we see that picking
O(k/pε) rows and O(k/p2ε2) columns bounds the relative
error of the approximation by µ + ε with probability 1 − p
for any p > 0 3.

Using the ideas of Section 3.2, suppose that we could fix
ε+µ to 0.01 by picking O(1) rows and columns. Then, using
our definitions and considering r = 10 and δ = 0.1, our
algorithm is 0.8-competitive for utility and O(1)-competitive
for sampling.

Finally, the running time of the above algorithm is O(mn).
Indeed, we can compute the top k left singular vectors of C
in O(c2m + c3) time (by computing the left singular vec-
tors of the c × c matrix CT C). Then, in O(mn) time we

can compute the product ŨkŨk
T
Ã. The running time of the

algorithm in [3] depends crucially on the accuracy and con-
vergence of Lanczos methods, since they need to compute
the SVD of a sparse m× n matrix and, obviously, full SVD
is prohibitive.

5. CONCLUSIONS AND OPEN PROBLEMS
An important issue with the algorithm in Section 4 is the

need to ask a small number of users about their preferences
on all products. This, of course, is a tough task; in real life,
few people might be willing to answer such a questionnaire.

We believe though that this particular difficulty is an in-
teresting research problem. We expect to compensate users
for their time to fill out such questionnaires. An interesting
question is how to determine the appropriate payoff and,
potentially, an answer could be given using game theoretic
concepts. Similar work has been done in [25].

A different question is whether one could devise more ef-
ficient matrix reconstruction algorithms, that either achieve
similar error bounds with less information or improve the
error bounds of the above algorithms. We now state a re-
sult of [14], which essentially shows that the algorithm of
Section 4 provides the best error bound one can hope for.
For a detailed statement and proof of the following theorem
we refer the reader to [14].

Theorem 2. Any algorithm returning a matrix Â that
approximates an m× n matrix A such that

||A− Â||F,2 ≤ ε||A||F
3We can strengthen the above result and replace p by log p
using Martingale arguments; we defer this discussion to the
final paper.

must output at least O((n + m) log(1/ε)) bits.

Thus, if we could reconstruct A by sampling less than
O(m + n) of its elements up to ε||A||F error, then we could
essentially “describe” A with less than O(m+n) bits, an ob-
vious contradiction to the above theorem. This does not di-
rectly imply the absence of algorithms returning more com-
petitive recommendations; as we observed in our introduc-
tion, there might be algorithms returning competitive rec-
ommendations without reconstructing the entire matrix!

Acknowledgements: We wish to thank Ravi Kannan
for many helpful discussions.

6. REFERENCES
[1] D. Achlioptas and F. McSherry. Fast Computation of

Low Rank Approximations, Proceedings of the 33rd
Annual Symposium on Theory of Computing, 2001.

[2] R.B. Allen. User models: Theory, method and practice.
International Journal of Man-Machine Studies,
32:511–543, 1990.

[3] Y. Azar, A. Fiat, A. Karlin, F. McSherry and J. Saia
Spectral analysis of data Proc. of the 33rd ACM
Symposium on Theory of Computing, 2001.

[4] M.J. Berry and G. Linoff. Data Mining Techniques.
John-Wiley, 1997.

[5] M.W.Berry, S.T.Dumais and G.W.O’Brien, Using
linear algebra for intelligent information retrieval, SIAM
Review, 37(4), 1995, pp. 573-595.

[6] J. Bettman. An Information Processing Theory of
Consumer Choice. Addison-Wesley Publishing Company,
1979.

[7] R.C. Blattberg, R. Glazer, J.D.C. Little, eds. The
Marketing Information Revolution, Harvard Business
School Press, 1994.

[8] B. Bollobas. Random Graphs. Academic Press, NY,
1985.

[9] R. Boppana. Eigenvalues and graph bisection: An
average-case analysis, Proc. IEEE Symp. on Foundations
of Computer Science, 1987.

[10] M. Charikar, S.R. Kumar, P. Raghavan, S.
Rajagopalan and A. Tomkins. On targeting Markov
segments. Proc. ACM Symposium on Theory of
Computing, 1999.

[11] S. Deerwester, S. T. Dumais, T.K. Landauer,
G.W. Furnas, and R.A. Harshman. Indexing by latent
semantic analysis. Journal of the Society for Information
Science, 41(6):391–407, 1990.

[12] P. Drineas, A. Frieze, R. Kannan, S. Vempala and V.
Vinay, Clustering in large graphs and matrices,
Proceedings of the 10th Symposium on Discrete
Algorithms, pp. 291-299, 1999.

[13] P. Drineas and R. Kannan, Fast Monte-Carlo
Algorithms for Approximate Matrix Multiplication,
Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science, 2001.

[14] P. Drineas and R. Kannan, Pass Efficient Algorithms
for Large Matrices, manuscript, 2001.

[15] A. Frieze, R. Kannan and S. Vempala, Fast
Monte-Carlo algorithms for finding low rank
approximations, Proceedings of the 39th Annual
Symposium on Foundations of Computing, pp. 370-378,
1998.

[16] Z. Furedi and J. Komlos, The eigenvalues of random
symmetric matrices, Combinatorica 1 (1981), pp.
233-241.

[17] R. Glazer. Marketing in an information-intensive
environment: Strategic implications of knowledge as an
asset, Journal of Marketing, 55:1–19, 1991.

[18] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry.
Using collaborative filtering to weave an information
tapestry. Communications of the ACM, 35:12, pp. 51–60,
1992.

[19] G. Golub, C.F. Van Loan, Matrix Computations,
Johns Hopkins University Press, 1989.

[20] W. Hoeffding, Probability inequalities for sums of
bounded random variables, American Statistical
Association Journal, March 1962, pp. 13-30.

[21] W. Hill, L. Stead, M. Rosenstein, G. Furnas.
Recommending and evaluating choices in a virtual
community of use. Proceedings of ACM CHI, pp.
194–201, 1995.

[22] D.L. Hoffman and T.P. Novak. Marketing in
hypermedia computer-mediated environments:
Conceptual foundations. Journal of Marketing, 60:50–68,
1996.

[23] J. Howard. Consumer Behavior in Marketing Strategy,
Prentice Hall, Englewood Cliffs, NJ, 1989.

[24] J. Kleinberg, C.H. Papadimitriou, P. Raghavan.
Segmentation problems. Proceedings of the ACM
Symposium on Theory of Computing, 1998.

[25] J. Kleinberg, C.H. Papadimitriou, P. Raghavan, On
the Value of Private Information,Proceedings of
Theoretical Aspects of Reasoning about Knowledge, 2001.

[26] R. Kumar, P. Raghavan, S. Rajagopalan and A.
Tomkins. Recommender systems: a probabilistic
analysis. Proc. 39th IEEE Symp. on Foundations of
Computer Science, 1998.

[27] B.N. Miller, J.T. Riedl, J.A. Konstan. Experiences
with GroupLens: Making usenet useful again.
Proceedings of the USENIX Conference, 1997.

[28] C.H. Papadimitriou, P. Raghavan, H. Tamaki and S.
Vempala. Latent semantic indexing: A probabilistic
analysis. Proceedings of the ACM Symposium on
Principles of Database Systems, 1998.

[29] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J.
Riedl. GroupLens: An Open Architecture for
Collaborative Filtering of Netnews, Center for
Coordination Science, MIT Sloan School of Management
Report WP #3666–94, 1994.

[30] U. Shardanand. Social Information Filtering for Music
Recommendation, Masters Thesis, Department of
Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1994.

[31] U. Shardanand and P. Maes. Social information
filtering: Algorithms for automating “word of mouth”,
Proceedings of the ACM Conference on Human Factors
in Computing Systems, pp. 210–217, May 1995

[32] ACM SIGGROUP resource page on collaborative
filtering.
http://www.acm.org/siggroup/collab.html.

[33] L.G. Valiant. A theory of the learnable. CACM
27(11): 1134–1142, 1984.

[34] H.R. Varian. Resources on collaborative filtering.
http://www.sims.berkeley.edu/resources/collab/.

[35] H.R. Varian and P. Resnick, eds. CACM Special issue
on recommender systems. CACM 40(3), 1997.

