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Abstract

Learning with Errors is one of the fundamental problems in computational learning theory and
has in the last years become the cornerstone of post-quantum cryptography. In this work, we study
the quantum sample complexity of Learning with Errors and show that there exists an efficient
quantum learning algorithm (with polynomial sample and time complexity) for the Learning with
Errors problem where the error distribution is the one used in cryptography. While our quantum
learning algorithm does not break the LWE-based encryption schemes proposed in the cryptography
literature, it does have some interesting implications for cryptography: first, when building an LWE-
based scheme, one needs to be careful about the access to the public-key generation algorithm that
is given to the adversary; second, our algorithm shows a possible way for attacking LWE-based
encryption by using classical samples to approximate the quantum sample state, since then using
our quantum learning algorithm would solve LWE.

1 Introduction

The ubiquity and importance of Machine Learning nowadays is undeniable. The large amount of data
arising in the real world, for example through scientific observations, large-scale experiments, internet
traffic, social media, etc, makes it necessary to be able to predict some general properties or behaviors of
the data from a limited number of samples of the data. In this context, Computational Learning Theory
provides rigorous models for learning and studies the necessary and sufficient resources, for example,
the number of samples or the running time of the learning algorithm. In his seminal work, Valiant
[Val84] introduced the model of PAC learning, and since then this model has been extensively studied
and has given rise to numerous extensions.

In another revolutionary direction, Quantum Computing takes advantage of the quantum nature of
small-scale systems as a computational resource. In this field, the main question is to understand what
problems can be solved more efficiently in a quantum computer than in classical computers. In the
intersection of the two fields, we have Quantum Learning Theory, where we ask if quantum learning
algorithms can be more efficient than classical ones.

One of course needs to be careful about defining quantum learning and more precisely, what kind of
access to the data a quantum learning algorithm has. On one hand, we can just provide classical samples
to the quantum learning algorithm that can then use the quantum power in processing these classical data.
In the more general scenario, we allow the quantum learning algorithm to receive quantum samples of
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the data, for a natural notion of a quantum sample as a superposition that corresponds to the classical
sample distribution.

More precisely, in classical learning, the learning algorithm is provided with samples of (x, f (x)),
where x is drawn from some unknown distribution D and f is the function we wish to learn. The goal
of the learner in this case is to output a function g such that with high probability (with respect to the
samples received), f and g are close, i.e., Pr [ f (x) 6= g(x)] is small when x is drawn from the same
distribution D.

The extension of this model to the quantum setting is that the samples now are given in the form
of a quantum state ∑x

√
D(x) |x〉 | f (x)〉. Note that one thing the quantum learner can do with this

state is simply measure it in the computational basis and get a classical sample from the distribution D.
Hence, a quantum sample is at least as powerful as a classical sample. The main question is whether the
quantum learner can make better use of these quantum samples and provide an advantage in the number
of samples and/or running time compared to a classical learner.

In this work we focus on one of the fundamental problems in learning theory, the Learning with
Errors (LWE). In LWE, one is given samples of the form

(x, 〈x, a〉+ ε(mod q))

where a ∈ Fn
q is fixed, x ∈ Fn

q is drawn uniformly at random and ε ∈ Fq is an ’error’ term drawn
from some distribution χ. The goal is to output a, while minimizing the number of samples used and
the computation time.

First, LWE is the natural generalisation of the well-studied Learning parity with noise problem
(LPN), which is the case of q = 2. Moreover, a lot of attention was drawn to this problem when
Regev [Reg05] reduced some (expected to be) hard problems involving lattices to LWE. With this re-
duction, LWE has become the cornerstone of current post-quantum cryptographic schemes. Several
cryptographic primitives proposals such as Fully Homomorphic Encryption [BV14], Oblivious Transfer
[PVW08], Identity based encryption [GPV08, CHKP12, ABB10], and others schemes are based in the
hardness of LWE (for a more complete list see Ref. [MR08] and Ref. [Pei16]).

Classically, Blum et al. [BKW03] proposed the first sub-exponential algorithm for this problem,
where the sample complexity is 2O(n/ log n). Then, Arora and Ge [AG11] improved the time com-
plexity for LWE with a learning algorithm that runs in 2Õ(n2ε) time. For LPN, Lyubashevsky [Lyu05]
has proposed an algorithm with sample complexity n1+ε at the cost of increasing computation time to
O(2n/ log log n).

1.1 Our contributions

In this work we study quantum algorithms for solving LWE with quantum samples. Let us be more
explicit on the definition of a quantum sample for the LWE problem. We assume that the quantum
learning algorithm receives samples in the form

1√
qn ∑

x∈Fn
q

|x1〉 ... |xn〉
∣∣∣∣∣ n

∑
i=1

aixi + bx(mod q)

〉
, (1)

where bx are iid random variables from some distribution χ over Fq.
As expected, the performance of the learning algorithm, both in the classical and quantum case, is

sensitive to the noise model adopted, i.e. to the distribution χ. When LWE is used in cryptographic
schemes, the distribution χ has support on a small interval around 0, either uniform or a discrete gaus-
sian. We prove that for such distributions, there exists an efficient quantum learner for LWE.

Main Result[informal] For error distributions χ used in cryptographic schemes, and for any ε > 0,
there exists a quantum learning algorithm that solves LWE with probability 1 − η using O(n log 1

η )
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samples and running time poly(n, log 1
η ).

Another interesting feature of our quantum learner is that it is conceptually a very simple algorithm
based on one of the basic quantum operations, the Quantum Fourier Transform. Such algorithms have
even started to be implemented, of course for very small input sizes and for the binary case [RdSR+15].
Nevertheless, as far as quantum algorithms are concerned, our learner is quite feasible from an imple-
mentation point of view.

The approach to solve the problem is a generalisation of Bernstein-Vazirani algorithm [BV97]: we
start with a quantum sample, apply a Quantum Fourier Transform over Fq on each of the qudit regis-
ters, and then, we measure in the computational basis. Our analysis shows that, when the last qudit is
not 0, which happens with high probability, the value of the remaining registers gives a with constant
probability. We can then repeat this process so that our algorithm outputs a with high probability.

We can also use the same technique to prove a generalisation of the result proposed by Cross et al.
[CSS15] for the LPN problem. The main difference with their work is that we start with a quantum
sample, i.e. a state where the noise is independent for each element in the superposition.

1.2 Related work

We now review some results on quantum algorithms for learning problems. For a more extended intro-
duction, see the survey by Arunachalam and de Wolf [AdW17].

The first approach on trying to solve learning problems with quantum samples was proposed by
Bshouty and Jackson [BJ95], where they prove that DNFs can be learned efficiently, even when the
samples are noisy. No such efficient learners are known classically.

Despite not presenting it as a learning problem, Bernstein and Vazirani [BV97] show how to learn
parity using a single quantum sample, while classically we need a logarithmic number of samples.

Some years later, Servedio and Gortler [SG04] showed that classical and quantum sample/query
complexity of learning problems are polynomially related, but they showed that for time complexity
there exist exponential separations between classical and quantum learning (assuming some standard
computational hardness assumptions).

Then, Ambainis et al. [AIK+04], Atici and Servedio [AS05], and Hunziker et al. [HMP+10] pro-
vided general upper bounds on the query complexity for learning problems that depend on the size of
the concept class being learned.

On specific problems, Atici and Servedio [AS07] and Belovs [Bel15] provided quantum algorithms
for learning juntas and Cross et al. [CSS15] proposed and implemented quantum learning algorithms
for LPN in a different noise model.

Recently, Arunachalam and de Wolf [AdW16] proved optimal bounds for the quantum sample com-
plexity of the Quantum PAC model.

1.3 Relation to LWE-based cryptography

As we have mentioned, LWE is used in cryptography for many different tasks. Let us briefly describe
how one can build an encryption scheme based on LWE [Reg05]. The key generation algorithm produces
a secret key a ∈ Fq, while the public key consists of a sequence of classical LWE samples (x1, 〈a, x1〉+
ε1(mod q)), ..., (xm, 〈a, xm〉+ εm(mod q)), where the error comes from a distribution with support in
a small interval around 0. For the encryption of a bit b, the party picks a subset S of [m] uniformly at
random and outputs (

∑
i∈S

xi(mod q), b
⌈ q

2

⌉
+ ∑

i∈S
〈a, xi〉+ ε i(mod q)

)
.
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For the decryption, knowing a allows one to find b. The security analysis of the encryption scheme
postulates that if an adversary can break the encryption efficiently then he is also able to solve the LWE
problem efficiently.

The quantum algorithm we present here does not break the above LWE-based encryption scheme.
Nevertheless, it does have some interesting implications for cryptography.

First, our algorithm shows a possible way for attacking LWE-based encryption: use classical samples
to approximate the quantum sample state, and then use our algorithm to solve LWE. One potential way
for this would be to start with m classical samples and create the following superposition

∑
S⊆[m]

|S〉
∣∣∣∣∣∑i∈S

xi(mod q)

〉 ∣∣∣∣∣∑i∈S
〈a, xi〉+ ε i(mod q)

〉
.

This operation is in fact efficient. Then, in order to approximate the quantum sample state, one would
need to ’forget’ the first register that contains the index information about which subset of the m classical
samples we took. In the most general case, such an operation of forgetting the index of the states in a
quantum superposition, known as index-erasure (see Aharonov and Ta-Shma [ATS03] and Ambainis
et al. [AIK+04]), is exponentially hard, and a number of problems, such as Graph Non-isomorphism,
would have an efficient quantum algorithm, if we could do it efficiently. Nevertheless, one may try to
use the extra structure of the LWE problem to find sub-exponential algorithms for this case.

A second concern that our algorithm raises is that when building an LWE-based scheme, one needs
to be careful on the access to the public-key generation algorithm that is given to the adversary. It
is well-known that for example, even in the classical case, if the adversary can ask classical queries
to the LWE oracle, then he can easily break the scheme: by asking the same query many times one
can basically average out the noise and find the secret a. However, if we just assume that the public
key is given as a box that an agent has passive access to it, in the sense that he can request a random
sample and receive one, then the encryption scheme is secure classically as long as LWE is difficult.
However, imagine that the random sample from LWE is provided by a device that creates a superposi-
tion 1√

qn ∑x∈Fn
q
|x1〉 ... |xn〉 |∑n

i=1 aixi + bx(mod q)〉 and then measures it. Then a quantum adversary
that has access to this quantum state can break the scheme. Again, our claim is, by no means, that
our algorithm breaks the proposed LWE-based encryption schemes, but more that LWE-based schemes
which are secure classically (assuming the hardness of LWE) may stop being secure against quantum
adversaries if the access to the public key generation algorithm becomes also quantum.

A similar situation has also appeared in the symmetric key cryptography with the so called super-
position attacks [Zha12, BZ13, DFNS14, KLLP16]. There, we assume an attacker that has quantum
access to the encryption oracle, in other words he can create a superposition of all possible pairs of
(message, ciphertext). Such a quantum adversary can in fact break many schemes that are assumed to
be secure classically. While in the case of symmetric cryptography, the quantum attacker must have
quantum access to the encryption oracle in order to break the system, our results show that in the case
of LWE-based public-key encryption, the quantum attacker must have quantum access to the public key
generation algorithm.

2 Preliminaries

2.1 Definitions

For n ∈ N, we define [n] := {1, ..., n}. For a complex number x = a + ib, a, b ∈ R, we define its
norm |x| by

√
a2 + b2, its real part R (x) = a and its imaginary part I (w) = b.

We remind now the notation for quantum information and computation. For readers not familiar
with these concepts we refer Ref. [NC11]. Let {ei} be the standard basis for the q-dimensional Hilbert
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space Cq. We denote here |i〉 = ei and a q-dimensional qudit is a unit vector in this space, i.e. |ψ〉 =
∑i∈Fq

αi |i〉, for αi ∈ C and ∑i∈Fq |αi|2 = 1. We call the state a qubit when q = 2. A k-qudit quantum

state is a unit vector in the complex Hilbert space Cqk
and we shorthand the basis states for this space

|i1〉 ⊗ ...⊗ |ik〉 with |i1〉 ... |ik〉.
For a state |ψ〉 = ∑i1,...,ik∈Fq

αi1,...,ik |i1〉 ... |ik〉 and a projector P, i.e. P is a linear transformation

such that P = P2, the probability a state |ψ〉 projects onto P is ‖P |ψ〉‖2.

2.2 Tail bounds

We state now two tail bound that we use in our calculations.

Chernoff bound for sum of Bernoulli. For i ∈ [k], let Xi be iid Bernoulli random variables

Xi =

{
1 w.p. 1− δ
0 w.p. δ

Let X = ∑i∈[k] Xi and µ = E [X] = (1− δ)k. It follows that

Pr [X < (1− ε)µ] < e−µε2/2.

Hoeffding’s bound. Consider a set of k independent random variables Xi, such that ai ≤ Xi ≤ bi. Let
ci = bi − ai, X = ∑i∈[k] Xi and µ = E [X]. Then, it follows that for any t > 0

Pr [X ≤ µ− t] ≤ e
t2

∑ c2
i .

3 The quantum learning model

3.1 Definition of the model

In this work, we use the model of learning under the uniform distribution where the learner receives
samples according to the uniform distribution and outputs the exact function with high probability. In
the quantum setting, the learning algorithm is given quantum samples, namely a uniform superposition
of the inputs and function values,

∑
x∈X

1√
|X|
|x〉 | f (x)〉 .

We also have to define how the noise is added into the quantum superposition. We consider the type
of noise defined in Bshouty and Jackson [BJ95], where independent noise is added for each element in
the superposition. This model is a natural generalisation for quantum samples with noise since it can
be seen as a superposition of the classical samples. Also, as noticed before, this is the kind of state we
would get after solving the index erasure problem.

3.2 Quantum algorithm for learning a linear function without error

For completeness, we briefly describe the quantum learning algorithm for learning a linear function over
Fq without any noise. This is a simple generalisation of Bernstein-Vazirani algorithm [BV97]. We can
use a single quantum sample

|ψ〉 = 1√
qn ∑

x∈Fn
q

|x1〉 ... |xn〉
∣∣∣∣∣ n

∑
i=1

aixi(mod q)

〉
(2)
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to retrieve the secret a with constant probability.
For this, we use the Quantum Fourier Transform over Fq, which is the following unitary operation

QFT |j〉 = 1√
qn

qn−1

∑
k=0

ω jk |k〉

and apply it independently on each qudit register of the quantum sample state of eq. (2). We get the state

1

qn+ 1
2

∑
x1,...,xn∈Fq

∑
j1,...,jn+1∈Fq

ω∑n
i=1 xi(ji+jn+1ai) |j1〉 ... |jn〉 |jn+1〉 .

It is not hard to see that the probability that for all i ∈ [n], we have ji = −jn+1ai(mod q) is∥∥∥∥∥∥ 1

qn+ 1
2

∑
jn+1∈Fq

∑
x∈Fn

q

ω0 |−jn+1a1(mod q)〉 ... |−jn+1an(mod q)〉 |jn+1〉

∥∥∥∥∥∥
2

=
1

q2n+1 ∑
jn+1∈Fq

 ∑
x∈Fn

q

1

2

= 1.

Therefore, whenever jn+1 6= 0, which, as we prove later, happens with probability q−1
q , we can

retrieve a by outputting for all i ∈ [n], ai =
−ji
jn+1

(all operations mod q).

4 Learning parity with noise

We start by showing how to solve the Learning Parity with Noise (LPN) problem, which is the LWE
problem for q = 2.

Here, as described in last section, the parity bit is flipped independently for each element in the
superposition with probability η. This is the same noise model proposed by Bshouty and Jackson [BJ95].
Note that Cross et al. [CSS15] studied LPN with different noise models: in the first, all parities in the
superposition were flipped at the same time with probability η; in the second, each qubit passed through
a depolarising channel.

The algorithm is the same as in the previous section, where now the QFT is over F2 (also called the
Hadamard Transform). All operations below are (mod 2).

Theorem 4.1. Let |ψ〉 = 1√
2n ∑x∈{0,1}n |x1〉 ... |xn〉 |∑n

i=1 aixi + bx〉 be a quantum sample where bx are
iid random variables with value 0 with probability 1− η and 1 with probability η.

Applying a Hadamard transform on all qubits and measuring them in the computational basis, pro-
vides an outcome |j1〉 ... |jn+1〉 with the following properties: (i) Pr [jn+1 = 0] = 1

2 ; (ii) with proba-
bility exponentially close to 1 over the sample, Pr [j1...jn = a|jn+1 = 1] ≥ (1− δ)2(1− 2η)2, for any
constant δ; and (iii) for c 6= a, E [Pr [j1, ..., jn = c|jn+1 = 1]] ≤ 1

2n .

Proof. If we apply Hadamards on each qubit of the sample state, we have

H⊗n+1 1√
2n ∑

x∈{0,1}n

|x1〉 ... |xn〉
∣∣∣∣∣ n

∑
i=1

aixi + bx

〉

=
1

2n+ 1
2

∑
x∈{0,1}n

∑
j∈{0,1}n+1

(−1)bx jn+1+∑n
i=1 xi(ji+jn+1ai) |j1〉 ... |jn〉 |jn+1〉

6



If we measure all the qubits in the computational basis, the probability that the last qubit is |0〉 is∥∥∥∥∥∥ 1

2n+ 1
2

∑
j∈{0,1}n

∑
x∈{0,1}n

(−1)∑n
i=1 xi ji |j1〉 ... |jn〉 |0〉

∥∥∥∥∥∥
2

=

∥∥∥∥ 2n

2n+ 1
2
|0〉 ... |0〉 |0〉

∥∥∥∥2

=
1
2

.

This proves item (i).
Otherwise, assuming that the last qubit is |1〉, we now calculate the probability that the first qubits

are state |a〉 in the normalized post-measured state

∥∥∥∥∥ 2
1
2

2n+ 1
2

∑
x∈{0,1}n

(−1)bx+∑n
i=1 xi(ai+ai) |a1〉 |a2〉 ... |an〉

∥∥∥∥∥
2

=
1

22n

(
∑

x∈{0,1}n

(−1)bx

)2

From the distribution of each bx, we have that (−1)bx is 1 w.p. 1− η and −1 w.p. η, independently.
Therefore E

[
(−1)bx

]
= 1− 2η and using Hoeffding’s bound we have that

Pr

[
∑

x∈{0,1}n

(−1)bx ≤ (1− δ)(1− 2η)2n

]
< eδ2(1−2η)222n/4

Therefore, with probability exponentially close to 1, the probability that j = a (i.e. ∀i ∈ [n], ji = ai)
is at least

1
22n ((1− δ)(1− 2η)2n)2 = (1− δ)2(1− 2η)2

This proves item (ii).
Let us fix now c ∈ {0, 1}n such that c 6= a and let di = ai + ci. The expected probability that j = c

is

1
22n E

( ∑
x∈{0,1}n

(−1)bx+∑i∈[n] dixi

)2


=
1

22n

var

[
∑

x∈{0,1}n

(−1)bx+∑i∈[n] dixi

]
+ E

[
∑

x∈{0,1}n

(−1)bx+∑i∈[n] dixi

]2


=
1

22n

 ∑
x∈{0,1}n

var
[
(−1)bx+∑i∈[n] dixi

]
+

(
∑

x∈{0,1}n

E
[
(−1)bx+∑i∈[n] dixi

])2
 ,

where the last equality holds since the random variables bx are independent.
For i∗ such that ai∗ 6= ci∗ , i.e. di∗ = 1, let x̃ = x1x2...xi∗−1xi∗+1...xn. We have that

∑
x∈{0,1}n

E
[
(−1)bx+∑i∈[n] dixi

]
= ∑

x∈{0,1}n

(−1)∑i∈[n] dixi E
[
(−1)bx

]
= (1− 2η) ∑

x∈{0,1}n

(−1)∑i∈[n] dixi

= (1− 2η) ∑
x̃∈{0,1}n−1

(−1)∑i∈[n]/{i∗} dixi ∑
xi∗∈{0,1}

(−1)xi∗

= (1− 2η) ∑
x̃∈{0,1}n−1

(−1)∑i∈[n]/{i∗} dixi · 0

= 0.

7



For the variance, we have by its definition that

var
[
(−1)bx+∑i∈[n] dixi

]
= E

[(
(−1)bx+∑i∈[n] dixi

)2
]
−
(
(−1)∑i∈[n] dixi

)2
E
[
(−1)bx

]2

= 1−E
[
(−1)bx

]2

= 4η − 4η2

Therefore

1
22n E

( ∑
x∈{0,1}n

(−1)bx+∑i∈[n] dixi

)2
 =

1
22n ∑

x∈{0,1}n

var
[
(−1)bx+∑i∈[n] dixi

]
=

4η − 4η2

2n <
1
2n

We can amplify the probability of outputting a by repeating the process and outputting the most com-
mon string. We can prove using Chernoff bounds that the value a will be output with high probability.
We do this analysis for the case of LWE.

5 An efficient quantum learning algorithm for LWE

In this section we show how to solve LWE with quantum samples. We use the noise distributions
proposed in Brakerski and Vaikuntanathan [BV14]. There, the field order q is sub-exponential in the
dimension n (generally in [2nγ

, 2 · 2nγ
) for some constant γ ∈ (0, 1) while the noise distribution χ

produces samples with magnitude at most polynomial in n (for instance linear). For now, we look at the
case where we fix the field order to be q and the noise magnitude to be at most k� q.

Algorithm 1 for LWE

1. Receive a quantum sample |ψ〉 = 1√
qn ∑x∈Fn

q
|x1〉 ... |xn〉 |∑n

i=1 aixi + bx(mod q)〉

2. Apply QFTn+1 on |ψ〉.

3. Measure in the computational basis, resulting in state |j1〉 ... |jn+1〉.

4. If jn+1 6= 0 Output
(
−j1
jn+1

(mod q), . . . , −jn
jn+1

(mod q)
)

Else Output ⊥

Running time The algorithm performs O(n) QFTs over Fq and each one takes time O(log q), hence
the overall running time of the algorithm is O(n log q).

For the correctness of the algorithm we prove the following theorem.

Theorem 5.1. Let

|ψ〉 = 1√
qn ∑

x∈Fn
q

|x1〉 ... |xn〉
∣∣∣∣∣ n

∑
i=1

aixi + bx(mod q)

〉
,

where the bx are independent random variables drawn from a noise distribution that is symmetric around
0 and the noise magnitude is at most k = polylog(q).

Let o be the output of Algorithm 1. We have the following properties: (i) Pr [o =⊥] = 1
q ; (ii)

Pr [o = a|o 6=⊥] ≥ q
24(q−1)k ; and (iii) for c 6= a, E [Pr [o = c|o 6=⊥]] ≤ 1

qn .
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Proof. If we apply QFT on the state |ψ〉, we have

QFT⊗n+1 1√
qn ∑

x1,...,xn∈Fq

|x1〉 ... |xn〉
∣∣∣∣∣ n

∑
i=1

aixi + bx(mod q)

〉

=
1

qn+ 1
2

∑
x1,...,xn∈Fq

∑
j1,...,jn+1∈Fq

ωbx jn+1+∑n
i=1 xi(ji+jn+1ai) |j1〉 ... |jn〉 |jn+1〉

where ω is the q-th root of unity.
If we measure all the qudits in the computational basis, the probability the last qudit is |0〉 is∥∥∥∥∥∥ 1

qn+ 1
2

∑
j1,...,jn∈Fq

∑
x1,...,xn∈Fq

ω∑n
i=1 xi ji |j1〉 ... |jn〉 |0〉

∥∥∥∥∥∥
2

=

∥∥∥∥∥ qn

qn+ 1
2
|0〉 ... |0〉 |0〉

∥∥∥∥∥
2

=
1
q

.

This proves item (i).
Assuming the last qubit is not |0〉 and renormalizing the state, we now calculate the probability

that o = c for any c, i.e., the probability that for all i ∈ [n], ji = −jn+1ci(mod q). We denote di =
−jn+1ci + jn+1ai and have∥∥∥∥∥∥ q

1
2

(q− 1)
1
2

1

qn+ 1
2

∑
jn+1∈F∗q

∑
x∈Fn

q

ω jn+1bx+∑i∈[n] dixi |−jn+1c1(mod q)〉 ... |−jn+1cn(mod q)〉 |jn+1〉

∥∥∥∥∥∥
2

=
1

q2n(q− 1) ∑
jn+1∈F∗q

R

 ∑
x∈Fn

q

ω jn+1bx+∑i∈[n] dixi

2

+ I

 ∑
x∈Fn

q

ω jn+1bx+∑i∈[n] dixi

2


=
1

q2n(q− 1) ∑
jn+1∈F∗q


 ∑

x∈Fn
q

R
(

ω jn+1bx+∑i∈[n] dixi
)2

+

 ∑
x∈Fn

q

I
(

ω jn+1bx+∑i∈[n] dixi
)2

 (3)

To prove item (ii), we provide a lower bound for the case c = a, in other words, for the case where
for all i ∈ [n], di = 0. Note also that R (ωa) = cos

(
2π
q a
)

. Starting from eq. (3) we have

1
q2n(q− 1) ∑

jn+1∈F∗q


 ∑

x∈Fn
q

R
(

ω jn+1bx
)2

+

 ∑
x∈Fn

q

I
(

ω jn+1bx
)2


≥ 1

q2n(q− 1) ∑
jn+1∈F∗q

 ∑
x∈Fn

q

cos
(

2π

q
jn+1bx

)2

=
1

q2n(q− 1) ∑
jn+1∈F∗q
jn+1≤ q

6k

 ∑
x∈Fn

q

cos
(

2π

q
jn+1bx

)2

+ ∑
jn+1∈F∗q
jn+1>

q
6k

 ∑
x∈Fn

q

cos
(

2π

q
jn+1bx

)2

≥ 1
q2n(q− 1) ∑

jn+1∈F∗q
jn+1≤ q

6k

 ∑
x∈Fn

q

1
2

2

=
q

24(q− 1)k
.
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where we have removed some positive quantities and the last inequality follows from the fact that |bx| ≤
k and for jn+1 ≤ q

6k , we have that
∣∣∣ 2π

q jn+1bx

∣∣∣ ≤ π
3 . This proves item (ii).

We now prove item (iii). For this, we will look at the expected value of the probability that o = c
for some c 6= a, where the expectation is over the noise random variables bx and the probability is over
the outcome of the quantum measurement.

We will need the following technical lemma whose proof appear in the appendix.

Lemma 5.2. Let jn+1, d1, ..., dn ∈ Fq and bx be independent random variables over Fq whose distribu-
tions are symmetric around 0. It follows that

E


 ∑

x∈Fn
q

R
(

ω jn+1bx+∑i∈[n] dixi
)2

+

 ∑
x∈Fn

q

I
(

ω jn+1bx+∑i∈[n] dixi
)2

 = ∑
x∈Fn

q

(
1−E

[
cos

(
2π

q
jn+1bx

)]2
)

Starting from eq. (3) and using Lemma 5.2 we have

1
q2n(q− 1) ∑

jn+1∈F∗q

∑
x∈Fn

q

(
1−E

[
cos

(
2π

q
jn+1bx

)]2
)

≤ 1
q2n(q− 1) ∑

jn+1∈F∗q

qn

=
1
qn .

Corollary 5.3. For the dimension n, let q be a prime in the interval [2nγ
, 2 · 2nγ

). Let

|ψ〉 = 1√
qn ∑

x∈Fn
q

|x1〉 ... |xn〉
∣∣∣∣∣ n

∑
i=1

aixi + bx(mod q)

〉
,

where the bx are independent random variables drawn from a noise distribution that is symmetric around
0 and the noise magnitude is at most n

24 .
Let o be the output of Algorithm 1. We have the following properties: (i) Pr [o =⊥] = 1

q ; (ii)
Pr [o = a|o 6=⊥] ≥ 1

n ; and (iii) for c 6= a, E [Pr [o = c|o 6=⊥]] ≤ 1
qn . Moreover, Algorithm 1 runs in

time poly(n).

5.1 Amplifying the success probability

In this section we show how to amplify the probability of success of the learning and output a with high
probability. The idea is very straightforward: repeat the above process and output the most frequent of
the retrieved strings.

Algorithm 2 for LWE

1. For i = 1...t run oi ← Algorithm 1

2. Output most frequent among (o1, ..., ot)

10



Theorem 5.4. For the dimension n, let q be a prime in the interval [2nγ
, 2 · 2nγ

). Let

|ψ〉 = 1√
qn ∑

x∈Fn
q

|x1〉 ... |xn〉
∣∣∣∣∣ n

∑
i=1

aixi + bx

〉
,

where the bx are independent random variables drawn from a noise distribution that is symmetric around
0 and the noise magnitude is at most n

24 .
Algorithm 2 outputs a with probability 1− η with sample complexity t = O(n log 1

η ) and running

time poly(n, log 1
η ).

Proof. By Corollary 5.3, we know that for each oi, the probability it is ⊥ is 1
q , the probability it is a is

at least q−1
qn , and the probability it is c 6= a is at most q−1

qn+1 .
We bound now the probability that the output of Algorithm 2 is different from a.
Let Ii be the indicator variable of the event oi = a. We have that E [Ii] ≥ q−1

qn . Therefore, using the
Chernoff bound, it follows that

P1 = Pr
[∣∣∣i : oi = a

∣∣∣ ≤ (1− δ)
(q− 1)t

qn

]
= Pr

[
∑

i∈[t]
Ii ≤ (1− δ)

(q− 1)t
qn

]
≤ e−δ2t(q−1)/2qn

We can do a similar analysis and have that for any c 6= a and for δ′ =
√
(2nq log q/(t(q− 1)) + δ2/n)qn

Pr
[∣∣∣i : oi = c

∣∣∣ ≥ (1 + δ′)
(q− 1)t

qn+1

]
≤ q−ne−δ2t(q−1)/2qn

and by union bound,

P2 = Pr
[
∃c 6= a,

∣∣∣i : oi = c
∣∣∣ ≥ (1 + δ′)

(q− 1)t
qn+1

]
≤ e−δ2t(q−1)/2qn.

Again, we can do the analysis for ⊥ and δ′′ = δ
√
(q− 1)/n

P3 = Pr
[∣∣∣i : oi =⊥

∣∣∣ ≥ (1 + δ′′)
t
q

]
≤ e−δ2t(q−1)/2qn

Therefore, from the fact that (1− δ) (q−1)t
qn is greater than (1 + δ′) (q−1)t

qn+1 and (1 + δ′′) t
q , we can use

union bound again and have that the probability that the output is not a is at most

P1 + P2 + P3 ≤ 3e−δ2t(q−1)/2qn

Therefore if we want Algorithm 2 to outputs a with probability at least 1 − η, we can pick t =
2nq

δ2(q−1)

(
ln 3 + ln 1

η

)
= O(n log 1

η ). The running time follows from the number of samples and the
running time of Algorithm 1.
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A Proof of Lemma 5.2

Proof. We start by calculating the expectation for the square of the real part, decomposing it into the
sum of the variance and the square of the expectation

E


 ∑

x∈Fn
q

R
(

ω jn+1bx+∑i∈[n] dixi
)2


= var

 ∑
x∈Fn

q

R
(

ω jn+1bx+∑i∈[n] dixi
)+ E

 ∑
x∈Fn

q

R
(

ω jn+1bx+∑i∈[n] dixi
)2

= ∑
x∈Fn

q

var
[
R
(

ω jn+1bx+∑i∈[n] dixi
)]

+

 ∑
x∈Fn

q

E
[
R
(

ω jn+1bx+∑i∈[n] dixi
)]2

,

where the last equality holds since the random variables bx are independent.
Since R (ωa) = cos

(
2π
q a
)

we have that for a fixed x

E
[
R
(

ω jn+1bx+∑i∈[n] dixi
)]

= E

[
cos

(
2π

q

(
jn+1bx + ∑

i∈[n]
dixi

))]

= E

[
cos

(
2π

q
jn+1bx

)
cos

(
2π

q ∑
i∈[n]

dixi

)
− sin

(
2π

q
jn+1bx

)
sin

(
2π

q ∑
i∈[n]

dixi

)]

= cos

(
2π

q ∑
i∈[n]

dixi

)
E

[
cos

(
2π

q
jn+1bx

)]
− sin

(
2π

q ∑
i∈[n]

dixi

)
E

[
sin
(

2π

q
jn+1bx

)]

= cos

(
2π

q ∑
i∈[n]

dixi

)
E

[
cos

(
2π

q
jn+1bx

)]
where the last equality holds since bx is a random variable that is symmetric around 0. We will now
show that the above is equal to 0 when summing over all x ∈ Fn

q .
Let x̃ = x1x2...xi∗−1xi∗+1...xn. We will now split the sum for x̃ and xi∗ :

∑
x∈Fn

q

E
[
R
(

ω jn+1bx+∑i∈[n] dixi
)]

= E

[
cos

(
2π

q
jn+1bx

)]
∑

x∈Fn
q

cos

(
2π

q ∑
i∈[n]

dixi

)

= E

[
cos

(
2π

q
jn+1bx

)]
∑

x̃∈Fn−1
q

∑
xi∗∈Fq

cos

(
2π

q
xi∗ +

2π

q ∑
i∈[n]/{i∗}

dixi

)

= E

[
cos

(
2π

q
jn+1bx

)]
∑

x∈Fn
q

∑
ỹ∈Fn−1

q

cos

(
2π

q ∑
i∈[n]/{i∗}

dxxi

)
∑

xi∗∈Fq

cos
(

2π

q
xi∗

)

−E

[
cos

(
2π

q
jn+1bx

)]
∑

x∈Fn
q

∑
ỹ∈Fn−1

q

sin

(
2π

q ∑
i∈[n]/{i∗}

dixi

)
∑

xi∗∈Fq

sin
(

2π

q
xi∗

)
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and since ∑xi∗∈Fq
cos

(
2π
q xi∗

)
= ∑xi∗∈Fq

sin
(

2π
q xi∗

)
= 0, we have that

∑
x∈Fn

q

E
[
R
(

ω jn+1bx+∑i∈[n] dixi
)]

= 0

For the variance, we have by its definition that

var
[
R
(

ω jn+1bx+∑i∈[n] dixi
)]

= E

[
cos2

(
2π

q

(
jn+1bx + ∑

i∈[n]
dixi

))]
− cos2

(
2π

q ∑
i∈[n]

dixi

)
E

[
cos

(
2π

q
jn+1bx

)]2

As in the real case, for the imaginary part we can decompose it in

E


 ∑

x∈Fn
q

I
(

ω jn+1bx+∑i∈[n] dixi
)2


= ∑

x∈Fn
q

var
[
I
(

ω jn+1bx+∑i∈[n] dixi
)]

+

 ∑
x∈Fn

q

E
[
I
(

ω jn+1bx+∑i∈[n] dixi
)]2

,

and achieve similar bounds
∑

x∈Fn
q

E
[
I
(

ω jn+1bx+∑i∈[n] dixi
)]

= 0

and

var
[
I
(

ω jn+1bx+∑i∈[n] dixi
)]

= E

[
sin2

(
2π

q

(
jn+1bx + ∑

i∈[n]
dixi

))]
− sin2

(
2π

q ∑
i∈[n]

dixi

)
E

[
cos

(
2π

q
jn+1bx

)]2

.

We can then simplify the expressions for a fixed x

var
[
R
(

ω jn+1bx+∑i∈[n] dixi
)]

+ var
[
I
(

ω jn+1bx+∑i∈[n] dixi
)]

= 1−E

[
cos

(
2π

q
jn+1bx

)]2

.

Therefore, we have that

E


 ∑

x∈Fn
q

R
(

ω jn+1bx+∑i∈[n] dixi
)2

+

 ∑
x∈Fn

q

I
(

ω jn+1bx+∑i∈[n] dixi
)2


= ∑

x∈Fn
q

(
1−E

[
cos

(
2π

q
jn+1bx

)]2
)
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