Practical and unconditionally secure spacetime-constrained oblivious transfer

Damián Pitalúa-García1,∗ and Iordanis Kerenidis2

1IRIF, Université Paris Diderot, 75013 Paris, France
2IRIF, CNRS, Université Paris Diderot, 75013 Paris, France

(Received 15 April 2018; published 24 September 2018)

Spacetime-constrained oblivious transfer (SCOT) extends the fundamental primitive of oblivious transfer to Minkowski space. SCOT and location-oblivious data transfer (LODT) are the only known cryptographic tasks with classical inputs and outputs for which unconditional security needs both quantum theory and relativity. We give an unconditionally secure SCOT protocol that, contrasting previous SCOT and LODT protocols, is practical to implement with current technology, where distant agents need only communicate classical information, while quantum communication occurs at a single location. We also show that our SCOT protocol can be used to implement unconditionally secure quantum relativistic bit commitment.

DOI: 10.1103/PhysRevA.98.032327

I. INTRODUCTION

The two main theories in physics are quantum theory and relativity. Relativistic quantum cryptography [1–3] investigates the security of cryptographic protocols based on the physical principles of these theories. On the one hand, the causality of Minkowski spacetime—and of the approximately Minkowski spacetime near the Earth surface—implies that physical systems and information cannot travel faster than light. On the other hand, quantum information cannot be cloned [4,5], nonorthogonal quantum states cannot be perfectly distinguished, quantum entanglement is monogamous [6], and there are quantum correlations that violate Bell inequalities [7].

Some cryptographic primitives can be implemented with unconditional security based only on the principles of quantum theory, for example, quantum key distribution [8–10], private randomness expansion [11–13], and weak coin tossing with arbitrarily small bias [14]. However, other important cryptographic tasks are impossible to implement with unconditional security based only on quantum theory, like bit commitment [15,16], strong coin tossing with arbitrarily small bias [17–19], oblivious transfer [20–22], and more general two-party classical computation [20,22,23]—although there are quantum protocols with strictly better security than classical protocols for bit commitment [24], strong coin tossing [25], and oblivious transfer [26]. Nevertheless, Kent showed that considering the causality of Minkowski spacetime allows us to obtain unconditionally secure protocols for strong coin tossing [2] and bit commitment [1,27], even if quantum theory is not considered.

It is interesting to ask whether there are cryptographic primitives whose unconditional security requires both quantum theory and relativity. While unconditionally secure protocols for oblivious transfer remain impossible to implement even with relativistic quantum protocols [22,28], unconditionally secure protocols for its variants location-oblivious data transfer (LODT) [29] and spacetime-constrained oblivious transfer (SCOT) [30] exist in relativistic quantum settings. However, unconditionally secure LODT and SCOT are impossible when based only on quantum theory, or in relativity. Only the combined properties of quantum information and Minkowski causality can allow for unconditionally secure LODT and SCOT protocols [29,30]. As far as we know, LODT and SCOT are the only known cryptographic tasks with classical inputs and outputs whose unconditional security necessitates both quantum theory and relativity.

LODT and SCOT are relativistic extensions of oblivious transfer. The primitive of one-out-of-two oblivious transfer [31] is informally defined as follows. Alice has two bits x_0, x_1 and Bob has a bit b. At the end of the protocol, Bob must learn x_b but not $x_{\bar{b}}$, and Alice must not learn b. While somewhat abstract, oblivious transfer is related to private information retrieval and is a universal primitive, meaning that any secure computation between Alice and Bob can be reduced to this simple primitive [32]. In LODT [29], Alice transfers a message to Bob at a random spacetime location that neither Alice nor Bob can determine in advance, and the location where Bob receives the message remains unknown to Alice. In SCOT [30], Alice has two input messages x_0, x_1, and Bob has an input bit b; Bob obtains x_b in R_b, but he cannot obtain $x_{\bar{b}}$ in $R_{\bar{b}}$, where R_b and $R_{\bar{b}}$ are fixed spacelike separated spacetime regions.

We motivate SCOT by the following scenario. Alice wants to give access to Bob to one of two computers: C_0 or C_1. The computer C_i can only be accessed by Bob if he inputs the password x_i in the spacetime region R_i, for $i \in \{0, 1\}$. Each computer reveals a different database to Bob, or allows Bob to perform a different computational process. Bob does not want to reveal which computer he wants to access and Alice needs to make sure that Bob does not get access to both computers. SCOT guarantees that Bob can access one of

∗Present address: Centre for Quantum Information and Foundations, DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom; D.Pitalua-Garcia@damtp.cam.ac.uk
the computers, without Alice knowing which one. Moreover, Alice is certain that, for a time interval, Bob cannot access the second computer too. Thus, by changing the access passwords before this time interval expires, the protocol guarantees that Bob can only access one of the computers. As mentioned above, oblivious transfer is a very strong cryptographic primitive [32]. SCOT is a strong cryptographic primitive too, as we show below that it implements unconditionally secure relativistic bit commitment.

Although there are unconditionally secure protocols for LODT [29] and SCOT [30], these are not practical to implement with current technology. On the one hand, the LODT protocol of Ref. [29] requires preparation of two qubits in a maximally entangled state and their secure transmission over long distances. On the other hand, the SCOT protocol of Ref. [30] requires preparation of Bennett-Brassard 1984 (BB84) [8] qubits and their secure transmission over long distances—as long as hundreds of kilometers if the time length of the regions R_i is of only a few milliseconds—and, if Bob does not have quantum memories to store the received qubits, the preparation and transmission of a large number of BB84 states within a very short time—not greater than the time length of the regions R_i.

In this paper we introduce an unconditionally secure SCOT protocol that is practical to implement with current technology: it requires preparation, transmission and measurement of BB84 qubits at a single location, and secure transmission of classical information over long distances, but it does not require quantum memories or long-distance quantum communication. Furthermore, the quantum communication in our protocol can take an arbitrarily long time, while still giving Bob the freedom to choose his input b only slightly in the past of R_0 and R_1. This is a practical and unconditionally secure protocol of a cryptographic task whose unconditional security necessitates both quantum theory and relativity. Our SCOT protocol can also be used to implement unconditionally secure relativistic quantum bit commitment.

This paper is organized as follows. In Sec. II we describe the setting of relativistic quantum cryptography that applies to our protocol, we define the task of SCOT, and we provide some mathematical notation. We present our SCOT protocol in Sec. III. We show in Sec. IV that our protocol is unconditionally secure. Some extensions of our protocol are discussed in Sec. V, in particular to deal with losses and errors. We discuss in Sec. VI how our SCOT protocol can be used to implement unconditionally secure quantum relativistic bit commitment. We conclude in Sec. VII.

II. PRELIMINARIES

A. The setting

The general model of relativistic quantum cryptography was introduced by Kent [1–3]. Here, we detail the specific setting of our protocol. Alice and Bob live in Minkowski—or approximately Minkowski—spacetime. Alice (Bob) consists of three different agents, denoted by A, A_0, A_1 (B, B_0, B_1), each controlling a secure laboratory adjacent to the space location L, L_0, L_1, having finite spatial extension with set of three-dimensional coordinates ΔL^A, ΔL_0^A, ΔL_1^A (ΔL^B, ΔL_0^B, ΔL_1^B), respectively. Alice and Bob agree on a particular reference frame F with spacetime coordinates (t, x, y, z), where the first entry is temporal, and where we set units in which the speed of light through vacuum is unity. Here we consider $L = (0, 0, 0)$ and $L_i = (-\langle 1^j \rangle h, 0, 0)$, with the maximum length extension of any laboratory being much smaller than h, for $i \in \{0, 1\}$.

We assume the processing of classical and quantum information within each laboratory to be secure and without errors, and the transmission of classical or quantum systems between laboratories to be free of errors and losses. The communication between Alice’s (Bob’s) agents is done through authenticated and secure classical channels, which can be implemented with previously shared secret keys. There are classical channels between Alice’s and Bob’s adjacent agents, i.e., between the pairs (A, B), (A_0, B_0), and (A_1, B_1). There is a single quantum channel between A and B. Note that the only quantum communication is between agents at the same location, an important difference from the setting in Ref. [30].

B. Definition of SCOT

As mentioned above, SCOT [30] is a relativistic variant of one-out-of-two oblivious transfer [31], defined as follows. Alice and Bob agree on two spacelike separated spacetime regions R_0 and R_1. Bob’s agent B inputs $b \in \{0, 1\}$ in the intersection of the causal pasts of all the spacetime points of R_0 and R_1. For $i \in \{0, 1\}$, Alice’s agent A_i inputs $x_i \in \{0, 1\}^n$ in the causal past of a spacetime point Q_i of R_i—previously agreed by Alice and Bob. The goal of the SCOT protocol is that B_0 obtains x_0 in R_0. A SCOT protocol is secure against Alice if she cannot learn b anywhere in spacetime; it is secure against Bob if the probability that B_0 obtains x_0 in R_0 and B_1 obtains x_1 in R_1 goes to zero as a function of some security parameter, which here we take to be the parameter n [30].

Here we consider $R_i = \{(t, 1) | h \leq t \leq h + \Delta h, 1 \in \Delta L^B_1\}$ and $Q_i = (h, \langle -1^j \rangle h, 0, 0)$, for $i \in \{0, 1\}$, where $h > 0$ and $\Delta h > 0$. We note that R_i includes the spacetime point Q_i, for $i \in \{0, 1\}$. By definition of SCOT, R_0 and R_1 must be spacelike separated; hence, Δh must be smaller than the shortest time that light takes to travel between ΔL^B_0 and ΔL^B_1, requiring $\Delta h < 2h$. B generates b within his laboratory in the past light cone of the spacetime point $P = (0, 0, 0, 0)$, for $i \in \{0, 1\}$, A_i inputs x_i within her laboratory in the past light cone of Q_i.

C. Notation

We define $[n] = \{1, 2, \ldots, n\}$. We denote the jth bit entry of a string $a \in \{0, 1\}^n$ by a^j, for $j \in [n]$. When applied to bits (bit strings) \oplus denotes (bitwise) sum modulo 2. We denote the complement of a bit a by $\overline{a} = a \oplus 1$, and of a bit a^j by \overline{a}^j. $D_0 = \{(0, 1\}|1\}$ and $D_1 = \{(0, 1\}|0\}$ denote the computational and Hadamard bases, respectively, where $|a\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^a|1\rangle)$, for $a \in \{0, 1\}$.
we can see that L and can be completed within any finite time in the past light cone of P. Stage II includes fast classical processing and communication between Alice’s and Bob’s agents at the locations L, L₀, and L₁, as well as classical communication between Alice’s (Bob’s) agents at the locations L and Lᵢ, for i ∈ {0, 1}. Steps 1–6 take place in the past of P. Our protocol is illustrated in Fig. 1.

B. Stage II

(4) B generates his bit input b and sends the bit b′ = c ⊕ b to A.

(5) For i ∈ {0, 1}, B sends b to Bᵢ, who receives it in the past of Qᵢ.

(6) For i ∈ {0, 1}, A sends b′ to Aᵢ, who receives it in the past of Qᵢ.

(7) For i ∈ {0, 1}, Aᵢ generates xᵢ within her laboratory in the past of Qᵢ, and gives tᵢ = rᵢ₀ ⊕ xᵢ and s to Bᵢ at Qᵢ.

(8) Within the region R₀, R₀ uses s, d₀, and d₁ to obtain (d₁⁻₀, ..., dₙ⁻₀), which equals rₓ. Then, B₀ outputs y₀ = rₓ ⊕ t₀, which equals x₀.

C. Comments and variations

We note that B has the freedom to choose b after all the received qubits have been measured. This is useful in situations where the quantum communication takes a long time (e.g., several hours), while Bob wants to decide which message to obtain within a short time (e.g., a fraction of a second) in the past of R₀ and R₁. Furthermore, Alice has the freedom to generate her inputs in real time; i.e., Aᵢ can generate xᵢ slightly in the past of Qᵢ, for i ∈ {0, 1}.

Different variations of the above protocol can be considered. For example, in one variation B does not send b to his agents and Bᵢ acts assuming that b = i, for i ∈ {0, 1}. In another variation, A generates x₀ and x₁ in the past of P and sends xᵢ to Aᵢ, who receives it in the past of Qᵢ, for i ∈ {0, 1}.

FIG. 1. Illustration of the introduced SCOT protocol in a twodimensional spacetime diagram in the frame F of Minkowski spacetime. The world lines of the laboratories of Alice’s agents A, A₀, A₁ (green rectangles) and of the laboratories of Bob’s agents B, B₀, B₁ (yellow rectangles) are indicated. The small dots represent the spacetime points P = (0, 0, 0, 0), Q₀ = (h, −h, 0, 0), Q₁ = (h, h, 0, 0), and P’. The thin solid diagonal lines represent light rays, defining the light cones of P, Q₀, Q₁, and P’. The spacetime regions R₀, where Bob’s agents must obtain Alice’s inputs xᵢ, correspond to the small red rectangles, for i ∈ {0, 1}. The case b = 1 is illustrated. Top: Only communication from Alice’s Bob’s agents to Bob’s Alice’s agents and Bob’s output are illustrated (short black arrows with thick solid lines). P’ is the spacetime point with the greatest time coordinate in F, that lies within the intersection of the past light cones of a point in R₀ and a point in R₁. When the SCOT protocol is used to implement bit commitment, Alice is guaranteed that Bob was committed to b from t’, which is the time coordinate of P’. Bottom: All communication processes, including those among Alice’s agents (long maroon arrows with thin solid lines) and among Bob’s agents (long blue arrows with dashed lines), are illustrated.

IV. SECURITY ANALYSIS

A. Security against Alice

The only communication from Bob to Alice consists in the bit b′ = c ⊕ b. Since c is random and Bob’s laboratories
and classical channels are secure, Alice cannot obtain any information about b. Thus, our protocol is perfectly secure against Alice.

B. Security against Bob

Security against Bob follows from Minkowski causality and the monogamy of entanglement. In a general cheating strategy by Bob, agent B introduces an ancilla E of arbitrary finite dimension in some fixed pure state $|\chi\rangle$, and applies a unitary operation U on A to obtain

$$|\Phi^+_s\rangle = U_{AE} |\Psi^+_{s\epsilon, r}\rangle_A |\chi\rangle_E,$$

where $A = A^0_0 A^1_1 \cdots A^n_n$, $AE = B_0 B_1 B'$, the systems B_0, B_1, B' have arbitrary finite dimensions, and where

$$|\Psi^+_{s\epsilon, r}\rangle_A = \bigotimes_{j=1}^n |\psi^+_j\rangle_{s_j e_j}^{A_j} |A_j\rangle$$

is the state that B receives from A. Then, B applies a projective measurement $\{R^b\}_{b \in \{0,1\}}$ on B' and sends the outcome b' to A. For $i \in \{0,1\}$, B sends b' and B_i to B'_0, B'_1, after receiving s from A, at Q_1, applies a projective measurement $M_{sb'} = \{|\Pi^{s}_{sb'}\rangle_{b_1, e_1}^{i-1}\rangle_{b'_1}\}$ on B_i and obtains the outcome e_i. Given that $t_i = r_{\otimes b'} \otimes x_i$, the goal of the measurement $M_{sb'}$ is to obtain a string e_i that equals $r_{\otimes b'}$ with high probability, so that B_i outputs $e_i \oplus t_i$, which equals x_i with high probability. Thus, Bob’s cheating probability is $p_n = P(e_0 = r_{b'}, e_1 = r'_{b'})$, which is given by

$$p_n = \frac{1}{2^{2n}} \sum_{r_{b'}, s', b'} \left| \langle \Psi^+_{s\epsilon, r} \mid \Pi^{s}_{sb'} \otimes \Pi^{t}_{sb'} \otimes R^b \mid \Phi^+_s \rangle \right|^2.$$

Since the regions R_0 and R_1 at which Bob’s agents B_0 and B_1 must produce their outputs are spacelike separated, it follows from Minkowski causality that, as given by (4), B_0 and B_1 must obtain their outputs from measurements on disjoint systems B_0 and B_1, which could have only interacted in the intersection of the past light cones of at least one point in R_0 and one point in R_1, i.e., in the past light cone of P' (see Fig. 1). Then, from the monogamy of entanglement, the measurement outcomes obtained by B_0 and B_1 cannot both be very correlated to Alice’s inputs r_0 and r_1, which implies an upper bound on p_n. We show below that for any cheating strategy by Bob we have

$$p_n \leq \left(\frac{1}{2} + \frac{1}{2 \sqrt{2}} \right)^n.$$

Thus, $p_n \to 0$ exponentially with n, meaning that our protocol is unconditionally secure.

It remains as an open question whether the security bound (5) is tight. We describe in Sec. IV C the best cheating strategy by Bob that we have found, which achieves $p_n = \left(\frac{1}{2} \right)^n$.

Proof of bound (5). The main technical part of this paper is the proof of bound (5). Our proof is a variation of the proof of a bound for the monogamy-of-entanglement game given in Ref. [33]. First, we note that it is equivalent in our protocol if agent A prepares in the past of P the state

$$|\Phi\rangle_{CA} = \bigotimes_{j=1}^n (|\Phi^+_j\rangle_{C_j|A_j} \otimes |\Phi^+_j\rangle_{C_j|A_j}),$$

where $C = C^1 C^2 \cdots C^n$, $C^j = C^j_0 C^j_1$, and $|\Phi^+\rangle = \frac{1}{\sqrt{2}} (|0\rangle_0 |1\rangle_{1})$. Then, in the past of P, A sends A to B and measures C^j in the basis $\{|\psi^+_{s,j}\rangle\}_{s,j \in \{0,1\}}$ for $j \in [n]$. With probability $\frac{1}{2}$, A measures C^1 in the state $|\psi^+_{s_1,j_1}\rangle_{C_1|A_1}$ and the pair of qubits A^1 received by B collapse into the state $|\psi^+_{s_1,j_1}\rangle_{A_1}$. Bob’s unitary operation U in his cheating strategy commutes with Alice’s measurements. Thus, we can consider that the global system $C B_0 B_1 B'$, before Alice’s and Bob’s measurements are implemented, is in the state

$$|\Psi\rangle_{C B_0 B_1 B'} = (I_C \otimes U_{B_0 B_1 B'}) |\Phi\rangle_{CA} |\chi\rangle_E,$$

where we recall that $B_0 B_1 B' = AE$, E is an ancilla, and B_0, B_1, B' have arbitrary finite Hilbert space dimensions. Then, A measures C in the orthonormal basis $\{|\psi^+_{s,j}\rangle\}_{s,j \in \{0,1\}}$ according to her random value of $s \in \{0,1\}$. With probability $\frac{1}{2}$, A measures $|\psi^+_{s,j}\rangle$ and $B_0 B_1 B'$ projects into the state $|\Phi^+_{s,j}\rangle_{B_0 B_1 B'}$. Then, B applies the projective measurement $\{R^b\}_{b \in \{0,1\}}$ on B' and obtains the bit outcome b', which he sends to A. A sends b' and B_1 to B_1, for $i \in \{0,1\}$. After receiving s, agent B_1 applies the projective measurement $M_{sb'}$ on B_i at Q_i. Thus, Bob’s cheating probability p_n given by (4) equals

$$p_n = \frac{1}{2^n} \sum_{s} \text{Tr}(T_s \Psi),$$

where $\Psi = (|\Psi\rangle \langle \Psi|)_{C B_0 B_1 B'}$ and

$$T_s = \sum_{b'=0}^1 (D^b_s)_{C B_0 B_1} \otimes (R^b_{b'})_{B'},$$

with

$$D^b_s = \sum_{r_{b'}, s', b'} \left| \langle \psi^+_{s\epsilon, r} \mid \Pi^{s}_{sb'} \otimes \Pi^{t}_{sb'} \otimes R^b \mid \Psi^+_s \rangle \right|^2,$$

for $b' \in \{0,1\}$.

We derive bound (5) with the help of two lemmas of Ref. [33]. Before stating these lemmas we provide some useful notation. We denote by \mathcal{H} the Hilbert space of the global system $C B_0 B_1 B'$, which as said before is arbitrary but finite dimensional. We denote by $\mathcal{L}(\mathcal{H})$ and by $\mathcal{P}(\mathcal{H})$ the sets of linear operators and of positive semidefinite operators on \mathcal{H}, respectively. For $A, B \in \mathcal{L}(\mathcal{H})$, the expression $A \geq B$ means that $A - B \in \mathcal{P}(\mathcal{H})$. For $A \in \mathcal{L}(\mathcal{H})$, $\|A\|$ denotes the Schatten ∞-norm of A, which gives the largest singular value of A, and which coincides with its largest eigenvalue if $A \in \mathcal{P}(\mathcal{H})$.

Lemma 1 (Ref. [33]). Let $A, B, L \in \mathcal{L}(\mathcal{H})$ such that $A^1 A \geq B^1 B$. Then, it holds that $\|AX\| \geq \|B\| L$.

Lemma 2 (Ref. [33]). Let $D_1, D_2, \ldots, D_N \in \mathcal{P}(\mathcal{H})$, and let $\{s_k\}_{k \in [N]}$ be a set of N mutually orthogonal permutations of $[N]$. Then

$$\left\| \sum_{i \in [N]} D_i \right\| \leq \sum_{k \in [N]} \max_{\epsilon \in [N]} \|D_{s(k)}\|.$$
It follows from Lemma 1 that for $A, A', B, B' \in \mathcal{P}(\mathcal{H})$ satisfying $A' \geq A$ and $B' \geq B$, it holds that $\| \sqrt{A'} \sqrt{B} \| \geq \| \sqrt{A} \| \leq \| \sqrt{B} \|$ [33]. Thus, if A, A', B, B' are projectors on \mathcal{H} satisfying $A' \geq A$ and $B' \geq B$ then $\| A'B' \| \geq \| AB \|$. We use this property below.

To use Lemma 2, we consider the set of permutations of s given by $s \mapsto s_k = s \oplus k$, for $k \in \{0, 1\}^n$. This is a set of 2^n mutually orthogonal permutations; that is, $s_k \neq s_k'$ if $k \neq k'$ for all $s \in \{0, 1\}^n$.

We have

$$p_n = \frac{1}{2^n} \text{Tr} \left(\sum_s T_s \psi \right)$$

where in the first line we used the linearity of the trace, in the second line we used the definition of the Schatten ∞-norm, in the third line we used (9), in the fourth line we used that $\{R^0, R^1\}$ is a projective measurement, and in the last line we used Lemma 2 and the fact that D_k^s and $D_k^{s'}$ are projectors.

We define the projectors

$$F^b_s = \sum_{r_0, r_1} \left(|\psi^b_s (r_0, r_1)\rangle \langle \psi^b_s (r_0, r_1) | \right) C \otimes (\Pi^{s}_{\text{bob}}) B_0 \otimes \mathbb{1} B_1,$$

$$G^b_s = \sum_{r_0, r_1} \left(|\psi^b_s (r_0, r_1)\rangle \langle \psi^b_s (r_0, r_1) | \right) C \otimes \mathbb{1} B_0 \otimes (\Pi^{s}_{\text{bob}}) B_1;$$

for $b \in \{0, 1\}$ and $s, k \in \{0, 1\}^n$. We see that they satisfy $D^b_s \leq F^b_s$ and $D^b_k \leq G^b_k$. Thus, we have from Lemma 1 that

$$\| D^b_s D^b_k \|^2 \leq \| F^b_s G^b_k F^b_s \|^2 = \| F^b_s G^b_k F^b_s \|^2,$$

where the equality follows from the property $\| A^2 \| = \| A \|^2$ for any $A \in \mathcal{L}(\mathcal{H})$ [33] and from the fact that F^b_s and G^b_k are projectors. We show in Appendix A that

$$\| F^b_s G^b_k F^b_s \|^2 = \left(\frac{1}{2} \right)^{\omega_k},$$

where ω_k is the Hamming weight of k. Thus, since for any $b' \in \{0, 1\}$ and for a fixed k the value of $\| F^b_s G^b_k F^b_s \|^2$ is the same for any $s \in \{0, 1\}^n$, we have from (12), (14), and (15) that

$$p_n \leq \frac{1}{2^n} \sum_k \left(\frac{1}{2} \right)^{\omega_k}.$$

There are exactly $\binom{n}{\omega}$ values of $k \in \{0, 1\}^n$ with Hamming weight ω. Thus, from (16), we obtain

$$p_n \leq \frac{1}{2^n} \sum_{\omega=0}^{n} \binom{n}{\omega} \left(\frac{1}{\sqrt{2}} \right)^\omega = \left(\frac{1}{2} + \frac{1}{2\sqrt{2}} \right)^n,$$

which is the claimed bound (5).

C. A cheating strategy by Bob without the use of any quantum channels or quantum memories

We present a cheating strategy by Bob that achieves $p_n = (\frac{1}{2})^n$. Interestingly, Bob’s agents do not need any quantum memories or quantum channels to perform this strategy.

Bob’s agent B gives the bit $b' = 0$ to Alice’s agent A. Thus, Bob’s agent B_i must obtain the string r_i in R_i, for $i \in \{0, 1\}$. In the past of P, agent B applies a projective measurement on the qubits of A' in the orthonormal basis defined by the following states:

$$|\xi_{00}\rangle = \frac{\sqrt{3}}{2} |\psi^0_{00}\rangle - \frac{1}{2\sqrt{3}} \left(|\psi^0_{01}\rangle + |\psi^0_{10}\rangle + |\psi^0_{11}\rangle \right),$$

$$|\xi_{01}\rangle = \frac{\sqrt{3}}{2} |\psi^0_{01}\rangle - \frac{1}{2\sqrt{3}} \left(|\psi^0_{00}\rangle - |\psi^0_{10}\rangle + |\psi^0_{11}\rangle \right),$$

$$|\xi_{10}\rangle = \frac{\sqrt{3}}{2} |\psi^0_{10}\rangle - \frac{1}{2\sqrt{3}} \left(|\psi^0_{00}\rangle + |\psi^0_{01}\rangle + |\psi^0_{11}\rangle \right),$$

$$|\xi_{11}\rangle = -\frac{\sqrt{3}}{2} |\psi^0_{11}\rangle - \frac{1}{2\sqrt{3}} \left(|\psi^0_{00}\rangle + |\psi^0_{01}\rangle + |\psi^0_{10}\rangle \right).$$

We denote the outcomes by $|\xi_{ij}\rangle$, where $i' = (i_0', i_1') \in \{0, 1\}^2$, for $j \in \{n\}$. Agent B sends the outcomes i' with their labels j to his agent B_i, who receives them in the past of Q_i, for $j \in \{n\}$ and $i \in \{0, 1\}$. After receiving s at Q_i, agent B_i guesses that Alice prepared the pair of qubits A' in the state $|\psi^j_{i'}\rangle$ if $s' = 0$ or in the state $|\psi^j_{i'}\rangle$ if $s' = 1$, where $f(00) = 01$, $f(01) = 11$, $f(10) = 10$, and $f(11) = 00$. Thus, B_i outputs $e_i = (e^1_i, e^2_i, \ldots, e^n_i)$, with e^j_i being the ith entry of $f(i')$ if $s' = 1$. Bob’s cheating probability $p_n = P(e_0 = r_0, e_1 = r_1)$ following this strategy is $p_n = (p^y)^n$, where

$$p = \frac{1}{4} \left(\| |\psi^0_{00}\rangle |\xi_{00}\rangle \|^2 + \| |\psi^0_{01}\rangle |\xi_{01}\rangle \|^2 + \| |\psi^0_{10}\rangle |\xi_{01}\rangle \|^2 + \| |\psi^0_{11}\rangle |\xi_{00}\rangle \|^2 \right)$$

$$+ \left(\| |\psi^0_{11}\rangle |\xi_{11}\rangle \|^2 + \| |\psi^0_{10}\rangle |\xi_{11}\rangle \|^2 + \| |\psi^0_{01}\rangle |\xi_{10}\rangle \|^2 \right).$$

From definition (1) for the states $|\psi^j_{r_{ij}}\rangle$, we can easily derive the relations

$$|\psi^0_{01}\rangle = \frac{1}{2} (|\psi^0_{01}\rangle + |\psi^0_{11}\rangle + |\psi^0_{00}\rangle + |\psi^0_{10}\rangle),$$

$$|\psi^0_{10}\rangle = \frac{1}{2} (|\psi^0_{00}\rangle + |\psi^0_{01}\rangle - |\psi^0_{11}\rangle - |\psi^0_{10}\rangle),$$

$$|\psi^0_{11}\rangle = \frac{1}{2} (|\psi^0_{01}\rangle - |\psi^0_{11}\rangle - |\psi^0_{00}\rangle + |\psi^0_{10}\rangle).$$

(20)
Using (18)–(20) it is straightforward to compute \(p = \frac{1}{2} \). Thus, this cheating strategy by Bob achieves a success probability \(p_n = (\frac{1}{2})^n \), as claimed.

V. EXTENSIONS OF OUR SCOT PROTOCOL

We discuss possible extensions of the SCOT protocol of Sec. III. First, we note that in the SCOT protocol of Sec. III Bob is guaranteed that the pair of qubits \(A_j \) and \(B \) but with security parameter \(s = 0 \). In a straightforward extension of our protocol, among the 2\(n \) qubits that Alice prepares from the BB84 set (\(n \) in the computational basis and \(n \) in the Hadamard basis), she chooses randomly the positions of the qubits encoding the bits \(r_i^j \), for \(i \in \{0, 1\} \) and \(j \in [n] \). Clearly, this modification in the protocol cannot make it easier for Bob to cheat; hence, unconditional security remains. We leave as an open question whether this extended protocol achieves strictly better security against Bob.

Second, the SCOT protocol of Sec. III considers the ideal situation in which there are no errors during the protocol and that there are not any losses of the transmitted quantum systems. This protocol is straightforwardly extended to deal with these problems.

A. Dealing with losses

To deal with losses, \(B \) reports to \(A \) in the past of \(P \) a set \(S \subseteq [n] \) of labels \(j \) of two-qubit systems \(A^j = A^j_0A^j_1 \) for which both \(A^j_0 \) and \(A^j_1 \) activate a detection. The protocol continues as the original one, but with input strings \(s^\delta, r_0^\delta, r_1^\delta, s_0^\delta, s_1^\delta, r_0^\delta, r_1^\delta \) instead of \(s, r_0, r_1, d_0, d_1, x_0, x_1 \), where \(s^\delta \in \{0, 1\}^\delta \) denotes the restriction of \(s \in \{0, 1\}^n \) in \(S \), and where \(N = |S| \). Security against Bob follows from bound (5) but with security parameter \(N \) instead of \(n \). Since Bob’s agent \(B \) gives Alice the bit \(b = c \oplus b \), in order to guarantee security against Alice, \(B \) must make sure that announcing the detection events does not leak any information about the measurement choice \(c \), which implies that no information about Bob’s input \(b \) is given to Alice. For this, \(B \) must experimentally verify that the detection probabilities of the two-qubit systems \(A^j \) received from \(A \) are independent of whether they are measured in the basis \(D_0 \otimes D_0 \) or in the basis \(D_1 \otimes D_1 \).

B. Dealing with errors

In order to deal with noise in the system we extend the setting of SCOT. As before, in the past light cone of \(Q_1 \), Alice’s agent \(A_i \) has the input \(x_i \in \{0, 1\}^n \), for \(i \in \{0, 1\} \). In the past light cone of \(P \), Bob’s agent \(B \) has as an input \(b \in \{0, 1\} \). However, now, the goal of the protocol is that Bob obtains a string \(y_b \in \{0, 1\}^n \) in \(R_b \) such that \(y_b \) differs from \(x_i \) in at most \(\gamma n \) bit entries, for some \(\gamma \in (0, 1) \) agreed in advance by Alice and Bob. As before, security against Alice means that she cannot learn \(b \) anywhere in spacetime. Security against Bob means that Bob cannot obtain a string \(y_0 \in R_0 \) and a string \(y_1 \in R_1 \), such that \(y_i \) differs from \(x_i \) in at most \(\gamma n \) bit entries for both \(i = 0 \) and \(i = 1 \). According to the motivation of SCOT outlined in the Introduction, this means that Bob cannot access both computers, one being accessed in \(R_0 \) and the other one being accessed in \(R_1 \), where the corresponding computer can be accessed if the password provided by Bob’s agent differs from the original password given by Alice’s agent in at most \(\gamma n \) bit entries. It can be shown that our protocol remains unconditionally secure as long as \(\gamma \) is small enough. In particular, we show below that our protocol remains secure if \(\gamma < 0.015 \).

Bob’s cheating probability in the extended setting, the probability that both agents \(B_0 \) and \(B_1 \) output valid pass-words, is

\[
p_n^B = \frac{1}{2^n} \sum_{q \in Q_{rb}} \sum_s \text{Tr}(T_s^a|\Psi\rangle).
\]

where

\[
|\Psi\rangle = |\psi\rangle_{CB_1B_1} \otimes (|\psi\rangle_{CB_0B_0} B_0 | |\psi\rangle_{CB_0B_0} B_0 |)
\]

and where \(\Psi = (|\psi\rangle_{CB_1B_1} B_1 | |\psi\rangle_{CB_0B_0} B_0 |) \) given by (7), and \(T_s^a \) is a projector given by

\[
T_s^a = \sum_{r_0, r_1} (D_s^q)^{\dagger} |\psi\rangle_{CB_0B_0} \otimes (|\psi\rangle_{CB_0B_0} B_0 | |\psi\rangle_{CB_0B_0} B_0 |),
\]

with

\[
D_s^q = \sum r_{0, r_1} \langle |\psi\rangle_{CB_0B_0} | |\psi\rangle_{CB_0B_0} B_0 | \rangle \otimes (|\psi\rangle_{CB_0B_0} B_0 | |\psi\rangle_{CB_0B_0} B_0 |).
\]

For \(\gamma \leq \frac{1}{2} \), we have \(|Q_{rb}^n| \leq 2^{2h(\gamma)} \), which is shown in Sec. 1.4 of Ref. [34], where \(h(\gamma) = -\gamma \log_2 \gamma - (1 - \gamma) \log_2 (1 - \gamma) \) is the binary entropy of \(\gamma \). Thus, we have from (24) that

\[
p_n^B \leq 2^{2h(\gamma)} \left(1 + \frac{1}{2\sqrt{2}} \right)^n.
\]

For \(\gamma < 0.015 \), we have \(2^{2h(\gamma)} \left(1 + \frac{1}{2\sqrt{2}} \right) < 1 \); hence, \(p_n^B \to 0 \) exponentially with \(n \), which means unconditional security for \(\gamma < 0.015 \).

VI. UNCONDITIONALLY SECURE BIT COMMITMENT FROM SCOT

In bit commitment, Bob commits a bit \(b \) to Alice by giving her some proof of his commitment but without telling her the value of \(b \), until he unveils his commitment to her. The security guarantee is twofold: Alice cannot learn \(b \) before Bob unveils, and if Alice accepts Bob’s unveiled bit \(b \) as valid, she is guaranteed that Bob was committed to \(b \) at least from some time \(t \) in the past. Similarly to the SCOT protocol of Ref. [30], the SCOT protocol presented here can be used to implement unconditionally secure relativistic bit commitment, as follows (see Fig. 1). To commit to \(b \in \{0, 1\} \), Bob runs the SCOT protocol with input \(b \). To unveil the committed bit \(b \), Bob’s agent \(B_b \) obtains \(x_b \) within \(R_b \) and then sends \(x_b \) immediately to Alice’s adjacent agent \(A_a \). \(A_a \) accepts \(b \) as a valid commitment only if she receives \(x_b \) from \(B_b \) within the time interval \([h, b + \Delta h]\), i.e., in the boundary of \(R_b \) that is adjacent to her laboratory.
It follows from the security of SCOT that this bit commitment protocol is unconditionally secure. Security against Alice follows trivially because our SCOT protocol is secure against Alice; hence, Alice does not know b until Bob unveils.

Security against Bob means that if A_b accepts b as a valid commitment then A_b is guaranteed that Bob was committed to b from i', the time coordinate of P', which is the spacetime point with the greatest time coordinate (in the frame F') that lies in the intersection of the past light cones of a point in R_0 and a point in R_1. Security against Bob follows from Minkowski causality and the monogamy of entanglement, similarly as in the security analysis of our SCOT protocol. Namely, in any cheating strategy, Bob must send in the past of P' a system B_i to agent B_i, who measures the system using the information received from Alice’s agent A_i and obtains his guess for her input x_i in R_i, for $i \in \{0, 1\}$. The probability p_n, given by (4), that Bob obtains both x_i in R_0 and x_i in R_1 is upper bounded by (5). This means that for any cheating strategy followed by Bob, if we denote p' as the probability that Bob unveils $b = i$ successfully, for $i \in \{0, 1\}$, it holds that $p^0 + p^1 \leq 1 + p_n$. Since $p_n \to 0$ exponentially with n, our bit commitment protocol is unconditionally secure against Bob.

VII. CONCLUSION

We presented a practical unconditionally secure SCOT protocol, where spatially separated agents need only communicate classical information, while quantum communication is only between agents at the same location, and which can be implemented with current technology. This is a practical and unconditionally secure protocol of a cryptographic task whose unconditional security is possible in a quantum relativistic world, but impossible in a classical world, or in a quantum nonrelativistic world [29,30].

ACKNOWLEDGMENTS

D.P.G. thanks Stefano Pironio for helpful conversations. This work was begun when D.P.G. was at the Laboratoire d’Information Quantique, Université libre de Bruxelles, with financial support from the European Union under the project QALGO, from the F.R.S.-FNRS under the project DIQIP and from the InterUniversity Attraction Poles of the Belgian Federal Government through project Photonics@be. It was completed when D.P.G. was at IRIF, Université Paris Diderot, supported by the project ERC QCC.

APPENDIX A: PROOF OF EQ. (15)

We show (15) for the case $b' = 0$. The proof for the case $b' = 1$ follows straightforwardly by interchanging B_0 and B_1. To simplify notation, in what follows we take $\Pi_{\text{in}}^0 = \Pi_{\text{in}}^0$, $\Pi_{\text{out}}^1 = \Pi_{\text{out}}^1$, $F_s = F_s^0$, and $G_{sk} = G_{sk}^0$. For fixed s and k, we denote by s^j and s^j_k the jth entries of s and $s_k = s \oplus k$, respectively, and we define the sets $\tau = \{ j \in [n] | s^j \neq s^j_k \}$ and $\tau_c = \{ j \in [n] | s^j = s^j_k \}$.

Let o_k be the Hamming weight of k; hence, $|\tau| = o_k$. Using the definitions (1), (3), and (13) of the main text, we express F_s and G_{sk} by

\[
F_s = \sum_{r_0, r_1, w_0, w_1} \left[\bigotimes_{j \in \tau} \left((|r_0^j\rangle|r_1^j\rangle)_{C_{sk}} \otimes (|s^j_{r_1}\rangle|s^j_{r_0}\rangle)_{C_{sk}} \right) \bigotimes_{j \in \tau_c} \left((|r_0^j\rangle|r_1^j\rangle)_{C_{sk}} \otimes (|s^j_{r_1}\rangle|s^j_{r_0}\rangle)_{C_{sk}} \right) \bigotimes (\Pi_{\text{in}}^r)_{B_i} \otimes 1_{B_i} \right].
\]

\[
G_{sk} = \sum_{r_0, r_1, w_0, w_1} \left[\bigotimes_{j \in \tau} \left((|r_0^j\rangle|r_1^j\rangle)_{C_{sk}} \otimes (|s^j_{r_1}\rangle|s^j_{r_0}\rangle)_{C_{sk}} \right) \bigotimes_{j \in \tau_c} \left((|r_0^j\rangle|r_1^j\rangle)_{C_{sk}} \otimes (|s^j_{r_1}\rangle|s^j_{r_0}\rangle)_{C_{sk}} \right) \bigotimes 1_{B_0} \otimes (\Pi_{\text{out}}^s)_{B_i} \right].
\]

Below we compute $F_sG_{sk}F_s$. We express the left-hand operator F_s in terms of the dummy variables r_0 and r_1, and the right-hand one in terms of z_0 and z_1. The operator G_{sk} is expressed in terms of w_0 and w_1. From the definitions of τ and τ_c, we have that $s^j = s^j_k$ and $s^j = s^j_k$ for $j \in \tau$, and $s^j = s^j_k$ and $s^j = s^j_k$ for $j \in \tau_c$. Using these properties and $\Pi_{\text{in}}^r \Pi_{\text{out}}^s = \delta_{r_0, z_0} \Pi_{\text{in}}^r$, since $\{\Pi_{\text{in}}^r\}_r$ is a projective measurement, we obtain

\[
F_sG_{sk}F_s = \sum_{r_0, r_1, w_0, w_1} \left[\bigotimes_{j \in \tau} \left((|r_0^j\rangle|r_1^j\rangle)_{C_{sk}} \otimes (|s^j_{r_1}\rangle|s^j_{r_0}\rangle)_{C_{sk}} \right) \bigotimes_{j \in \tau_c} \left((|r_0^j\rangle|r_1^j\rangle)_{C_{sk}} \otimes (|s^j_{r_1}\rangle|s^j_{r_0}\rangle)_{C_{sk}} \right) \bigotimes (\Pi_{\text{in}}^r)_{B_i} \otimes 1_{B_i} \right].
\]

\[
\times \left[\bigotimes_{j \in \tau} \left((|r_0^j\rangle|w_0^j\rangle)_{C_{sk}} \otimes (|s^j_{r_1}\rangle|w_0^j\rangle)_{C_{sk}} \right) \bigotimes_{j \in \tau_c} \left((|r_0^j\rangle|w_0^j\rangle)_{C_{sk}} \otimes (|s^j_{r_1}\rangle|w_0^j\rangle)_{C_{sk}} \right) \bigotimes 1_{B_0} \otimes (\Pi_{\text{out}}^s)_{B_i} \right].
\]

Then we use that $\sum_{a=0}^{1} |a\rangle\langle a| = \sum_{a=0}^{1} |\bar{a}\rangle\langle a| = 1$ (the identity on a qubit) to obtain, after summing over r_1, w_0, z_1, that

\[
F_sG_{sk}F_s = \sum_{r_0, w_0} \left[\bigotimes_{j \in \tau} \left((|r_0^j\rangle|\bar{a}_{r_0}^j\rangle)_{C_{sk}} \otimes (|r_0^j\rangle|\bar{a}_{r_0}^j\rangle)_{C_{sk}} \right) \bigotimes_{j \in \tau_c} \left((|r_0^j\rangle|\bar{a}_{r_0}^j\rangle)_{C_{sk}} \otimes (|r_0^j\rangle|\bar{a}_{r_0}^j\rangle)_{C_{sk}} \right) \bigotimes (\Pi_{\text{in}}^r)_{B_i} \otimes (\Pi_{\text{out}}^s)_{B_i} \right].
\]
Since $|\langle r'_0 | \hat{u}'_i \rangle|^2 = \frac{1}{2}$ and $|\tau| = \omega_k$, it follows that

$$F_s G_{\mathbf{k}} F_s = \left(\frac{1}{2}\right)^{\omega_k} \sum_{r_0, r'_1} \left[\otimes_{j \in r} \left(\langle |r'_0\rangle |r_0\rangle \right)_{C_j} \otimes \mathbb{I}_{C_j} \right] \otimes \left(\langle |r'_1\rangle |r_1\rangle \right)_{C_j} \otimes \left(\langle |\hat{u}'_1\rangle |\hat{u}_1\rangle \right)_{C_j} \otimes \left(\mathbb{I}_{\Pi_{\mathbf{k}}} \otimes (\Pi_{\mathbf{k}})_{B_0} \otimes (\Pi_{\mathbf{k}})_{B_1} \right).$$

(A4)

Using that $(\Pi_{\mathbf{k}})$ and $(\Pi_{\mathbf{k}})$ are projective measurements, it is straightforward to see from (A4) that $2^{\omega_k} F_s G_{\mathbf{k}} F_s$ is a projector. Thus, $\|2^{\omega_k} F_s G_{\mathbf{k}} F_s\| = 1$, which implies (15). The bound (5) of the main text and security against Bob follow.

APPENDIX B: PROOF OF BOUND (24)

We show (24). We follow closely the proof of bound (5). We have

$$p^{\omega}_n = \frac{1}{2^n} \sum_{\mathbf{q} \in \mathfrak{C}_{\mathbf{n}}} \sum_{\mathbf{s}} \text{Tr} \left(\sum_{\mathbf{s}} T^s \Psi \right)$$

$$\leq \frac{1}{2^n} \sum_{\mathbf{q} \in \mathfrak{C}_{\mathbf{n}}} \left\| \sum_{\mathbf{s}} T^s \right\|$$

$$= \frac{1}{2^n} \sum_{\mathbf{q} \in \mathfrak{C}_{\mathbf{n}}} \left(\sum_{\mathbf{s}} \sum_{\mathbf{b} = 0}^{1} D^q_{\mathbf{s}} \otimes R^b \right)$$

$$= \frac{1}{2^n} \sum_{\mathbf{q} \in \mathfrak{C}_{\mathbf{n}}} \max_{\mathbf{b}} \left(\sum_{\mathbf{s}} D^q_{\mathbf{s}} \right)$$

$$\leq \frac{1}{2^n} \sum_{\mathbf{q} \in \mathfrak{C}_{\mathbf{n}}} \max_{\mathbf{b}} \left(\sum_{\mathbf{s}} D^q_{\mathbf{s}} \right) \max_{\mathbf{k}} \| D^q_{\mathbf{s}} D^q_{\mathbf{s}} \|.$$

(B1)

where in the first line we used the linearity of the trace, in the second line we used the definition of the Schatten ∞-norm $\| \cdot \|$, in the third line we used (22), in the fourth line we used that $\{ R^0, R^1 \}$ is a projective measurement, and in the last line we used Lemma 2 and the fact that $D^q_{\mathbf{s}}$ and $D^q_{\mathbf{s}}$ are projectors.

