Protein interaction calculus

Introduction
Signaling pathways
Proteins, kinases...

\[A + B \leftrightarrow A.B \rightarrow A^* + B \]
Model as a review...
OK I got it...
More facts

Activated RAF kinases phosphorylate and activate MEK1 and MEK2 (ref. 2). These are dual-specificity kinases that in turn phosphorylate and activate ERK1 and ERK2 in what constitutes the RAF-MEK-ERK signaling cascade (or classical MAPK cascade). Active ERK phosphorylates serine or threonine residues within the Ser/Thr-Pro motif in many cytoplasmic and nuclear proteins.
Formal reasoning vs. formal languages

Eléments d’Euclide, Livre I, prop.48. R. Descartes (XVIe siècle)
Activated RAF kinases phosphorylate and activate MEK1 and MEK2 (ref. 2). These are dual-specificity kinases that in turn phosphorylate and activate ERK1 and ERK2 in what constitutes the RAF-MEK-ERK signaling cascade (or classical MAPK cascade). Active ERK phosphory-
Systems biology 2.0

Activated RAF kinases phosphorylate and activate MEK1 and MEK2 (ref. 2). These are dual-specificity kinases that in turn phosphorylate and activate ERK1 and ERK2 in what constitutes the RAF-MEK-ERK signaling cascade (or classical MAPK cascade). Active ERK phosphory-
Part II
Rule-based modeling
Kappa by example

“Kinase B is a highly efficient enzyme that phosphorylates A” (1)

“Kinase A phosphorylates C” (2)

“A has a closed and an open form” (3)

“Kinase B activates A” (4)
"Kinase B is a highly efficient enzyme that phosphorylates A"

\[
\text{%agent: A(x1, x2{u phos})}
\]
\[
\text{%agent: B(y1)}
\]

\[
\text{'A.B' A(x1[.], x2{u}), B(y1[.]) } \leftrightarrow \text{ A(x1[1], x2{x} phos), B(y1[1]) } @ \text{ k_AB/ V, k_A.B}
\]

\[
\text{'B phos A' A(x1[1], x2{u}), B(y1[1]) } \rightarrow \text{ A(x1[.], x2{phos}), B(y1[.]) } @ \text{ k_phos}
\]
“Kinase A phosphorylates C”

\[
\text{%agent: } A(x1, x2\{u \text{ phos}\}, x4)
\]

\[
\text{%agent: } C(z1, z2\{u \text{ phos}\})
\]

\['A \text{ binds } C' \ A(x4[\cdot]), C(z1[\cdot]) \leftrightarrow A(x4[1]), C(z1[1]) @ \text{'k_{AC'/'V'}, 'k_{A..C'}}
\]

\['A \text{ phos } C' \ C(z1[x4.A], z2\{u\}) \rightarrow C(z1[x4.A], z2\{\text{phos}\}) @ \text{'k_{phos'}}
\]
"A has a closed and an open form"

\[
\text{\%agent: } A(x_1, x_2\{u \text{ phos}\}, x_3\{\text{close open}\}, x_4)
\]

'A folds' \(A(x_3\{\text{open}\}) \leftrightarrow A(x_3\{\text{close}\}) \) @ 'k_open', 'k_close'
Exercises