June 2017, ITU, Copenhagen

Towards a Type Theory for Linear Partial Differential Equations

Marie Kerjean
IRIF, Université Paris Diderot
kerjean@irif.fr

June 16, 2017
Linear Logic

A decomposition of the implication

\[A \Rightarrow B \simeq !A \multimap B \]

Denotational semantic

We interpret formulas as sets and proofs as functions between these sets.

Denotational semantic of LL

We have a cohabitation between linear functions and non-linear functions.
Linear Logic

Classical logic

$\neg A = A \Rightarrow \bot$ and $\neg\neg A \simeq A$.

Linear Logic features an involutive linear negation:

$$A^\perp \simeq A \multimap 1$$

$$A^{\perp\perp} \simeq A$$
Smoothness

Differentiation

Differentiating a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ at x is finding a linear approximation $d(f)(x) : v \mapsto D(f)(x)(v)$ of f near x.

Smooth functions are functions which can be differentiated everywhere in their domain and whose differentials are smooth.
Differential Linear Logic

A modification of the exponential rules of Linear Logic in order to allow differentiation.

Semantics

For each \(f : !A \rightarrow B \simeq C^\infty(A, B) \) we have \(Df(0) : A \rightarrow B \)

Syntax

co-dereliction

\[
\bar{d} : x \mapsto f \mapsto Df(0)(x)
\]
Why differential linear logic?

- Differentiation was in the air since the study of Analytic functors by Girard:

\[\tilde{d}(x) : \sum f_n \mapsto f_1(x) \]

- DiLL was developed after a study vectorial models of LL inspired by coherent spaces: Finiteness spaces (Ehrard 2005), Köthe spaces (Ehrhard 2002).

It leads to differential λ-calculus and applications for probabilistic programming languages.

- Differential interaction nets, Ehrhard and Regnier, TCS (2006)
Smoothness of proofs

- Proofs are interpreted as graphs, relations between sets, power series on finite dimensional vector spaces, strategies between games: those are discrete objects.
- Differentiation appeals to differential geometry, manifolds, functional analysis: we want to find a denotational model of DiLL where proofs are smooth functions.

TEASING: to get to differential equations.
Plan

Denotational semantics of LL

A model with Distributions

Linear PDE as exponentials
Denotational semantics of classical linear logic
Interpreting LL in vector spaces

Consider formulas interpreted by finite dimensional vector spaces or Banach spaces.

Cartesian closed category:
Non-linear functions

\[!A \rightarrow B, \& , \oplus \]

Monoidal closed category:
Linear functions

\[A \rightarrow \bigotimes B, \otimes, \bigoplus \]
Interpreting LL in vector spaces

Consider formulas interpreted by finite dimensional vector spaces or Banach spaces.

Cartesian closed category:
Non-linear functions
!A \rightarrow B, \&, \oplus

The product

Monoidal Closed Category:
Linear Functions
A \rightarrow B, \otimes, \trianglerighteq
Interpreting LL in vector spaces

Consider formulas interpreted by finite dimensional vector spaces or Banach spaces.

Cartesian closed category:
- Non-linear functions
 - $!A \to B$, $\&$, \oplus

The product
- The coproduct

Monoidal Closed Category:
- Linear Functions
 - $A \to B$, \otimes, \otimes

U
Interpreting LL in vector spaces

Consider formulas interpreted by finite dimensional vector spaces or Banach spaces.

Cartesian closed category:
- Non-linear functions
 - $!A \rightarrow B$, &

Monoidal Closed Category:
- Linear Functions
 - $A \rightarrow B$, ⊗, ⊖

- The product
- The coproduct
- The tensor product
- The epsilon product

1Work with Y. Dabrowski
Consider formulas interpreted by finite dimensional vector spaces or Banach spaces.

Cartesian closed category:
- Non-linear functions: $!A \to B$, $\&$, \oplus
- Linear Functions:
 - $A \rightarrowtail B$, \otimes, \Rightarrow
 - $A \otimes B \to C \simeq A \to (B \to C)$
Interpreting LL in vector spaces

Consider formulas interpreted by finite dimensional vector spaces or Banach spaces.

Cartesian closed category:
- Non-linear functions
 - $!A \to B$, $\&$, \oplus

Linear Functions
- $A \to B$, \otimes, \exists
- $A \otimes B \to C \simeq A \to (B \to C)$

$!E \otimes !F \simeq !(E \times F)$
Interpreting DiLL in vector spaces

Non-linear functions

\(!A \to B, \&, \oplus\)

Linear Functions

\(A \to B, \otimes, \ddf\)

\(!E \otimes !F \simeq !(E \times F)\)

\(d \circ \ddf = \text{Id}_E\)

\(!E \otimes !F \simeq !(E \times F)\) allows to have a cartesian closed Co-Kleisli category
Interpreting DiLL in vector spaces

Non-linear functions

\[!A \twoheadrightarrow B, \& , \oplus \]

Linear Functions

\[A \twoheadrightarrow B, \otimes , \otimes \]

\[!E \otimes !F \simeq !(E \times F) \]
\[d \circ \bar{d} = Id_E \]

\(d \circ \bar{d} = Id_E \) expresses the fact that the differential at 0 of a linear function is the same linear function.

We want to find good spaces in which we can interpret all these constructions, and an appropriate notion of smooth functions.
Challenges

We encounter several difficulties in the context of topological vector spaces:

- Finding a good topological tensor product.
- Finding a category of smooth functions which is Cartesian closed.
- Interpreting the involutive linear negation \((E^\perp)^\perp \simeq E\)
Challenges

We encounter several difficulties in the context of topological vector spaces:

▶ Finding a good topological tensor product.
▶ Finding a category of smooth functions which is Cartesian closed.
▶ Interpreting the involutive linear negation $(E^\perp)^\perp \simeq E$

Challenges

We encounter several difficulties in the context of topological vector spaces:

- Finding a good topological tensor product.
- Finding a category of smooth functions which is Cartesian closed.
- Interpreting the involutive linear negation \((E^\perp)^\perp \simeq E\).

Weak topologies for Linear Logic, K. LMCS 2015.
Challenges

We encounter several difficulties in the context of topological vector spaces:

- Finding a good topological tensor product.
- Finding a category of smooth functions which is Cartesian closed.
- Interpreting the involutive linear negation \((E^\perp)^\perp \simeq E\).

The categorical semantics of an involutive linear negation

Linear Logic features an involutive linear negation:

\[A^{\perp} \simeq A \rightarrow 1 \]

\[A^{\perp\perp} \simeq A \]

*-autonomous categories are monoidal closed categories with a distinguished object 1 such that \(E \simeq (E \rightarrow 1) \rightarrow 1 \) through \(d_A \).

\[d_A : \begin{cases} E \rightarrow (E \rightarrow 1) \rightarrow 1 \\ x \mapsto ev_x : f \mapsto f(x) \end{cases} \]
*-autonomous categories of vector spaces

I want to explain to my math colleague what is a *-autonomous category: \(\bot \) neutral for \(\otimes \), thus \(\bot \cong \mathbb{R} \), \(A \rightarrow 1 \) is \(A' = \mathcal{L}(A, \mathbb{R}) \).

\[
d_A : \begin{cases} E \rightarrow E'' \\ x \mapsto ev_x : f \mapsto f(x) \end{cases}
\]

should be an isomorphism.

Exclamation

Well, this is just a category of reflexive vector space.
-autonomous categories of vector spaces

I want to explain to my math colleague what is a \(\star\)-autonomous category: \(\bot\) neutral for \(\mathcal{V}\), thus \(\bot \simeq \mathbb{R}\), \(A \rightarrow 1\) is \(A' = \mathcal{L}(A, \mathbb{R})\).

\[
d_A : \begin{cases}
E \rightarrow E'' \\
x \mapsto \text{ev}_x : f \mapsto f(x)
\end{cases}
\]

should be an isomorphism.

Exclamation

Well, this is just a category of reflexive vector space.

Disapointment

Well, the category of reflexive topological vector space is not closed (eg: Hilbert spaces).
A model with Distributions
We work with Hausdorff topological vector spaces: real or complex vector spaces endowed with a Hausdorff topology making addition and scalar multiplication continuous.

- The topology on E determines E'.
- The topology on E' determines whether $E \simeq E''$.

We work within the category TOPVect of topological vector spaces and continuous linear functions between them.
Let us take the other way around, through Nuclear Fréchet spaces.
Polarized models of LL

Negatives M, N
\Downarrow \uparrow

Positives P, Q
\uparrow \downarrow

\bot \perp

$M \otimes N$
\otimes

$P \otimes Q$
Fréchet and DF spaces

- Fréchet: metrizable complete spaces.
- (DF)-spaces: such that the dual of a Fréchet is (DF) and the dual of a (DF) is Fréchet.
Nuclear spaces

Nuclear spaces are spaces in which for which you can identify the two canonical topologies on tensor products:

$$\forall F, E \otimes_{\pi} F = E \otimes_{\epsilon} F$$
Nuclear spaces

A polarized \star-autonomous category

A Nuclear space which is also Fréchet or (DF) is reflexive.
Nuclear spaces

We get a polarized model of MALL: involutive negation \((-)^\perp\), \(\otimes\), \(\bigotimes\), \(\bigoplus\), \(\times\).
Distributions and the Kernel theorems

Examples of Nuclear Fréchet spaces includes:

\[C^\infty(\mathbb{R}^n, \mathbb{R}), \ C_c^\infty(\mathbb{R}^n, \mathbb{R}), \mathcal{H}(\mathbb{C}, \mathbb{C}), \ldots \]

Typical Nucléar Fréchet spaces are distributions spaces Schwartz’
generalized functions:

\[C^\infty(\mathbb{R}^n, \mathbb{R})', \ C_c^\infty(\mathbb{R}^n, \mathbb{R})', \mathcal{H}'(\mathbb{C}, \mathbb{C}), \ldots \]

The Kernel Theorems

\[C_c^\infty(E, \mathbb{R})' \otimes C_c^\infty(F, \mathbb{R})' \simeq C_c^\infty(E \times F, \mathbb{R})' \]
Distributions and the Kernel theorems

Examples of Nuclear Fréchet spaces includes:

\[\mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}), \mathcal{C}_c^\infty(\mathbb{R}^n, \mathbb{R}), \mathcal{H}(\mathbb{C}, \mathbb{C}), .. \]

Typical Nucléar Fréchet spaces are distributions spaces Schwartz’
generalized functions:

\[\mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R})', \mathcal{C}_c^\infty(\mathbb{R}^n, \mathbb{R})', \mathcal{H}'(\mathbb{C}, \mathbb{C}), .. \]

The Kernel Theorems

\[\mathcal{C}^\infty(E, \mathbb{R})' \otimes \mathcal{C}^\infty(F, \mathbb{R})' \simeq \mathcal{C}^\infty(E \times F, \mathbb{R})' \]

We define \(!\mathbb{R}^n = \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R})' \). Thanks to the Kernel theorems, \(! R^n \) verifies all the rules of Differential Linear Logic. However, \(!R^n \) is not a finite dimensional vector space.
A Smooth differential Linear Logic

Denotational semantics of LL

A model with Distributions

Linear PDE as exponentials

\[\text{DF-spaces} \]
\[\mathbb{R}^n = C^\infty(\mathbb{R}^n, \mathbb{R}) \]
\[!\mathbb{R}^n = C^\infty(\mathbb{R}^n, \mathbb{R})' \in \text{Nucl} \]
\[!\mathbb{R}^n \otimes !\mathbb{R}^m \simeq !((\mathbb{R}^n + m)) \]
Smooth DiLL

A new graded syntax

Finitary formulas: $A, B := X | A \otimes B | A \otimes B | A \oplus B | A \times B$.
General formulas: $U, V := A | ! A | ? A | U \otimes V | U \otimes V | U \oplus V | U \times V$

For the old rules

\[
\begin{align*}
\frac{\vdash \Gamma, A}{\vdash \Gamma, \bot} & \quad d \\
\frac{\vdash \Gamma, ?A}{\vdash \Gamma, ?A} & \quad \tilde{c} \\
\frac{\vdash \Gamma, !A, !A}{\vdash \Gamma, !A} & \quad \tilde{c} \\
\frac{\vdash \Gamma, ?A}{\vdash \Gamma, ?A} & \quad \tilde{w} \\
\frac{\vdash \Gamma, A}{\vdash \Gamma, !A} & \quad \tilde{d}
\end{align*}
\]

We have obtained a smooth classical model of DiLL, to the price of Higher Order and Digging $!A \rightarrow !!A$.

Linear Partial Differential Equations as Exponentials
Differential Linear Logic

Is a modification of the exponential rules of Linear Logic in order to allow differentiation.

Semantics

For each $f : !A \to B \simeq C^\infty(A, B)$ we have $Df(0) : A \to B$.

Syntax

\[
\begin{align*}
\vdash & \Gamma & w \\
\vdash & \Gamma, ?A & w \Gamma \\
\vdash & \Gamma, !A, !A & \bar{c} \\
\vdash & \Gamma, !A & \bar{c} \Gamma \\
\vdash & \Gamma, ?A, ?A & c \Gamma \\
\vdash & \Gamma, ?A & c \Gamma \\
\vdash & \Gamma, A & d \Gamma \\
\vdash & \Gamma, ?A & d \Gamma \\
\vdash & \Gamma, A & d \Gamma \\
\vdash & \Gamma, !A & \bar{d} \Gamma \\
\vdash & \Gamma, !A & \bar{d} \Gamma \\
\end{align*}
\]

Semantic of the dereliction

$d : E \to ?E = (!E')$ expresses the fact that $E \to 1 \subset !E \to 1$, i.e:

$$\mathcal{L}(E, \mathbb{R}) \subset C^\infty(E, \mathbb{R})$$
Spaces of solutions to a differential equations

A differential operator on $C^\infty(\mathbb{R}^n, R)$

$$D = \sum_{|\alpha| \leq n} \frac{\partial|\alpha|}{\partial x_1 \partial^{\alpha} x_n}$$

For example: $D(f) = \frac{\partial^n f}{\partial x_1 \partial x_n}$.

Theorem (Schwartz)

Under some considerations on D, the space $S_D(E, \mathbb{R})'$ of distributions solutions to $D(f) = f$ is a Nuclear Fréchet space of functions.

Thus $S_D(E, \mathbb{R})'$ is an exponential.
A new exponential

<table>
<thead>
<tr>
<th>Spaces of Smooth functions</th>
<th>Exponentials</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C^\infty(E, \mathbb{R})$</td>
<td>$C^\infty'(E, \mathbb{R})$</td>
</tr>
<tr>
<td>$S_D(E, \mathbb{R})$</td>
<td>$S'_D(E, \mathbb{R})$</td>
</tr>
<tr>
<td>$E' \simeq \mathcal{L}(E, \mathbb{R})$</td>
<td>$E'' \simeq E$</td>
</tr>
</tbody>
</table>

Linear functions are exactly those in $C^\infty(E, \mathbb{R})$ such that for all x:

$$f(x) = D(f)(0)(x).$$

$$\forall x, ev_x(f) = ev_x(\bar{d})(f).$$
Dereliction and co-dereliction for D

For linear functions

$$\bar{d} : E \rightarrow C^\infty(E, \mathbb{R})', x \mapsto (f \mapsto D(f)(x)).$$

$$d : C^\infty(E, \mathbb{R})' \rightarrow S'(E, \mathbb{R}), \phi \mapsto \phi_{\mathcal{L}(E,\mathbb{R})}$$

For solutions of $Df = f$

$$\bar{d}_D : E \rightarrow C^\infty(E, \mathbb{R})', x \mapsto (f \mapsto D(f)(x)).$$

$$d_D : C^\infty(E, \mathbb{R})' \rightarrow S'(E, \mathbb{R}), \phi \mapsto \phi_{\mathcal{S}_D(E,\mathbb{R})}$$

The map \bar{d}_D represents the equation to solve, while d_D represents the fact that we are for looking solutions in $C^\infty(E, \mathbb{R})$.
Exponentials and invariants

<table>
<thead>
<tr>
<th>Spaces of Smooth functions</th>
<th>Exponentials</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C^\infty(E, \mathbb{R})$</td>
<td>$C^\infty(E, \mathbb{R})$</td>
<td>$E'' \simeq E$</td>
</tr>
<tr>
<td>$S_D(E, \mathbb{R})$</td>
<td>$S'_D(E, \mathbb{R})$</td>
<td>$d \circ \overline{d} = Id$</td>
</tr>
<tr>
<td>$E' \simeq \mathcal{L}(E, \mathbb{R})$</td>
<td>$E'' \simeq E$</td>
<td>$d \circ \overline{d} = Id$</td>
</tr>
</tbody>
</table>
Exponentials and invariants

<table>
<thead>
<tr>
<th>Spaces of Smooth functions</th>
<th>Exponentials</th>
<th>PDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C^\infty(E, \mathbb{R})$</td>
<td>$C^\infty(E, \mathbb{R})'$</td>
<td></td>
</tr>
<tr>
<td>$S_D(E, \mathbb{R})$</td>
<td>$S'_D(E, \mathbb{R})$</td>
<td></td>
</tr>
<tr>
<td>$E' \simeq \mathcal{L}(E, \mathbb{R})$</td>
<td>$E'' \simeq E$</td>
<td></td>
</tr>
</tbody>
</table>

\[
E' \simeq \mathcal{L}(E, \mathbb{R}) \quad \quad \quad E'' \simeq E
\]
The logic of linears PDE’s

Rules

\[
\frac{\vdash \Gamma, \neg \neg E}{\vdash \Gamma, \neg \neg \neg E} \quad \frac{\vdash \Gamma, A}{\vdash \Gamma, \neg A} \quad \frac{\vdash \Gamma, \neg A}{\vdash \Gamma, A} \quad \frac{\vdash \Gamma, \neg \neg E}{\vdash \Gamma, \neg \neg \neg E}
\]

\[
\frac{\vdash \Gamma, \neg \neg E}{\vdash \Gamma, \neg \neg \neg E} \quad \frac{\vdash \Gamma, A}{\vdash \Gamma, \neg A} \quad \frac{\vdash \Gamma, \neg A}{\vdash \Gamma, A} \quad \frac{\vdash \Gamma, \neg \neg E}{\vdash \Gamma, \neg \neg \neg E}
\]

Cut elimination

\[
E \xrightarrow{\neg \neg d_D} \neg E \quad \quad \quad \quad \quad \quad E \xrightarrow{\neg \neg d_D} \neg E
\]

\[
E \xrightarrow{\neg \neg d_D} \neg E \quad \quad \quad \quad \quad \quad E \xrightarrow{\neg \neg d_D} \neg E
\]

Solutions of a linear PDE also verify \(w \) and \(\bar{w} \). If verifying a Kernel isomorphisms they would also verify \(c \) and \(\bar{c} \).
An example

Scalar solutions defined on \mathbb{R}^n of

$$\frac{\partial^n}{\partial x_1 \ldots \partial x_n} f = f$$

are the $z \mapsto \lambda e^{x_1 + \ldots + x_n}$.

$$S'(\mathbb{R}^n) \otimes S'(\mathbb{R}^M) \simeq S'(\mathbb{R}^{n+m}).$$

$$\lambda e^{x_1 + \ldots + x_n} \mu e^{y_1 + \ldots + y_m} = \lambda \mu e^{x_1 + \ldots + x_n + y_1 + \ldots + y_m}.$$

$S(\mathbb{R} \cdot \mathbb{R})'$ verifies w, \bar{w} (which corresponds to the initial condition of the differential equation) and \bar{c}, c.
Conclusion

The space of solutions to a linear partial differential equation form an exponential in Linear Logic
Conclusion

What you get:

- An interpretation of the linear involutive negation of LL in terms of reflexive topological spaces.
- An interpretation of the exponential in terms of distributions.
- An interpretation of \otimes in terms of the Schwartz epsilon product.
- A generalization of DiLL to linear PDE.

What you could see:

- A constructive Type Theory for differential equations.
- An interpretation of the exponential in terms of Fourier's transformation.
Thank you.