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Abstract. We define and study a term calculus implementing higher-
order node replication. It is used to specify two different (weak) evalua-
tion strategies: call-by-name and fully lazy call-by-need, that are shown
to be observationally equivalent by using type theoretical technical tools.

1 Introduction

Computation in the A-calculus is based on higher-order substitution, a com-
plex operation being able to erase and copy terms during evaluation. Several
formalisms have been proposed to model higher-order substitution, going from
explicit substitutions (ES) [1] (see a survey in [41]) and labeled systems [15] to
pointer graphs [60] or optimal sharing graphs [49]. The model of copying behind
each of these formalisms is not the same.

Indeed, suppose one wants to substitute all the free occurrences of some
variable x in a term t by some term u. We can imagine at least four ways to
do that. (1) A drastic solution is a one-shot substitution, called non-linear (or
full) substitution, based on simultaneously replacing all the free occurrences of
2 in ¢t by the whole term u. This notion is generally defined by induction on the
structure of the term ¢. (2) A refined method substitutes one free occurrence of
x at a time, the so-called linear (or partial) substitution. This notion is generally
defined by induction on the number of free occurrences of x in the term ¢t. An
orthogonal approach can be taken by replicating one term-constructor of u at a
time, instead of replicating u as a whole, called here node replication. This notion
can be defined by induction on the structure of the term u, and also admits two
versions: (3) non-linear, i.e. by simultaneously replacing all the occurrences of
x in t, or (4) linear. The linear version of the node replication approach can be
formally defined by combining (2) and (3).

It is not surprising that different notions of substitution give rise to different
evaluation strategies. Indeed, linear substitution is the common model in well-
known abstract machines for call-by-name and call-by-value (see e.g. [3]), while
(linear) node replication is used to implement fully lazy sharing [60]. However,
node replication, originally introduced to implement optimal graph reduction in
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a graphical formalism, has only been studied from a Curry-Howard perspective
by means of a term language known as the atomic A-calculus [33].

The Atomic Lambda-Calculus. The Curry-Howard isomorphism uncovers
a deep connection between logical systems and term calculi. It is then not sur-
prising that different methods to implement substitution correspond to different
ways to normalize logical proofs. Indeed, full substitution (1) can be explained
in terms of natural deduction, while partial substitution (2) corresponds to cut
elimination in Proof-Nets [2]. Replication of nodes (3)-(4) is based on a Curry-
Howard interpretation of deep inference [32,33]. Indeed, the logical aspects of
intuistionistic deep inference are captured by the atomic A-calculus [33], where
copying of terms proceeds atomically, i.e. node by node, similar to the optimal
graph reduction of Lamping [49].

The atomic A-calculus is based on ezplicit control of resources such as era-
sure and duplication. Its operational semantics explicitly handles the struc-
tural constructors of weakening and contraction, as in the calculus of resources
Alxr [43,44]. As a result, comprehension of the meta-properties of the term-
calculus, in a higher-level, and its application to concrete implementations of
reduction strategies in programming languages, turn out to be quite difficult. In
this paper, we take one step back, by studying the paradigm of node replication
based on implicit, rather than explicit, weakening and contraction. This gives
a new concise formulation of node replication which is simple enough to model
different programming languages based on reduction strategies.

Call-by-Name, Call-by-Value, Call-by-Need. Call-by-name is used to im-
plement programming languages in which arguments of functions are first copied,
then evaluated. This is frequently expensive, and may be improved by call-by-
value, in which arguments are evaluated first, then consumed. The difference
can be illustrated by the term ¢t = A(II), where A = Ax.zx and I = Az.z:
call-by-name first duplicates the argument II, so that its evaluation is also du-
plicated, while call-by-value first reduces II to (the value) I, so that duplications
of the argument do not cause any duplicated evaluation. It is not always the best
solution, though, because evaluating erasable arguments is useless.
Call-by-need, instead, takes the best of call-by-name and call-by-value: as
in call-by-name, erasable arguments are not evaluated at all, and as in call-by-
value, reduction of arguments occurs at most once. Furthermore, call-by-need
implements a demand-driven evaluation, in which erasable arguments are never
needed (so they are not evaluated), and non-erasable arguments are evaluated
only if needed. Technically, some sharing mechanism is necessary, for example by
extending the A-calculus with explicit substitutions/let constructs [7]. Then /-
reduction is decomposed in at least two steps: one creating an explicit (pending)
substitution, and the other ones (linearly) substituting values. Thus for exam-
ple, (Az.zz)(II) reduces to (zz)[x\II], and the substitution argument is thus
evaluated in order to find a value before performing the linear substitution.
Even when adopting this wise evaluation scheme, there are still some un-
necessary copies of redexes: while only values (i.e. abstractions) are duplicated,
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they may contain redexes as subterms, e.g. A\z.z(II) whose subterm II is a
redex. Duplication of such values might cause redex duplications in weak (i.e.
when evaluation is forbidden inside abstractions) call-by-need. This happens in
particular in the confluent variant of weak reduction in [52].

Full laziness. Alas, it is not possible to keep all values shared forever, typically
when they potentially contribute to the creation of a future S-reduction step.
The key idea to gain in efficiency is then to keep the subterm II as a shared
redex. Therefore, the (full) value Az.z(II) to be copied is split into two separate
parts. The first one, called skeleton, contains the minimal information preserving
the bound structure of the value, i.e. the linked structure between the binder
and each of its (bound) variables. In our example, this is the term \z.zy, where
y is a fresh variable. The second one is a multiset of mazimal free expressions
(MFE), representing all the shareable expressions (here only the term II). Only
the skeleton is then copied, while the problematic redex II remains shared:

(Az.zx)(Az2.2(11)) = (zx)[x\A2.2(11)] = ((Az.zy)z)[z\Nz.2y][y\II]

When the subterm II is needed ahead, it is first reduced inside the ES, as it is
usual in (standard) call-by-need, thus avoiding to compute the redex twice. This
optimization is called fully lazy sharing and is due to Wadsworth [60].

In the confluent weak setting evoked earlier [52], the fully lazy optimization
is even optimal in the sense of Lévy [51]. This means that the strategy reaches
the weak normal form in the same number of S-steps as the shortest possible
weak reduction sequence in the usual A-calculus without sharing. Thus, fully lazy
sharing turns out to be a decidable optimal strategy, in contrast to other weak
evaluation strategies in the A-calculus without sharing, which are also optimal
but not decidable [11].

Contributions. The first contribution of this paper is a term calculus im-
plementing (full) node replication and internally encoding skeleton extraction
(Sec. 2). We study some of its main operational properties: termination of the
substitution calculus, confluence, and its relation with the A-calculus.

Our second contribution is the use of the node replication paradigm to give
an alternative specification of two evaluation strategies usually described by
means of full or linear substitution: call-by-name (Sec. 4.1) and weak fully lazy
reduction (Sec. 4.2), based on the key notion of skeleton. The former can be re-
lated to (weak) head reduction, while the latter is a fully lazy version of (weak)
call-by-need. In contrast to other implementations of fully lazy reduction rely-
ing on (external) meta-level definitions, our implementation is based on formal
operations internally defined over the term syntax of the calculus.

Furthermore, while it is known that call-by-name and call-by-need specified
by means of full/linear substitution are observationally equivalent [7], it was
not clear at first whether the same property would hold in our case. Our third
contribution is a proof of this result (Sec. 6) using semantical tools coming from
proof theory —notably intersection types. This proof technique [42] considerably
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simplifies other approaches [7,54] based on syntactical tools. Moreover, the use
of intersection types has another important consequence: standard call-by-name
and call-by-need turn out to be observationally equivalent to call-by-name and
call-by-need with node replication, as well as to the more semantical notion of
neededness (see [45]).

Intersection types provide quantitative information about fully lazy evalu-
ation so that a fourth contribution of this work is a measure based on type
derivations which turns out to be an upper bound to the length of reduction
sequences to normal forms in a fully lazy implementation.

More generally, our work bridges the gap between the Curry-Howard theo-
retical understanding of node replication and concrete implementations of fully
lazy sharing. Related works are presented in the concluding Sec. 7.

2 A Calculus for Node Replication

We now present the syntax and operational semantics of the AR-calculus (R for
Replication), as well as a notion of level playing a key role in the next sections.

Syntax. Given a countably infinite set X" of variables z, ¥, z, ..., we consider the
following grammars.

(Terms) t,bu n=a | Azt | tu | tlx\u] | tlx\Ny.u]

(Pure Terms) p,q:=2x | Az.p | pq

(Term Contexts) C = 0| Az.C| Ct| tC| C[z\¢t]| Clz\Ay.u]| t[x\C]| t[x\Ay.C]
(List Contexts) L ::=0O|L[z\u] | Llz\\y.u]

The set of terms (resp. pure terms) is denoted by Ag (resp. A). We write |¢|
for the size of ¢, i.e. for its number of constructors. We write I for the identity
function Az.z. The construction [x\u] is an explicit substitution (ES), and
[z\Ay.u] an explicit distributor: the first one is used to copy arbitrary terms,
while the second one is used specifically to duplicate abstractions. We write
[z <u] to denote an explicit cut in general, which is either [x\u] or [z\u] when
u is A\y.u’, typically to factorize some definitions and proofs where they behave
similarly in both cases. When using the general notation t[z < u], we define
x(<) = 1 if the term is an ES, and z(<) = 0 otherwise.

We use two notions of contexts. Term contexts C extend those of the A-
calculus to explicit cuts. List contexts L denote an arbitrary list of explicit cuts.
They will be used to implement reduction at a distance in the operational se-
mantics defined ahead.

Free/bound variables of terms are defined as usual, notably fv(t[z<u]) :=
fv(t)\{z} U fv(u). These notions are extended to contexts as expected, in par-
ticular £v(0O) := (. The domain of a list context is given by dlc(O) := 0
and dlc(Lz <u]) := dlc(L) U {z}. a-conversion [13] is extended to AR-terms
as expected and used to avoid capture of free variables. We write ¢t{z\u} for
the meta-level (capture-free) substitution simultaneously replacing all the free
occurrences of the variable x in ¢ by the term .
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The application of a context C to a term ¢, written C(¢), replaces the hole
O of C by t. For instance, O(t) = t and (Az.O)(t) = Az.t. This operation is not
defined modulo a-conversion, so that capture of variables eventually happens.
Thus, we also consider another kind of application of contexts to terms, denoted
with double brackets, which is only defined if there is no capture of variables.
For instance, (A\y.0){(z)) = Ay.z while (Az.O){(x)) is undefined.

Operational semantics. ES may block some expected meaningful (i.e. non-
structural) reductions. For instance, -reduction is blocked in (Az.t)[y\v]u be-
cause an ES lies between the function and its argument. This kind of stuck
redexes do not happen in graphical representations (e.g. [28]), but it is typical
in the sequential structure of term syntaxes.

There are at least two ways to handle this issue. The first one is based on
structural /permutation rules, as in [33], where the substitution is first pushed out-
side the application node, as (Ax.t)[y\v]u — ((Az.t)u)[y\v], so that S-reduction
is finally unblocked. The second, less elementary, possibility is given by an oper-
ational semantics at a distance [6,4], where the S-rule can be fired by a rule like
L(Az.tyu — L{t[x\u]), L being an arbitrary list context. The distance paradigm is
therefore used to gather meaningful and permutation rules in only one reduction
step. In AR, we combine these two technical tools. First, we consider the following
permutation rules, all of them are constrained by the condition = ¢ fv(t).

Az.ufy <t] = (Az.u)y <t v[x qult o (vt)[z <u]
tolz <u] g (tv)[x <] tly <oz <u]] =, ty <]z <]

The reduction relation —, is defined as the closure of the rules —, under all
contexts. It does not hold any computational content, only a structural one that
unblocks redexes by moving explicit cuts out.

In order to highlight the computational content of node replication we com-
bine distance and permutations within the AR-calculus, given by the closure of
the following rules by all the contexts.

LAz.t)u  +—q  L{t[z\u])

tle\L{uv)] —app L{t{z\yz}[y\u][z\v]) where y and z are fresh
tlz\L(A\y.u)] —aist L{E[x\Ay.2[z\u]])  where z is fresh

tle\Ay.u]  —aps L{E{2\Ay.p}) where u —% L(p) and y ¢ fv(L)
ta\L{y)]  var LH{z\y})

Notice in the five rules above that the (meta-level) substitution is full (it is
performed simultaneously on all free occurrences of the variable x), and the
list context L is always pushed outside the term ¢. We will highlight in green
such list contexts in the forthcoming examples to improve readability. Apart
from rule dB used to fire S-reductions, there are four substitution rules used
to copy abstractions, applications and variables, pushing outside all the cuts
surrounding the node to be copied. Rule app copies one application node, while
rule var copies one variable node. The case of abstractions is more involved as
explained below.
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The specificity in copying an abstraction Ay.u is due to the (binding) relation
between Ay and all the free occurrences of y in its body w. Abstractions are thus
copied in two stages. The first one is implemented by the rule dist, creating a
distributor in which a potentially replaceable abstraction is placed, while moving
its body inside a new ES. There are then two ways to replicate nodes of the body.
Either they can be copied inside the distributor (where the binding relation
between Ay and the bound occurrences of y is kept intact), or they can be
pushed outside the distributor, by means of the (non-deterministic) rule abs. In
the second case, however, free occurrences of y cannot be pushed outside the
abstraction (with binder y) to be duplicated, at the risk of breaking consistency:
only shared components without y links can be then pushed outside. These
components are gathered together into a list context L, which is pushed outside
by using permutation rules, before performing the substitution of the pure body
containing all the bound occurrences of y. Specifying this operation using only
distance is hard, thus permutation rules are also used in our rule abs.

The s-substitution relation —¢ (resp. distant Beta relation —4p) is defined as
the closure of —app U —aist U —abs U —ryar (resp. —qp) under all contexts, and
the reduction relation —y is the union of —¢ and —4z.

Ezample 1. Let tg = (Az1.21)(Ay.Iy). In what follows, we underline the term
where the reduction is performed:

to —rap T1[21\\Y-Ty] —aise T1[21\ Ay 2[2\IY]] —app 1[21\AY-(2122) [21\I][22\Y]]
—raist L1[21\ Y- (2122)[21 \A\z3. 2325\ 23]] [22\¥]]
—var Z1[21\ Y. (219) [21\A23.23[23\23]] | = avs (Ay-219)[21 \A23.23][25\23]]

Let R be any reduction relation. We write —7% for the reflexive-transitive
closure of =+r. A term ¢ is said to be R-confluent iff ¢t =% u and t =% s
implies there is ¢’ such that u —% t' and s =% t’. The relation R is confluent
iff every term is R-confluent. A term ¢t is said to be in R-normal form (written
also R-nf) 4ff there is no t' such that ¢ —x ¢'. A term ¢ is said to be R-
terminating or R-normalizing iff there is no infinite R-sequence starting at
t. The reduction R is said to be terminating iff every term is R-terminating.

Levels. The notion of level plays a key role in this work. Intuitively, the level
of a variable in a term indicates the maximal depth of its free occurrences w.r.t.
ES (and not w.r.t. explicit distributors). However, in order to keep soundness
w.r.t. the permutation rules, levels are computed along linked chains of ES.
For instance, the level of w in both z[z\y[y\w]] and z[z\y][y\w] is 2. Formally,
the level of a variable z in a term ¢t is defined by (structural) induction, while
assuming by a-conversion that z is not a bound variable in ¢:

lv,(z) =0 1v,(tite) == max(1v,(t1), v, (t2)) 1v.(Ay.f) := 1v,(t)

Lo (t]e au]) = {lvz(t) if 2 ¢ £v(u)

max(1v,(t),1v,(¢) + 1v.(u) + x(<)) otherwise
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Notice that 1lv,(t) = 0 whenever w ¢ f£v(t) or t is pure. We illustrate the
concept of level by an example. Consider ¢ = x[z\ z[y\w]][w\w'], then 1v,(t) = 1,
lv,(t) = 3 and 1vy(t) = 0 because y ¢ fv(¢). This notion is also extended to
contexts as expected, i.e. 1vg(C) = 1v,(C({(z))), where z is a fresh variable.

Lemma 2. Lett € Ag. If tog —r s t1, then 1vy,(to) > 1vy,(t1) for any w € X

It is worth noticing that there are two cases when the level of a variable in
a term may decrease: using a permutation rule to push an explicit cut out of
another cut when the first one is a void cut, or using rule —ay.

Hence, levels alone are not enough to prove termination of —5. We then
define a decreasing measure for —¢ in which not only variables are indexed by
a level, but also constructors. For instance, in t[z\Ay.yz], we can consider that
the level of all the constructors of Ay.yz have level 1v,(¢). This will ensure that
the level of an abstraction will decrease when applying rule dist, as well as the
level of an application when applying rule app. This is what we do next.

3 Operational Properties

We now prove three key properties of the AR-calculus: termination of the reduc-
tion system —g, relation between AR and the A-calculus, and confluence of the
reduction system — ).

Termination of —;. Some (rather informal) arguments are provided in [33] to
justify termination of the substitution subrelation of their whole calculus. We
expand these ideas into an alternative full formal proof adapted to our case,
which is based on a measure being strictly decreasing w.r.t. —.

We consider a set O of objects of the form a(k,n) or b(k) (k,n € N), which
is equipped with the following ordering >©:

a(k,n) > a(k’,n)if k > k', or (k =k and n >n’) b(k) > a(k’,n)if k > ¥’
a(k,n) >9 b(k'") if k >k b(k) >© b(k') if k> K

Lemma 3. The order >© on the set O is well-founded.

We write > for the multiset extension of the order > on O, which turns
out to be well-founded [8] by Lem. 3. We are now ready to (inductively) define
our cuts level measure C (_) on terms, where the following operation on multi-
sets is used p- M := [a(p+ k,n) | a(k,n) € MU [b(p + k) | b(k) € M], where U
denotes multiset union.

C(z) =] C(Az.t) :=C(t) C(tu) :=C(¢t) U C(u)
C(tlr\u]) = C () U (Lvg(t) +1) - C(u) U fa(lvg(t) + 1, |ul)]
C(tlx\u]) = C(t) Ulvy(t) - C(u) U [b(1vy(t))]

Intuitively, the integer k in a(k,n) and b(k) counts the level of variables bound

by explicit cuts, while n counts the size of terms to be substituted by an ES.
Remark that for every pure term p we have C(p) = []. Moreover:
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Lemma 4. Let tg € Ag. Then tg —, t1 (resp. to —s t1) implies C(ty) >
C(t1) (resp. C(to) >Gp C(t1))

As an example, consider the following reduction sequence:

to = (yy)[y\(A\z.z)w] —rapp (Y192) (1y2)[y1 \Az.2][y2\w] = t1 —var
ta = (y1w) (y1w)[y1\A2.7] =aise (Y1w)(y1w)[yr\Az.r[r\z]]  =t3

We have C(tO) = [a<1’4)]7 C(tl) = [a(l,l),a(LQ)], C(t2) = [a(1v2)]7 C(t?)) =
[a(l, 1),b(0)]. So C (tl) >y C (ti-i-l) fori=0,1,2,3.

Corollary 5. The reduction relation —¢ is terminating.

Simulations. We show the relation between AR and the A-calculus, as well as the
atomic A-calculus. For that, we introduce a projection from AR-terms to A-terms
implementing the unfolding of all the explicit cuts: o+ = z, (A\z.t)¥ = Aw.tt,
(tu)t == thut, (tz <u])* := tH{x\ut}. Thus e.g. z[z\2][y\w][w\w' ¥ = 2.

Lemma 6. Let tg € Ag. If tg —g t1, then té -5 tf In particular, if either
to —x t1 o7 to —s 1, then th = t1.

The relation —5 enjoys full composition on pure terms, namely, for any
p € A, tlr\p] =T t{z\p}. This property does not hold in general. Indeed,
if t = ax, then (zx)[z\z[z\w]] does not s-reduce to (z[z\w])(z[z\w]), but to
(zz)[z\w]. However, full composition restricted to pure terms is sufficient to
prove simulation of the A-calculus.

Lemma 7 (Simulation of the A-calculus). Let pg € A. If pg —p p1, then
Po —rap—ra D1

The previous results have an important consequence relating the original
atomic A-calculus and the AR-calculus. Indeed, it can be shown that reduction
in the atomic A-calculus is captured by AR, and vice-versa. More precisely, the
AR-calculus can be simulated into the atomic A-calculus by Lem. 6 and [33], while
the converse holds by [33] and Lem. 7.

A more structural correspondence between AR and the atomic A-calculus
could also be established. Indeed, AR can be first refined into a (non-linear)
calculus without distance, let say AR/, so that permutation rules are integrated
in the intermediate calculus as independent rules. Then a structural relation can
be established between AR and AR’ on one side, and AR’ and the atomic A-calculus
on the other side (as for example done in [43] for the A-calculus).

Confluence. By Cor. 5 the reduction relation —; is terminating. It is then
not difficult to conclude confluence of —¢ by using the unfolding function _*.
Therefore, by termination of —5 any ¢ € Ay has an s-nf, and by confluence this
s-nf is unique (and computed by the unfolding function). Using the interpretation
method [35] together with Lem. 6, Cor. 5, and Lem. 7, one obtains:

Theorem 8. The reduction relation —y is confluent.
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4 Encoding Evaluation Strategies

In the theory of programming languages [56], the notion of calculus is usually
based on a non-deterministic rewriting relation, providing an equational system
of calculation, while the deterministic notion of strategy is associated to a con-
crete machinery being able to implement a specific evaluation procedure. Typical
evaluation strategies are call-by-name, call-by-value, call-by-need, etc.

Although the atomic A-calculus was introduced as a technical tool to imple-
ment full laziness, only its (non-deterministic) equational theories was studied. In
this paper we bridge the gap between the theoretical presentation of the atomic
A-calculus and concrete specifications of evaluation strategies. Indeed, we use
the AR-calculus to investigate two concrete cases: a call-by-name strategy imple-
menting weak head reduction, based on full substitution, and the call-by-need
fully lazy strategy, which uses linear substitution.

In both cases, explicit cuts can in principle be placed anywhere in the dis-
tributors, thus demanding to dive deep in such terms to deal with them. We
then restrict the set of terms to a subset U, which simplifies the formal rea-
soning of explicit cuts inside distributors. Indeed, distributors will all be of the
shape [x\\y.L(p)], where p is a pure term (and L is a commutative list defined
below). We argue that this restriction is natural in a weak implementation of
the A-calculus: it is true on pure terms and is preserved through evaluation. We
consider the following grammars.

(Linear Cut Values) T := \z.LL(p) where y € dlc(LL) = |p|, =1
(Commutative Lists) LL ::= O | LL[z\p] | LL[z\T] where |LL|, =0
(Values) v on= X

(Restricted Terms) U ==z |v|UU|Uz\U] | Ulz\T]

A term t generated by any of the grammars G defined above is written ¢t € G.
Thus e.g. Azx.(y2)[y\I|[z\I] € T but Az.(yy)[y\I] ¢ T, O[z\yz|[z'\I] € LL but
Olz\y2][y\I] ¢ LL, and (yz)[y\I] € U but (y2)[y\Az.(yy)[y\I]] ¢ U.

The set T is stable by the relation —4, but U is clearly not stable under the
whole —y relation, where dB-reductions may occur under abstractions. However,
U is stable under both weak strategies to be defined: call-by-name and call-by-
need. We factorize the proofs by proving stability for a more general relation
—p, defined as the relation —g with dB-reductions forbidden under abstractions
and inside distributors.

Lemma 9 (Stability of the Grammar by —5/—x/).

1. IfteTandt =g t', thent' €T.
2. IfteUandt —p t', thent' € U.

4.1 Call-by-name

The call-by-name (CBN) strategy —nane (Fig. 1) is defined on the set of terms
U as the union of the following relations —pqp and —ps. The strategy is weak as
there is no reduction under abstractions. It is also worth noticing (as a particular
case of Lem. 9) that ¢t € U and ¢t —yape ¢’ implies ¢’ € U.
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t —aB tl t —nab tl t —nab tl
ST (@B) ——"_ (app.dB) : (sub_dB)
t —nap t tu —ngp tu t[(l? < U] —nab [fl? < U]
tisg t t —ns t t —ns t
_— s _— app-s sub_s
t —us t’ (s) tu —ns t'u (app-s) u[z\Ay.t] —ns u[m\\)\y.t/] ( )
Fig. 1. Call-by-Name Strategy

Ezample 10. Let tg = (Ax1.I(x1I))(A\y.Iy). Then,

to =& (L@ D)[z1\\y-Ty] =5 (L1 D)z \My2[2\Iy]]

(I(z1 D)) [21 \ - (2122) [0\ T[22 \y]] =™ (T(21D))[21 \Ny-(219) [2a\T] | =50

(T(Oy-219) D)2\ =5 @[22\ y.219) I [21\I]

Although the strategy —pane is not deterministic, it enjoys the remarkable di-
amond property, guaranteeing in particular that all reduction sequences starting
from ¢ and ending in a normal form have the same length.

It is worth noticing that simulation lemmas also hold between call-by-name
in the A-calculus, known as weak head reduction and denoted by —u,, and the
AR-calculus. Indeed, —yu, is defined as the S-reduction rule closed by contexts
E ::= 0| Et. Then, as a consequence of Lem. 7, we have that pg —uny p1 implies
po —h D1, and as a consequence of Lem. 6, we have that ty —pame t1 implies
t(l) -5 t%. More importantly, call-by-name in the A-calculus and call-by-name in
the AR-calculus are also related. Indeed,

Lemma 11 (Relating Call-by-Name Strategies).

— Let pg € A. If po —>unr p1 then po — e D1-
— Let to € U. If tg —vname 11 then t§ —% 1.

whr

4.2 Call-by-need

We now specify a deterministic strategy flneed implementing demand-driven
computations and only linearly replicating nodes of wvalues (i.e. pure abstrac-
tions). Given a value Az.p, only the piece of structure containing the paths
between the binder Az and all the free occurrences of = in p, named skeleton,
will be copied. All the other components of the abstraction will remain shared,
thus avoiding some future duplications of redexes, as explained in the introduc-
tion. By copying only the smallest possible substructure of the abstraction, the
strategy flneed implements an optimization of call-by-need called fully lazy
sharing [60]. First, we formally define the key notions we are going to use.

A free expression [39,9] of a pure term p is a strict subterm ¢ of p such
that every free occurrence of a variable in ¢ is also a free occurrence of the
variable in p. A free expression of p is maximal if it is not a subterm of
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another free expression of p. From now on, we will consider the multiset of all
maximal free expressions (MFE) of a term. Thus e.g. the MFEs of Ay.p, where
p = (Iy)I(Az.zyw), is given by the multiset [I, I, w].

An n-ary context (n > 0) is a term with n holes O. A skeleton is an n-
ary pure context where the maximal free expressions w.r.t. a variable set 6 are
replaced with holes. Formally, the f-skeleton {{p}}’ of a pure term p, where
0 = {xy...2,}, is the n-ary pure context {{p}}’ such that {p}¥{q1,...,q.) =,
for [q1,...,qn] the maximal free expressions of Azi....\z,.p *. Thus, for the
same p as before, A\y. {{p}}Y = A\y.(Oy)O(Az.zyO).

The Splitting Operation. Splitting a term into a skeleton and a multiset
of MFEs is at the core of full laziness. This can naturally be implemented in
the node replication model, as observed in [33]. Here, we define a (small-step)
strategy —s¢ on the set of terms T to achieve it (Fig. 2), which is indeed a
subset of the reduction relation AR®. The relation —4; makes use of four basic
rules which are parameterized by the variable y upon which the skeleton is built,
written —Y. There are also two contextual (inductive) rules.

y € fv(pip2)

tz\y] —var t{z\y} tla\p1p2] =i t{a\w1z2}H a1 \p1][22\p2]

y € fv(Az.p) y € fv(Az.LL(p)) =z ¢ fv(LL)

Ha\N2p] rbaae o\ Azw[w\p] Ha\A2 LL(p)] Ly LL(H{2\ A2 5})

t=¥t yetv(t) y¢fv(ll) t =t yctv(t) y¢fv(lL)
ctxy ctxo

Ay.LL(t) —s0 Ay.LL(t) Ay LL{(u[z\t]) =5t Ay.LL{u[z\t'])

Fig. 2. Relation —4;: Splitting Skeleton and MFEs in Small-Step Semantics

Ezample 12. Let y, z ¢ £v(t), so that ¢ is the MFE of Ay.z[x\Az.(yt)z]. Then,
Ay.z[x\Nz.(yt)z] —=Yiee Ay-z[z\Nz.w[w\ (yt)z]] —ipp

Ay.zle\Az. (wiwa) [wi \yt][w2\z]] =55 Ay-zle\Az.(wiz) wi\yt] | =%
Ay.(Azawr 2)[wr \yt] — Yo Ay.(Az(x129)2) [21\Y][22\t] =Yy Ay.(Az.(yx2)2)[22\1]

Notice that the focused variable changes from y to z, then back to y. This is
because —s; constructs the innermost skeletons first.

Lemma 13. The reduction relation —g¢ is confluent and terminating.

Thus, from now on, we denote by | ., the function relating a term of T to its
unique st-nf.

4 The order of variables in the set 6 is indeed irrelevant.
% Since —s: acts only on terms in T, it is handled by linear substitution.
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Lemma 14 (Correctness of —;). Let p € A and q1,...,q, be the MFEs
of My.p. Then My.z[2\p] Vg My iV (21, ..., 20)[2:\@i)i<n where the variables
Z1,...,Ty are fresh and pairwise distinct.

Since the small-step semantics is contained in the AR-calculus, we use it to
build our call-by-need strategy of AR.

The strategy. The call-by-need strategy —fineea (Fig. 3) is defined on the
set of terms U, by using closure under the need contexts, given by the grammar
N = 0| Nt | Nz <t] | N{x)[z\N], where N{(_)) denotes capture-free application
of contexts (Sec. 2). As for call-by-name (Sec. 4.1), the call-by-need strategy is
weak, because no meaningful reduction steps are performed under abstractions.

L(A\z.p)u —as L{p[z\u])
N{(z) [2\L(Ay.p)] —epr LLLN(2) [2\Ay.p'])) if Ay.2[2\p] Jsx Ay.LL(p")
N{(z)) [z\v] rsus N{(v))[z\v]

Fig. 3. Call-by-Need Strategy

Rule dB is the same one used to define name. Although rules spl and sub
could have been presented in a unique rule of the form N{(z)[z\L{\y.p)] —
LLL(N{Ay.p’ ) [x\Ay.p'])), we prefer to keep them separate since they represent
different stages in the strategy. Indeed, rule spl only uses node replication op-
erations to compute the skeleton of the abstraction, while rule sub implements
one-shot linear substitution.

Notice that as a particular case of Lem. 9, ¢ € U and ¢ —f150eq ¢’ implies
t’ € U. Another interesting property is that ¢ —gy t' implies 1v,(¢) > 1v,(t').
Moreover, —fineeq is deterministic.

Ezample 15. Let to = (Az.(I(Iz)))\y.yI. Needed variable occurrences are high-
lighted in orange .

to —ap (I(Iz))[2\\y.yI] —a @1 [z1\Iz][z\\y.yI]
—rap 121 \2[x2\ @ |][2\NYYI] —ep1 @1 [z1\z2[22\ @ [} {2\ Ny-y21][21\ 1]
—aw T1[21\ T2 [22\\y.yz1]][2\Ny.y21][21\1]
—sp1 Z1[21\ @2 [22\\y.y2o][z0\21]][£\ Ay.y21][21\ ]
—sw 1 [21\(Ay-yz2) [22\\y-yzal[22\21] [\ \y.y21][21\]]
—rsp1 1 [T1\Ay-y2a][23\22][22 \Ay.yzo][22\21] [z \ Ay.y21][21 \T]
—rsww (AY-y23)[21\Ay.y2s][23\22][22 \ Ay y 2222\ 21] [2\ Ay.y21][21 \T]

5 A Type System for the AR-calculus

This section introduces a quantitative type system V for the AR-calculus. Non-
idempotent intersection [26] has one main advantage over the idempotent model
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[14]: it gives quantitative information about the length of reduction sequences to
normal forms [21]. Indeed, not only typability and normalization can be proved to
be equivalent, but a measure based on type derivations provides an upper bound
to normalizing reduction sequences. This was extensively investigated in different
logical/computational frameworks [5,18,20,25,42,47]. However, no quantitative
result based on types exists in the literature for the node replication model,
including the attempts done for deep inference [30]. The typing rules of our
system are in themselves not surprising (see [46]), but they provide a handy
quantitative characterization of fully lazy normalization (Sec. 6).

Types are built on the following grammar of types and multi-types, where
« ranges over a set of base types and a is a special type constant used to type
terms reducing to normal abstractions.

(Types)oc:=a|la| M=o (Multi-Types) M := [oi]ier

We write | M| to denote the size of a multi-type M. Typing contexts,
written I', A, X are functions from variables to multiset types, assigning the
empty multiset to all but a finite set of variables. The domain of I" is given by
dom(I") :={z | I'(x) # []}. The union of contexts, written I" + A, is defined
by (I' + A)(x) := I'(x) U A(z), where L denotes multiset union. An example
is (z: [ol,y: 7))+ (x : o],z : [7]) = (z : [o,0],y : [7], 2z : [7]). This notion is
extended to several contexts as expected, so that +;c;[; denotes a finite union
of contexts, and the empty context when I = (). We write I'; A for I' + A when
dom(I") Ndom(A) = ). Type judgments have the form I' ¢ : o, where I is a
typing context, t is a term and o is a type.

(ax) iz MbEt:o I'ct:M—0 AFu: M

z:[o]ba: ax (abs) (app)

Hle i I'Xet: M—o I'+Artu:o

(I Ft:oi)er e Mbt:o Abu: M

—— (ans) (many) (cut)

FAx.t:
T.l:a +ictls F it oi)ier '+ Attlz<u]:o
Fig. 4. Typing System V

A (typing) derivation is a tree obtained by applying the (inductive) typing
rules of system V (Fig. 4), introduced in [46]. The notation & > I' - t : ¢ means
there is a derivation named & of the judgment I' - ¢ : o in system V. A term ¢ is
typable in system V), or V-typable, iff there is a context I" and a type o such that
&> Ft:o. The size of a type derivation sz(®P) is defined as the number
of its abs, app and ans rules. The typing system is relevant in the sense that
@ > T+ t: o implies dom(I") C fv(¢).

Type derivations can be measured by 3-tuples. We use a + operation on
3-tuples as pointwise addition: (a,b,c) + (e, f,g9) = (a+e,b+ f,c+ g). These 3-
tuples are computed by a weighted derivation level function defined on typing
derivations as D (@) := M (®, 1), where M (—, —) is inductively defined below. In
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the cases (abs), (app) and (cut), we let @; (resp. @,) be the subderivation of
the type of ¢ (resp. @,,) and in (many) we let &% be the i-th derivation of the type
of t for each i € I.

For (ax), M (®,,m) = (0,0, 1),
)y M (@Przt,m) =M (P, m) + (1,m,0).
ans), M (@y;.,m) = (1,m,0).
), M (®yy,m) = M (D, m) + M (@, m) + (1,m,0).

I
5
=

Notice that the first and the third components of any 3-tuple M (&, m) do not
depend on m. Intuitively, the first (resp. third) component of the 3-tuple counts
the number of application/abstraction (resp. (ax)) rules in the typing derivation.
The second one takes into account the number of application/abstraction rules
as well, but weighted by the level of the constructor. The 3-tuples are ordered
lexicographically.

Ezample 16. Let o = [r] — 7. Consider the following type derivation &:

PR
y:lojFy:o (a) zi[rlF 2 7] (many)
: . . (app)
y:lol,z:[rlFyz:7
wifrer ™ ey (cut)

y:lol,z: [t Fala\yz] i T

This gives D (@) = (1,2,3). Moreover, for z[z\yz] —app (z122)[21\y][z2\2] We
have &' >y : [0],z : [7] b (x122)[21\y][2z2\2] : 7 and D (&) = (1,1,4).

6 Observational Equivalence

The type system V characterizes normalization of both name and flneed strate-
gies as follows: every typable term normalizes and every normalisable term is
typable. In this sense, system ) can be seen as a (quantitative) model [17] of our
call-by-name and call-by-need strategies. We prove these results by studying the
appropriate lemmas, notably weighted subject reduction and weighted subject
expansion. We then deduce observational equivalence between the name and the
flneed strategies from the fact that their associated normalization properties
are both fully characterized by the same typing system.

Soundness. Soundness of system V w.r.t. both —pape and —f1peeq is investi-
gated in this section. More precisely, we show that typable terms are normalizing
for both strategies. In contrast to reducibility techniques needed to show this
kind of result for simple types [34], soundness is achieved here by relatively sim-
ple combinatorial arguments based again on decreasing measures. We start by
studying the interaction between system )V and linear as well as full substitution.
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Lemma 17 (Partial Substitution). Let ? > Iz : M F C{x)) : 0 and C
denote multiset inclusion. Then, there exists N E M such that for every &, >
AFu: N wehwe W >+ Ajx: M\N F C(u) : 0 and, for every m € N,
M (¥, m) = M (D, m) + M (P, m + 1va(C)) — (0,0, |N]).

Corollary 18 (Substitution). If &> Iz MEt:0 and @, > Ak u: M,
then @>1I + A+ t{z\u} : o, and for allm € N we have M (®,m) < M (P;,m) +
M (D, m + 1v,(t)). Moreover, |[M| > 0 iff the inequality is strict.

The key idea to show soundness is that the measure D (_) decreases w.r.t. the
reduction relations —pame aNd —>f1need:

Lemma 19 (Weighted Subject Reduction). Let &;, > I'F ¢y : 0.

1. Ifto —x t1, then there exists @y, > I' -t : 0 such that D (Py,) = D (P, ).
2. Ifto —s t1, then there exists @y, > I' -ty : o such that D ($y,) > D (Py,).

3. If to —nap t1, then there exists @y, > It t1 : 0 such that D (P,) > D (Py,).
4. Ifto —f1neea t1, then there exists @y, >+ t1 : o such that D (Py,) > D (Py,).

Proof. By induction on r € {7, s,ndb, flneed}, using Lem. 17 and Cor. 18.

Theorem 20 (Typability implies name-Normalization). Let &;>I"Ft: 0.
Then t is name-normalizing.

Proof. Suppose t is not name-normalizing. Since —; is terminating by Cor. 5,
then every infinite —p.ge-reduction sequence starting at ¢ must necessarily have
an infinite number of dB-steps. Moreover, all terms in such an infinite sequence
are typed by Lem 19. Therefore, Lem. 19:3 (resp. Lem. 19:2) guarantees that all
dB (resp. s) reduction steps involved in such —pape-reduction sequence strictly
decrease (resp. do not increase) the measure D (_). This leads to a contradiction
because the order > on 3-tuples D (_) is well-founded. Then ¢ is necessarily name-
normalizing.

Theorem 21 (Typability implies flneed-Normalization). Let ¢, > I'
t : 0. Then t is flneed-normalizing. Moreover, D (®;) is an upper bound to the
length of the flneed-reduction evaluation to flneed-nf.

Proof. The property trivially holds by Lem. 19:4 since the lexicographic order
on 3-tuples is well-founded.

Completeness. We address here completeness of system )V with respect to
—name aNd —>f1nceq. More precisely, we show that normalizing terms in each
strategy are typable. The basic property in showing that consists in guaranteeing
that normal forms are typable.

The following lemma makes use of a notion of needed variable:
nv(z) := {z}, nv(tu) := nv(t), nv(t[z\u]) := nv(t), nv(Az.t) := 0, nv(ty\u]) :=
(nv(t) \ {y}) Unv(u) if y € nv(t) and nv(t[y\u]) := nv(¢) otherwise.

Lemma 22 (flneed-nfs are Typable). Let t be in flneed-nf. Then there
exists a derivation @ > I't: 7 such that for any x ¢ nv(t), I'(x) = [].
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Because name-nfs are also f1need-nfs, we infer the following corollary for free.

Corollary 23 (name-nfs are Typable). Let t be in name-nf. Then there is a
derwation > Tt : 7.

Now we need lemmas stating the behavior of partial and full (anti-)substitu-
tion w.r.t. typing.

Lemma 24 (Partial Anti-Substitution). Let C{(x)), u be terms s.t. x ¢ fv(u)
and > I' - C{uw)) : 0. Then I, 3A, IM, 3P, 3P, s.t. ' =T"+ A, &' >
I'toz - MEC(z):0 and D> Al u: M.

Corollary 25 (Anti-Substitution). Letu be a term s.t. x ¢ fv(u) and &>1"
t{z\u} : 0. Then AT, A, IM, 3P, 3D, s.t. [ ="+ A, P >I";0 : MEt:o
and &, > AFu: M.

To achieve completeness, we show that typing is preserved by anti-reduction.
We decompose the property as follows:

Lemma 26 (Subject Expansion). Let @, > I' bty : 0. If tg —, t1, where
r € {m, s, ndb, flneed}, then there exists Py, > '+ tg: 0.

Proof. The proof is by induction on —, and uses Lem. 24 and Cor. 25.

Theorem 27 (name-Normalization implies Typability). Let t be a term.
If t is name-normalizing, then t is V-typable.

Proof. Let t be name-normalizing. Then ¢ —7, . « and u is a name-nf. We reason

by induction on n. If n = 0, then ¢ = u is typable by Cor. 23. Otherwise, we
have t —pame t' —mt u. By the i.h. ¢/ is typable and thus by Lem. 26 (because

—rps 18 included in —¢), ¢ turns out to be also typable.

Theorem 28 (flneed-Normalization implies Typability). Let t be a term.
If t is f1need-normalizing, then t is V-typable.

Proof. Similar to the previous proof but using Lem. 22 instead of Cor. 23.
Summing up, Thms. 20, 27, 21 and 28 give:

Theorem 29. Lett be a AR-term. t is name-normalizing iff t is flneed-norma-
lizing iff t is V-typable.

All the technical tools are now available to conclude observational equiv-
alence between our two evaluation strategies based on node replication. Let
R be any reduction notion on Ag. Then, two terms ¢,u € A are said to be
R-observationally equivalent, written ¢ = wu, if for any context C, C(t) is
R-normalizing iff C(u) is R-normalizing.

Theorem 30. For all terms t,u € Ag, t and u are name-observationally equiv-

alent iff t and u are flneed-observationally equivalent.

Proof. By Thm. 29, t =5 w means that C(t) is V-typable iff C(u) is V-typable,
for all C. By the same theorem, this is also equivalent to say that C(t) is flneed-
normalizing iff C(u) is flneed-normalizing for any C, i.e. t =f1neeq U-
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7 Related Works and Conclusion

Several calculi with ES bridge the gap between formal higher-order calculi and
concrete implementations of programming languages (see a survey in [40]). The
first of such calculi, e.g. [1,16], were all based on structural substitution, in the
sense that the ES operator is syntactically propagated step-by-step through the
term structure until a variable is reached, when the substitution finally takes
place. The correspondence between ES and Linear Logic Proof-Nets [24] led to
the more recent notion of calculi at a distance [6,4,2], enlightening a natural and
new application of the Curry-Howard interpretation. These calculi implement
linear /partial substitution at a distance, where the search of variable occurrences
is abstracted out with context-based rewriting rules, and thus no ES propaga-
tion rules are necessary. A third model was introduced by the seminal work of
Gundersen, Heijltjes, and Parigot [33,34], introducing the atomic A-calculus to
implement node replication.

Inspired by the last approach we introduced the AR-calculus, capturing the
essence of node replication. In contrast to [33], we work with an implicit (struc-
tural) mechanism of weakening and contraction, a design choice which aims at
focusing and highlighting the node replication model, which is the core of our
calculus, so that we obtain a rather simple and natural formalism used in par-
ticular to specify evaluation strategies. Indeed, besides the proof of the main
operational meta-level properties of our calculus (confluence, termination of the
substitution calculus, simulations), we use linear and non-linear versions of AR
to specify evaluation strategies based on node replication, namely call-by-name
and call-by-need evaluation strategies.

The first description of call-by-need was given by Wadsworth [60], where re-
duction is performed on graphs instead of terms. Weak call-by-need on terms
was then introduced by Ariola and Felleisen [7], and by Maraist, Odersky and
Wadler [54,53]. Reformulations were introduced by Accattoli, Barenbaum and
Mazza [3] and by Chang and Felleisen [22]. Our call-by-need strategy is in-
spired by the calculus in [3], which uses the distance paradigm [6] to gather
together meaningful and permutation rules, by clearly separating multiplicative
from exzponential rules, in the sense of Linear Logic [27].

Full laziness has been formalized in different ways. Pointer graphs [60,59]
are DAGs allowing for an elegant representation of sharing. Labeled calculi [15]
implement pointer graphs by adding annotations to A-terms, which makes the
syntax more difficult to handle. Lambda-lifting [38,39] implements full laziness
by resorting to translations from A-terms to supercombinators. In contrast to all
the previous formalisms, our calculus is defined on standard A-terms with explicit
cuts, without the use of any complementary syntactical tool. So is Ariola and
Felleisen’s call-by-need [7], however, their notion of full laziness relies on external
(ad-hoc) meta-level operations used to extract the skeleton. Our specification of
call-by-need enjoys fully lazy sharing, where the skeleton extraction operation
is internally encoded in the term calculus operational semantics. Last but not
least, our calculus has strong links with proof-theory, notably deep inference.
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Balabonski [10,9] relates many formalisms of full laziness and shows that
they are equivalent when considering the number of g-steps to a normal form.
It would then be interesting to understand if his unified approach, (abstractly)
stated by means of the theory of residuals [50,51], applies to our own strategy.

We have also studied the calculus from a semantical point of view, by means
of intersection types. Indeed, the type system can be seen as a model of our
implementations of call-by-name and call-by-need, in the sense that typability
and normalization turn out to be equivalent.

Intersection types go back to [23] and have been used to provide char-
acterizations of qualitative [14] as well as quantitative [21] models of the A-
calculus, where typability and normalization coincide. Quantitative models spec-
ified by means of non-idempotent types [26,48] were first applied to the A-
calculus (see a survey in [19]) and to several other formalisms ever since, such
as call-by-value [25,20], call-by-need [42,5], call-by-push-value [31,18] and clas-
sical logic [47]. In the present work, we achieve for the first time a quantitative
characterization of fully lazy normalization, which provides upper bounds for
the length of reduction sequences to normal forms.

The characterizations provided by intersection type systems sometimes lead
to observational equivalence results (e.g. [42]). In this work we succeed to prove
observational equivalence related to a fully lazy implementation of weak call-by-
need, a result which would be extremely involved to prove by means of syntactical
tools of rewriting, as done for weak call-by-need in [7]. Moreover, our result im-
plies that our node replication implementation of full laziness is observationally
equivalent to standard call-by-name and to weak call-by-need (see [42]), as well
as to the more semantical notion of neededness (see [45]).

A Curry-Howard interpretation of the logical switch rule of deep inference is
given in [58,57] as an end-of-scope operator, thus introducing the spinal atomic \-
calculus. The calculus implements a refined optimization of call-by-need, where
only the spine of the abstraction (tighter than the skeleton) is duplicated. It
would be interesting to adapt the AR-calculus to spine duplication by means of an
appropriate end-of-scope operator, such as the one in [37]. Further optimizations
might also be considered.

Finally, this paper only considers weak evaluation strategies, i.e. with re-
ductions forbidden under abstractions, but it would be interesting to extend
our notions to full (strong) evaluations too [29,12]. Extending full laziness to
classical logic would be another interesting research direction, possibly taking
preliminary ideas from [36]. We would also like to investigate (quantitative) tight
types for our fully lazy strategy, as done for weak call-by-need in [5], which does
not seem evident in our node replication framework.
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