Tight Typings and Split Bounds, Fully Developed

BENIAMINO ACCATTOLI, Inria & LIX, École Polytechnique, UMR 7161, France
STÉPHANE GRAHAM-LENGRAND, SRI International, France
DELIA KESNER, Université de Paris, IRIF, CNRS and Institut Universitaire de France, France

Multi types—aka non-idempotent intersection types—have been used to obtain quantitative bounds on higher-order programs, as pioneered by de Carvalho. Notably, they bound at the same time the number of evaluation steps and the size of the result. Recent results show that the number of steps can be taken as a reasonable time complexity measure. At the same time, however, these results suggest that multi types provide quite lax complexity bounds, because the size of the result can be exponentially bigger than the number of steps.

Starting from this observation, we refine and generalise a technique introduced by Bernadet & Graham-Lengrand to provide exact bounds. Our typing judgements carry counters, one measuring evaluation lengths and the other measuring result sizes. In order to emphasise the modularity of the approach, we provide exact bounds for four evaluation strategies, both in the \(\lambda\)-calculus (head, leftmost-outermost, and maximal evaluation) and in the linear substitution calculus (linear head evaluation).

Our work aims at both capturing the results in the literature and extending them with new outcomes. Concerning the literature, it unifies de Carvalho and Bernadet & Graham-Lengrand via a uniform technique and a complexity-based perspective. The two main novelties are exact split bounds for the leftmost strategy—the only known strategy that evaluates terms to full normal forms and provides a reasonable complexity measure—and the observation that the computing device hidden behind multi types is the notion of substitution at a distance, as implemented by the linear substitution calculus.

CCS Concepts:
- Theory of computation → Lambda calculus; Linear logic
- Software and its engineering → Language types

Additional Key Words and Phrases: lambda-calculus, type systems, cost models

ACM Reference Format:

1 INTRODUCTION

Type systems enforce properties of programs, such as termination, deadlock-freedom, or productivity. This paper studies a class of type systems for the \(\lambda\)-calculus that refines termination by providing exact bounds for evaluation lengths and normal forms.

Intersection types and multi types. One of the cornerstones of the theory of \(\lambda\)-calculus is that intersection types characterise termination: not only typed programs terminate, but all terminating programs are typable as well [Coppo and Dezani-Ciancaglini 1978, 1980; Krivine 1993; Pottinger 1980]. In fact, the \(\lambda\)-calculus comes with different notions of evaluation (e.g. call-by-name, call-by-value, call-by-need, etc) to different notions of normal forms (head/weak/full, etc) and, accordingly, with different systems of intersection types.

Intersection types are a flexible tool and, even when one fixes a particular notion of evaluation and normal form, the type system can be formulated in various ways. A flavour that became quite convenient in the last 10 years is that of non-idempotent intersection types, where the intersection

Authors’ addresses: Beniamino Accattoli, LIX, Inria & LIX, École Polytechnique, UMR 7161, Palaiseau, France, beniamino.accattoli@inria.fr; Stéphane Graham-Lengrand, SRI International, France, stephane.graham-lengrand@csl.sri.com; Delia Kesner, Université de Paris, IRIF, CNRS and Institut Universitaire de France, France, kesner@irif.fr.

2020. 2475-1421/2020/1-ART1 $15.00
https://doi.org/
$A \cap A$ is not equivalent to A. They first appeared in [Gardner 1994; Kfoury 2000; Neergaard and Mairson 2004] but it is the seminal work of de Carvalho [2007, 2018]\(^1\), who found fundamental uses of non-idempotency to characterise quantitative properties of λ-calculus, stressing their importance. Roughly, distinguishing $A \cap A$ from A allows counting resource consumption. A survey can be found in [Bucciarelli et al. 2017].

Non-idempotent intersections can be seen as multi-sets, which is why, to ease the language, we prefer to call them multi types rather than non-idempotent intersection types. Multi types have two main features:

1. **Bounds on evaluation lengths**: they go beyond simply qualitative characterisations of termination, as typing derivations provide quantitative bounds on the length of evaluation (i.e. on the number of β-steps) and on the size of normal forms. Therefore, they give intensional insights on programs, and seem to provide a tool to reason about the complexity of programs.

2. **Linear logic interpretation**: multi types are deeply linked to linear logic. The relational model [Bucciarelli and Ehrhard 2001; Girard 1988] of linear logic (often considered as a sort of canonical model of linear logic) is based on multi-sets, and multi types can be seen as a syntactic presentation of the relational model of the λ-calculus induced by the interpretation into linear logic.

These two facts together have a potential, fascinating consequence: they suggest that denotational semantics may provide abstract tools for complexity analyses, that are theoretically solid, being grounded on linear logic.

Various works in the literature explore the bounding power of multi types. Often, the bounding power is used qualitatively, i.e. without explicitly counting the number of steps to characterise termination and/or the properties of the induced relational model. Indeed, multi types provide combinatorial proofs of termination that are simpler than those developed for (idempotent) intersection types (e.g. reducibility technique). Several papers explore this approach under the call-by-name [Bucciarelli et al. 2012; Kesner and Ventura 2015; Kesner and Vial 2017; Ong 2017; Paolini et al. 2017] or the call-by-value [Carraro and Guerrieri 2014; Diaz-Caro et al. 2013; Ehrhard 2012] operational semantics, or both [Ehrhard and Guerrieri 2016]. Sometimes, precise quantitative bounds are provided instead, as in [Bernadet and Graham-Lengrand 2013b; de Carvalho 2018]. Multi types can also be used to provide characterisation of complexity classes [Benedetti and Ronchi Della Rocca 2016]. Other qualitative [de Carvalho 2016; Guerrieri et al. 2016] and quantitative [de Carvalho et al. 2011; de Carvalho and Tortora de Falco 2016] studies are also sometimes done in the more general context of linear logic, rather than in the λ-calculus.

Reasonable cost models. Usually, the quantitative studies define a measure for typing derivations and show that the measure provides a bound on the length of evaluation sequences for typed terms. A criticism that could be raised against these results is, or rather was, that the number of β-steps of the bounded evaluation strategies might not be a reasonable cost model, that is, it might not be a reliable complexity measure. This is because no reasonable cost models for the λ-calculus were known at the time. But the understanding of cost models for the λ-calculus made significant progress in the last few years. Since the nineties, it is known that the number of steps for weak strategies (i.e. not reducing under abstraction) is a reasonable cost model [Blelloch and Greiner 1995], where reasonable means polynomially related to the cost model of Turing machines. It is only in 2014, that a solution for the general case has been obtained: the length of leftmost-outermost evaluation to normal form was shown to be a reasonable cost model in [Accattoli and Dal Lago 2016]. In this work we essentially update the study of the bounding power of multi types with the insights coming from the study of reasonable cost models. In particular, we provide new answers to

\(^1\)De Carvalho’s work published in 2018 is based on the well diffused technical report [de Carvalho 2009].
the question of whether denotational semantics can really be used as an accurate tool for complexity analyses.

Size explosion and lax bounds. The study of cost models made clear that evaluation lengths are independent from the size of their results. The skepticism about taking the number of β-steps as a reliable complexity measure comes from the size explosion problem, that is, the fact that the size of terms can grow exponentially with respect to the number of β-steps. When λ-terms are used to encode decision procedures, the normal forms (encoding true or false) are of constant size, and therefore there is no size explosion issue. But when λ-terms are used to compute other normal forms than Boolean values, there are families of terms $\{t_n\}_{n \in \mathbb{N}}$ where t_n has size linear in n, it evaluates to normal form in n β-steps, and produces a result p_n of size $\Omega(2^n)$, i.e. exponential in n. Moreover, the size explosion problem is extremely robust, as there are families for which the size explosion is independent of the evaluation strategy. The difficulty in proving that the length of a given strategy provides a reasonable cost model lies precisely in the fact that one needs a compact representation of normal forms, to avoid to fully compute them (because they can be huge and it would be too expensive). A gentle introduction to reasonable cost models and size explosion is [Accattoli 2018a].

Now, multi typings do bound the number of β-steps of reasonable strategies, but these bounds are sometimes too generous since they bound at the same time the length of evaluations and the size of the normal forms. Therefore, even a notion of minimal typing (in the sense of being the smallest derivation) provides a bound that in some cases is exponentially worse than the number of β-steps.

Our observation is that the typings themselves are in fact much bigger than evaluation lengths, and so the widespread point of view for which multi types—and so the relational model of linear logic—faithfully capture evaluation lengths, or even the complexity, is misleading.

More precisely, multi typings do measure part of the size of the normal form, namely, the part concerned by the notion of evaluation that the typings are meant to measure. In the case of head evaluation, for instance, they measure the size of the spine, that is, the left branch of the term syntax tree, because head evaluation never enters arguments and so their size is not taken into account. Notably, the size of the spine never explodes, even on families of terms whose size explodes via head evaluation. In the case of leftmost evaluation, however, multi typings measure the whole size of the term, which does explode. Therefore, the inaccuracy of the measurement depends on the notion of evaluation under study.

Contributions

The tightening technique. Our starting point is a technique introduced in a technical report by Bernadet and Graham-Lengrand [2013a]. They study the case of maximal evaluation, and present a multi type system where typing derivations of terms provide an upper bound on the number of β-steps to normal form. More interestingly, they show that every strongly normalising term admits a typing derivation that is sufficiently tight, where the obtained bound is exactly the length of the longest β-reduction path. This improved on previous results, e.g. [Bernadet and Graham-Lengrand 2013b; Bernadet and Lengrand 2011] where multi types provided the exact measure of longest evaluation paths plus the size of the normal forms which, as discussed above, can be exponentially bigger. Finally, they enrich the structure of base types so that, for those typing derivations providing the exact lengths, the type of a term gives the structure (and hence the size)

To be precise, size explosion may happen also when the normal form is a boolean: a term may make arguments grow exponentially in size and then erase them. Such a form of size explosion is an issue for implementations, but not for the topic of this paper.
of its normal form. This paper embraces this tightening technique, simplifying it with the use of tight constants for base types, and generalising it to a range of other evaluation strategies, described below.

Modular approach. We develop all our results by using a unique schema that modularly applies to different evaluation strategies. Our approach isolates the key concepts for the correctness and completeness of multi types, providing a powerful and modular technique, having at least two by-products. First, it reveals the relevance of neutral terms and of their properties with respect to types. Second, the concrete instantiations of the schema on four different cases always require subtle definitions, stressing the key conceptual properties of each case study.

Head and leftmost-outermost evaluation. The first application of the tightening technique is to the head and leftmost evaluation strategies (we often say simply leftmost instead of leftmost-outermost). The head case is the simplest possible one. The leftmost case is the natural iteration of the head one, and the only known strong strategy whose number of steps provides a reasonable cost model [Accattoli and Dal Lago 2016]. Multi types bounding the lengths of leftmost normalising terms have been also studied in [Bucciarelli et al. 2017; Kesner and Ventura 2014], but the exact number of steps taken by the leftmost strategy has not been measured via multi types before—therefore, this is a new result, as we now explain.

The study of the head and the leftmost strategies, at first sight, seems to be a minor reformulation of de Carvalho’s results about measuring via multi types the length of executions of the Krivine abstract machine (shortened KAM)—implementing weak head evaluation—and of the iterated KAM—that implements leftmost evaluation [de Carvalho 2018]. The study of cost models is here enlightening: de Carvalho’s iterated KAM does implement leftmost evaluation, but the overhead of the machine (that is counted by de Carvalho’s measure) is exponential in the number of \(\beta\)-steps, while here we only measure the number of \(\beta\)-steps, thus providing a much more parsimonious—and yet reasonable—measure. The machine overhead is actually reflected by the size of the normal form, that can be exponential, but it is measured separately.

Another work that is closely related to ours is de Carvalho et al. [2011], where the relational model of linear logic is used to measure evaluation lengths in proof nets. They do not however split the bounds, that is, they do not have a way to measure separately the number of steps and the size of the normal form. Moreover, their notion of cut-elimination by levels does not correspond to leftmost evaluation.

Shrinking. The study of leftmost evaluation via tight typings is then compared with traditional multi types for leftmost evaluation without tight constants. Traditional type systems characterise leftmost termination using a shrinking constraint: no negative occurrences of the empty multi-set in the final judgement of the type derivation [Bucciarelli et al. 2017; de Carvalho 2018; Kesner and Ventura 2014; Krivine 1993]. The comparison is instructive. First, it shows that tightness and being shrinking are predicates formulated following similar principles. Second, it allows us to provide a new proof technique for the shrinking case, by adapting the one for the tight case. Third, we provide a detailed study producing exact bounds starting from traditional derivations, revisiting the study in [de Carvalho 2018].

Maximal evaluation. We also apply the technique to the maximal strategy, which takes the maximum number of steps to normal form, if any, and diverges otherwise. The maximal strategy has been bounded in [Bernadet and Lengrand 2011], and exactly measured in [Bernadet and Graham-Lengrand 2013a] via the idea of tightening, as described above. The differences with respect to [Bernadet and Graham-Lengrand 2013a] are:
(1) **Uniformity with other strategies:** The typing system in [Bernadet and Graham-Lengrand 2013a] uses a form of sub-typing to deal with erasing λ-abstractions. Here, we align the type grammar with the one used for all the other evaluation strategies, which in turn allows the typing rules for λ-abstractions to be the same as for head and leftmost evaluation. This makes the whole approach more uniform across the different strategies that we treat in the paper. Moreover, our completeness theorem for the maximal strategy bears quantitative information (about evaluation lengths and size of normal forms), in contrast with [Bernadet and Graham-Lengrand 2013a].

(2) **Quantitative aspects of normal forms:** while Bernadet and Graham-Lengrand encode the shape of normal forms into base types, we only use two (tight) constant base types. We measure typing derivations with two indices: the first one matches the maximal evaluation length of the typed term, and the second one matches the size of its normal form together with the size of all terms that are erased by the evaluation process.

(3) **Neutral terms:** we emphasise the key role of neutral terms in the technical development by describing their specificities with respect to typing. This is not explicitly broached in [Bernadet and Graham-Lengrand 2013a].

Linear head evaluation. Last, we apply the tightening technique to linear head evaluation [Danos and Regnier 2004; Mascari and Pedicini 1994] (lhd for short), formulated in the linear substitution calculus (LSC), a λ-calculus with explicit substitutions introduced by Accattoli and Kesner [Accattoli 2012; Accattoli et al. 2014] that is strongly related to linear logic proof nets [Accattoli 2018b], and can also be seen as a minor variation over a calculus by Milner [Milner 2007]. The literature contains a characterisation of lhd-normalisable terms [Kesner and Ventura 2014]. Moreover, [de Carvalho 2018] measures the executions of the KAM, a result that can also be interpreted as a measure of lhd-evaluation. What we show however is stronger, and somewhat unexpected.

To bound lhd-evaluation, in fact, we can strongly stand on the bounds obtained for head evaluation. More precisely, the result for the exact bounds for head evaluation takes only into account the number of abstraction and application typing rules. For linear head evaluation, instead, we simply need to count also the axioms, i.e. the rules typing variable occurrences, nothing else. It turns out that the length of a linear head evaluation plus the size of the linear head normal form is exactly the size of the tight typing.

Said differently, multi typings simply encode evaluations in the LSC. In particular, we do not have to adapt multi types to the LSC, as for instance de Carvalho does to deal with the KAM. It actually is the other way around. As they are, multi typings naturally measure evaluations in the LSC. To measure evaluations in the λ-calculus, instead, one has to forget the role of the axioms. The best way to stress it, probably, is that the LSC is the computing device behind multi types.

Journal vs conference version. This paper is the journal version of [Accattoli et al. 2018]. In the conference paper the head and leftmost cases were presented at the same time, while here we present them sequentially: first the simple head case, to introduce the main concepts in an easy setting, and then the leftmost case, stressing its subtleties. Moreover, the study of shrinking derivations has been considerably extended, adding in particular exact bounds via the study of unitary shrinking derivations.

In this paper we include the key cases of the proofs of the important properties, which were not included in the conference version proofs. We also revisited the whole technical development, correcting a number of minor bugs in some statements and proofs. Some key notions have slightly changed, without any technical impact but only for a presentation purposes: the index counting the number of β-steps (in the conference version the index was twice the number, while we now
make them equal, as suggested by Pierre Vial), for instance, or the definition of size of a derivation (before it was parametric, now it is unique for all the systems).

Proofs. For the sake of readability, the details of many proofs are in the Appendices.

Other Related Works
Apart from the papers already cited, let us mention some other related works. A recent, general categorical framework to define intersection and multi type systems appears in [Mazza et al. 2018].

While the inhabitation problem is undecidable for idempotent intersection types [Urzyczyn 1999], the quantitative aspects provided by multi types make it decidable [Bucciarelli et al. 2014]. Intersection types are also used in [Dudenhefner and Rehof 2017] to give a bounded dimensional description of λ-terms via a notion of norm, which is resource-aware and orthogonal to that of rank. It is proved that inhabitation in bounded dimension is decidable (EXPSPACE-complete) and subsumes decidability in rank 2 [Urzyczyn 2009].

The quantitative approach yielding upper bounds for evaluation lengths has also been extended to classical logic [Kesner and Vial 2019], which does not only capture pure functional programming, but also control operators.

Bounds for evaluation lengths are also studied by Dal Lago and Gabbard [2011] and Dal Lago and Petit [2013, 2014] using linear dependent types rather than intersection types.

Other works propose a more practical perspective on resource-aware analyses for functional programs. In particular, type-based techniques for automatically inferring bounds on higher-order functions have been developed, based on sized types [Avanzini and Dal Lago 2017; Hughes et al. 1996; Portillo et al. 2002; Vasconcelos and Hammond 2004] or amortised analysis [Hoffmann and Hofmann 2011; Hofmann and Jost 2003; Jost et al. 2017]. This led to practical cost analysis tools like Resource-Aware ML [Hoffmann et al. 2011] (see raml.co). Intersection type have been used [Simões et al. 2007] to address the size aliasing problem of sized types, whereby cost analysis sometimes over-approximates cost to the point of losing all cost information [Portillo et al. 2002]. How our multi types could further refine the integration of intersection types with sized types is a direction for future work.

Finally, in between the publication of the conference paper and the submission of this journal extension, the main ideas of our work were adapted to obtain exact bounds for open call-by-value [Accattoli and Guerrieri 2018], call-by-need [Accattoli et al. 2019], and pattern-matching calculi [Alves et al. 2019].

2 A BIRD’S EYE VIEW
Our study is based on a schema that is repeated for different evaluation strategies, making most notions parametric in the strategy \rightarrow_S under study. The following concepts constitute the main ingredients of our technique:

(1) **Strategy, together with the normal, neutral, and abs predicates**: there is a deterministic evaluation strategy \rightarrow_S whose normal forms are characterised via two related predicates, $\text{normal}_S(t)$ and $\text{neutral}_S(t)$, the intended meaning of the second one is that t is S-normal and can never behave as an abstraction (that is, it does not create a redex when applied to an argument). We further parametrise also this last notion by using a predicate $\text{abs}_S(t)$ identifying abstractions, because the definition of deterministic strategies requires some subterms to not be abstractions3.

3For the head, leftmost, and maximal systems, the $\text{abs}_S(t)$ predicate is trivial, it simply holds when t is an abstraction. In the linear head system of Sect. 8, however, we use another predicate, which is why, for the sake of uniformity, we prefer to also make our approach parametric with respect to a $\text{abs}_S(t)$ predicate.
(2) **Typing derivations**: derivations, denoted by \(\Phi \), are trees constructed by means of different typing rules. The following features deserve to be highlighted.

- **Tight constants**: there are two new type constants, \texttt{neutral} and \texttt{abs}, and new rules introducing them. As their name suggests, the constants \texttt{neutral} and \texttt{abs} are used to type terms whose normal form is a neutral term or an abstraction, respectively.
- **Tight derivations**: there is a notion of tight derivation that requires a special use of the constants.
- **Indices**: typing judgements have the shape \(\Gamma \vdash^{(b,r)} t : A \), where \(b \) and \(r \) are indices meant to count, when the derivation is tight, the number of steps to normal form and the size of the normal form, respectively.

(3) **Sizes of normal forms**: the notion of normal forms depends on the strategy, and so do their notions of size, noted \(| t | \). A fact that may seem counter-intuitive is that these sizes do not count all the constructors in a term, but only some of them—often variables are ignored—and only those appearing in some specific positions, typically the head sizes do not count the size of arguments but only their presence. The reasons are explained precisely where the sizes are defined. Different type system inspect different aspects of (different notions of) normal forms and thus account for different quantitative aspects. The basic idea is that our notions of size measure the cost of checking that a term is normal, with respect to the given strategy. Additionally, there is a notion of size of typing derivations \(| \Phi | \) that gives an upper bound to the sum of the indices associated to the last judgement of \(\Phi \).

(4) **Characterisation**: we prove that \(\Gamma \vdash^{(b,r)} t : A \) is a tight typing relatively to \(\rightarrow_S \) if and only if there exists an \(S \) normal term \(p \) such that \(t \rightarrow^k_S p \) and \(| p |_S = r \).

(5) **Proof technique**: the characterisation is obtained always through the same sequence of intermediate results. Correctness follows from the fact that all tight typings of normal forms precisely measure their size, a substitution lemma for typing derivations and subject reduction. Completeness follows from the fact that every normal form admits a tight typing, an anti-substitution lemma for typing derivations, and subject expansion.

(6) **Neutral terms**: we stress the relevance of neutral terms in normalisation proofs from a typing perspective. In particular, correctness theorems always rely on a lemma about them. Neutral terms are a common concept in the study of \(\lambda \)-calculus, playing a key role in, for instance, the reducibility candidate technique [Girard et al. 1989].

The proof schema is illustrated in the next sections on two standard reduction strategies, namely head and leftmost(-outermost) evaluation. It is then slightly adapted to deal with maximal evaluation in Sect. 7 and linear head evaluation in Sect. 8. A similar schema is also followed in Sect. 5, where we study leftmost evaluation once again, this time with respect to multi types that are not necessarily tight.

Evaluation systems. Each case study treated in the paper relies on the same properties of the strategy \(\rightarrow_S \) and the related predicates \(\text{normal}_S(t) \), \(\text{neutral}_S(t) \), and \(\text{abs}_S(t) \), that we collect under the notion of evaluation system.

Definition 2.1 (Evaluation system). Let \(T_S \) be a set of terms, \(\rightarrow_S \) be an evaluation strategy and \(\text{normal}_S, \text{neutral}_S, \text{abs}_S \) be predicates on \(T_S \). All together they form an evaluation system \(S \) if for all \(t, p, p_1, p_2 \in T_S \):

1. **Determinism of \(\rightarrow_S \)**: if \(t \rightarrow_S p_1 \) and \(t \rightarrow_S p_2 \) then \(p_1 = p_2 \).
2. **Characterisation of \(S \)-normal terms**: \(t \) is \(\rightarrow_S \)-normal if and only if \(\text{normal}_S(t) \).
3. **Characterisation of \(S \)-neutral terms**: \(\text{neutral}_S(t) \) if and only if \(\text{normal}_S(t) \) and \(\neg \text{abs}_S(t) \).

Given a strategy \(\rightarrow_S \) we use \(\rightarrow^k_S \) for its \(k^{th} \) iteration and \(\rightarrow^*_S \) for its reflexive-transitive closure.
Fig. 1. Head neutral and head normal terms

\[
\begin{array}{c|c|c|c}
\text{neutral}_h(t) & \text{neutral}_h(t) & \text{neutral}_h(t) \\
\text{neutral}_h(x) & \text{neutral}_h(t) & \text{neutral}_h(t) \\
\text{normal}_h(t) & \text{normal}_h(t) & \text{normal}_h(t) \\
\lambda y. t & \lambda x. t & \lambda p.
\end{array}
\]

Fig. 2. Head strategy

\[
\begin{array}{c}
(\lambda x.u)q \rightarrow_h u\{x\leftarrow q\} \\
\lambda x.t \rightarrow_h \lambda x.p \\
\neg \text{abs}_h(t) \rightarrow_h \lambda x.p \\
tu \rightarrow_h pu
\end{array}
\]

Fig. 3. Head size of terms

\[
|x|_h := 0 \quad |\lambda x.p|_h := |p|_h + 1 \quad |pu|_h := |p|_h + 1
\]

3 HEAD EVALUATION

In this section we consider the head evaluation system, which is the simplest one, and gradually introduce the main concepts for multi types and for the tight technique.

The set of λ-terms Λ is given by ordinary λ-terms:

\[
\begin{align*}
\lambda\text{-Terms} & \quad t, p ::= x | \lambda x. t | tp \\
\end{align*}
\]

Normal, neutral, and abs predicates. The predicate normal_h defining head normal terms is in Fig. 1, and it is based on an auxiliary predicate neutral_h defining neutral terms, that are simply terms of the form $xt_1 \ldots t_k$ with $k \geq 0$. The predicate $\text{abs}_h(t)$ is true simply when t is an abstraction.

Small-step semantics. The head strategies \rightarrow_h is defined in Fig. 2.

Proposition 3.1 (Head evaluation systems). $(\Lambda, \rightarrow_h, \text{neutral}_h, \text{normal}_h, \text{abs}_h)$ is an evaluation system.

The proof is routine, and it is then omitted also from the Appendix.

Size of normal forms. The notions of head size $|t|_h$ of a (head normal) term t is defined in Fig. 3 (for simplicity we define it over the structure of terms and not of head normal forms).

There are two unusual points:
Tight Typings and Split Bounds, Fully Developed

(1) Arguments: in the application case the argument u does not contribute (1 accounts for the application constructor itself, that is, just the existence of an argument). Head evaluation does not enter arguments and so it is natural to not account for them. Another point of view is considering $|t|_{hd}$ as measuring the part of t that an algorithm has to explore in order to check that it is head normal.

Note that head evaluation does suffer of size explosion, but only if the size of arguments is also taken into account—see Grabmayer [2018] for details.

(2) Variables: variables may be counted for the size of normal forms, but we do not count them for uniformity. In general, the first counter on typing judgements shall measure the dynamic aspect (the number of steps) of the computation, while the second counter is devoted to the static aspect (the size of normal forms). Counting variables for normal forms corresponds to counting axioms in the typing system, which in turn accounts for the number of single (linear) variable replacements done by the strategy—this shall be done in Sect. 8, where we deal with linear head evaluation. But head evaluation is based on meta-level (non-linear) substitution and thus does not account for single variable replacements—thus variables must not be counted at the dynamic level. To be uniform, we do not count variables for the static aspect either, thus excluding them from the size of normal forms. Note that the same point applies for the leftmost and maximal strategies of the next sections, whose size of normal forms shall not count variables either.

Multi types. We define the following notions about types.

- **Multi types** are defined by the following grammar:

\[
\text{Tight constants} \quad \text{tight ::= neutral | abs}
\]

\[
\text{Types} \quad A, B ::= \text{tight} \mid X \mid M \rightarrow A
\]

\[
\text{Multi-sets} \quad M ::= [A_i]_{i \in I} (I \text{ a finite set})
\]

where X ranges over a non-empty set of atomic types and $[\ldots]$ denotes the multi-set constructor.

- **Multi-sets**: We use $[]$ to denote the empty multi-set, \uplus for multi-set union, \subsetneq for multi-set inclusion, and \setminus for multi-set difference. An example of multi-set is $M = [A, A, B]$, which contains two occurrences of A and one occurrence of B. Then for example $M \uplus [A] = [A, A, A, B]$ and $M \setminus [A] = [A, B]$.

- A typing context Γ is a map from variables to finite multi-sets M of types such that only finitely many variables are not mapped to the empty multi-set $[]$. The empty typing context is written ϵ. We write $\text{dom}(\Gamma)$ for the domain of Γ, i.e., the set $\{x \mid \Gamma(x) \neq [\]\}$.

- **Tightness**: we use the notation Tight for a multi-set containing only tight constants. Moreover, we write $\text{tight}(A)$ if A is of the form tight, $\text{tight}(M)$ if M is of the form Tight, and $\text{tight}(\Gamma)$ if $\text{tight}(\Gamma(x))$ for all x, in which case we also say that Γ is tight.

- The multi-set union \uplus is extended to typing contexts point-wise, i.e., $\Gamma \uplus \Delta$ maps each variable x to $\Gamma(x) \uplus \Delta(x)$. This notion is extended to several contexts as expected so that $\uplus_{i \in I} \Gamma_i$ denotes a finite union of contexts (when $I = \emptyset$ the notation is to be understood as the empty context). When $\text{dom}(\Gamma) \cap \text{dom}(\Delta) = \emptyset$, then $\Gamma \uplus \Gamma'$ may also be written $\Gamma; \Gamma'$. We write $x : M$ for the typing context assigning M to x and $[]$ to all the other variables. Then the notation $\Gamma ; x : M$ combines the two previous ones.

- The restricted context Γ with respect to the variable x, written $\Gamma \setminus x$ is defined by $(\Gamma \setminus x)(x) := []$ and $(\Gamma \setminus x)(y) := \Gamma(y)$ if $y \neq x$.

Head typing system. The typing rules of the head system hd are presented in Fig. 4. Roughly, the intuitions behind the typing rules are (please ignore the indices b and r for the time being):
• **Rules ax, fun₀, and app_b**: these rules are essentially the traditional rules for multi types for head and LO evaluation (see e.g. [Bucciarelli et al. 2017]), modulo the presence of the indices.
• **Rule many**: this is a structural rule allowing typing terms with a multi-set of types. In some presentations of multi types many is hardcoded in the right premiss of the appᵣ rule (that requires a multi-set). For technical reasons, it is preferable to separate it from appᵣ. Morally, it corresponds to the !-promotion rule in linear logic.
• **Rule funᵣ**: t has already been tightly typed, and all the types associated to x are also tight constants, i.e. the typing context contains a pair of the form x : Ttight. Then λx.t receives the tight constant abs for abstractions. The consequence is that this abstraction can no longer be applied, because there are no rules to apply terms of type abs. Therefore, the abstraction constructor cannot be consumed by evaluation and it ends up in the (head) normal form of the term, that has the form λx.t’, where t’ is the (head) normal form of t.
• **Rule appᵣʰᵈ**: t has already been tightly typed with neutral and so morally it head normalises to a term t’ having neutral form xu₁...uₖ. The rule adds a further argument p that cannot be consumed by evaluation, because t shall never become an abstraction. Therefore, p ends up in the head normal form t’p of tp, that is still neutral—correctly, so that tp is also typed with neutral. Note that there is no need to type p because head evaluation never enters into arguments.
• **Tight constants and predicates**: there is of course a correlation between the tight constants neutral and abs and the predicates neutralʰᵈ and absʰᵈ. Namely, a term t is hd-typable with neutral if and only if the hd-normal form of t verifies the predicate neutralʰᵈ, as we shall prove. For the tight constant abs and the predicate absʰᵈ the situation is similar but weaker: if the hd-normal form of t verifies absʰᵈ then t is typable with abs, but not the other way around—variables are typable with abs without being abstractions.
• **Presentation of abstraction rules**: the presentation of the abstraction rules may seem unusual. We explain the relationship with the usual presentation in the vacuous abstractions paragraph below.
• **The type systems is not syntax-directed**, e.g. given an abstraction (resp. an application), it can be typed with rule funᵣ or funᵣ (resp. appʰᵈ or app), depending on whether the constructor typed by the rule ends up in the normal form or not. Thus for example, given the term ΠI, where I is the identity function λz.z, the second occurrence of I can be typed with abs using rule funᵣ, while the first one can be typed with [abs] → abs using rule funᵣ.

![Fig. 4. Type system for head evaluation](image-url)
We write $\Phi \vdash_{hd} \Gamma \vdash^{(b,r)} t : A$, to stress that Φ is a head typing derivation ending in the judgement $\Gamma \vdash^{(b,r)} t : A$ when, in the next sections, we discuss also other type systems.

Indices. The roles of b and r can be described as follows:

- **b and β-steps**: b counts the abstraction rules of the derivation that may be used to form (head) β-redexes, i.e. the number of fun_b rules, because it is the only rule introducing an arrow type. The index b is at least the number of β-steps to normal form because typing a β-redex requires a fun_b rule. It may be greater than such a number if some of the abstractions typed with fun_b are never applied, and therefore end up in the normal form. For tight typing derivations (introduced below), we are going to prove that b is exactly the length of the head evaluation of the typed term to normal form. Essentially, tightness shall force abstractions typed with fun_b to be applied.

- **r and size of the result**: r counts the rules typing constructors that cannot be consumed by β-reduction according to the head evaluation strategy, and that therefore shall end up in contributing to the normal form. It counts the number of fun_r and app^{hd}_r. These rules type the result of the evaluation, according to the head strategy, and measure the size of the result. Note that the type abs given by rule fun_r is not an arrow type and cannot therefore be composed. Essentially, tightness shall force all abstractions ending in the normal form to be typed with fun_b.

For system hd, the indices on typing judgements are not really needed, as b can be recovered as the number of fun_b rules, and r as the number of fun_r and app^{hd}_r rules. We prefer to make them explicit because 1) we want to stress the separate counting, and 2) for linear head evaluation in Sect. 8 the counting shall be more involved, and the indices shall not be recoverable.

Note that only some rules contribute to the indices b and r. The fact that ax is not counted shall change in Sect. 8, where we show that counting ax rules corresponds to measure evaluations in the linear substitution calculus. The fact that many is not counted, instead, is due to the fact that it does not correspond to any constructor on terms. A further reason is that the rule may be eliminated by absorbing it in the app_b rule, that is the only rule that uses multi-sets—it is however technically convenient to separate the two. The fact that app_b is not counted is because we already count fun_b for β-redexes, and counting app_b would provide a number twice the measure we are interested in.4

Typing size. We define the size $|\Phi|$ of a typing derivation Φ as the number of rules in Φ, not counting the occurrences of rule many. The size of a derivation gives an upper bound to the sum of the indices (b, r) on its final judgement: whenever $\Phi \vdash_{hd} \Gamma \vdash^{(b,r)} t : A$, we have $b + r \leq |\Phi|$.

Subtleties and easy facts. Let us overview some peculiarities and consequences of the definition of our type systems.

1. **Relevance**: no weakening is allowed in axioms. An easy induction on typing derivations shows that a variable declaration $x : M \neq []$ appears explicitly in the typing context Γ of a type derivation for t only if x occurs free and typed in t. In system hd, arguments of applications might not be typed (because of rule app^{hd}_r), and so there may be $x \in \text{fv}(t)$ but not appearing in Γ.

2. **Vacuous abstractions**: our presentation of abstraction rules in Fig. 1 precisely accounts for the case in which the abstraction binds a variable x not appearing in the type context Γ. Indeed, in the fun_b rule, if $x \notin \text{dom}(\Gamma)$, then $\Gamma \setminus x$ is equal to Γ and $\Gamma(x)$ is $[]$, while in the fun_r rule, if $x \notin \text{dom}(\Gamma)$, then $\Gamma(x)$ is $[]$ and thus tight$([])$ holds. The alternative and equivalent presentation of these rules is

4In the conference version of this paper we actually counted app_b rules and then obtained that b counted twice the number of β-steps. We believe that it is cleaner to not count app_b rules, as suggested by P. Vial.
The evaluation sequence has length 3:

\[
\begin{align*}
\Gamma; x : M \vdash^{(b,r)} t : A & \quad \text{fun}_b \\
\Gamma \Gamma \vdash^{(b+1,r)} \lambda x. t : M \rightarrow A & \quad \text{fun}_r \\
\Gamma; x : \text{Tight} \vdash^{(b,r)} : \text{tight} & \quad \text{fun}_r
\end{align*}
\]

In the proofs we rather use this alternative formulation (that requires that \(x \) does appear in the type context, and implicitly assumes that \(\Gamma; x : [] = \Gamma \)) but we prefer to adopt the precise presentation in the formal definition, to avoid ambiguities.

(3) **Head typings and applications**: note the \(\text{app}_{hd} \) rule an application \(tp \) without typing the right subterm \(p \). This matches the fact that \(tp \) is a head normal form when \(t \) is, independently of the status of \(p \).

Tight derivations. A given term \(t \) may have many different typing derivations, indexed by different pairs \((b, r) \). They always provide upper bounds on head evaluation lengths and lower bounds on the size of head normal forms. The interesting aspect of our type systems, however, is that there is a simple description of a class of typing derivations that provide exact bounds for these quantities, as we shall show. Their definition relies on tight constants.

Definition 3.2 (Tight head derivations).

A derivation \(\Phi \vdash_{hd} \Gamma \vdash^{(b,r)} t : B \) is tight if tight \((B)\) and tight \((\Gamma)\).

Remarkably, tightness is expressed as a property of the last judgement only. This is however not unusual: characterisations of weakly normalising terms via intersection/multi types also rely on properties of the last judgement only, as discussed in Sect. 5.

In Sect. 5, in particular, we show the size of a tight derivation for a normal term is minimal among derivations for \(t \). Moreover, it is also of the same size of the minimal derivations making no use of tight constants nor rules using them. Therefore, tight derivations may be thought as a characterisation of minimal derivations for normal terms—for non-normal terms the question is subtle and it is discussed at the end of Sect. 5.

Let us also refine the intuitions about tightness of the paragraph *indices* above, where we explain in particular how tightness forces the partitioning of abstractions. Dually, tightness also forces a partitioning of application rules. At some point of the evaluation, the left sub-term of every application typed with \(\text{app}_{b} \) shall turn into an abstraction, forming a redex whose firing shall *consume* the \(\text{app}_{b} \) rule. Therefore, all applications in the normal form are typed with \(\text{app}_{b}^{hd} \).

Example. Let \(t_0 = (\lambda x_1. (\lambda x_0. x_0 x_1) x_1) I \), where \(I \) is the identity function \(\lambda z.z \). The head evaluation of \(t_0 \) to \(\text{hd} \) normal-form is:

\[
(\lambda x_1. (\lambda x_0. x_0 x_1) x_1) I \rightarrow_{hd} (\lambda x_0. x_0 I) I \rightarrow_{hd} I
\]

The evaluation sequence has length 3. The head normal form has size 1. To give a tight typing for the term \(t_0 \) let us write \(\text{abs}_{abs}^{abs} \) for \([\text{abs}] \rightarrow \text{abs} \). Then,

\[
\begin{array}{c}
\frac{\Gamma; x : \text{abs}_{abs}^{abs} \vdash^{(0,0)} x_1 : \text{abs}}{x_1 : [\text{abs}] \Gamma \vdash^{(0,0)} x_1 : \text{abs}} \\
\frac{\Gamma; [\text{abs}_{abs}^{abs}] \vdash^{(0,0)} x_0 x_1 : \text{abs}}{x_0 : [\text{abs}_{abs}^{abs}] \Gamma; x_1 : [\text{abs}] \vdash^{(0,0)} x_0 x_1 : \text{abs}} \\
\frac{x_1 : [\text{abs}] \vdash^{(0,0)} \lambda x_0. x_0 x_1 : [\text{abs}_{abs}^{abs}]}{x_0 : [\text{abs}_{abs}^{abs}] \vdash^{(0,0)} \lambda x_0. x_0 x_1 : [\text{abs}_{abs}^{abs}] \rightarrow \text{abs}} \\
\frac{x_1 : [\text{abs}, \text{abs}_{abs}^{abs}] \vdash^{(0,0)} (\lambda x_0. x_0 x_1) x_1 : \text{abs}}{x_1 : [\text{abs}, \text{abs}_{abs}^{abs}] \vdash^{(0,0)} (\lambda x_0. x_0 x_1) x_1 : \text{abs}} \\
\frac{x_1 : [\text{abs}, \text{abs}_{abs}^{abs}]}{\Gamma; x_1 : [\text{abs}, \text{abs}_{abs}^{abs}] \vdash^{(0,0)} (\lambda x_0. x_0 x_1) x_1 : \text{abs}} \\
\frac{x_1 : [\text{abs}, \text{abs}_{abs}^{abs}]}{\Gamma; x_1 : [\text{abs}, \text{abs}_{abs}^{abs}] \vdash^{(0,0)} (\lambda x_0. x_0 x_1) x_1 : \text{abs}} \\
\frac{x_1 : [\text{abs}, \text{abs}_{abs}^{abs}]}{\Gamma; x_1 : [\text{abs}, \text{abs}_{abs}^{abs}] \vdash^{(0,0)} (\lambda x_0. x_0 x_1) x_1 : \text{abs}} \\
\end{array}
\]

Indeed, the pair \((3, 1)\) represents 3 evaluation steps to \(\text{hd} \) normal-form and a head normal form of size 1.
3.1 Tight Head Correctness

Correctness of tight typings for head evaluation is the fact that whenever a term is tightly typable with indices \((b, r)\), then \(b\) is exactly the number of head evaluation steps to head normal form while \(r\) is exactly the head size of the head normal form. The correctness theorem is always obtained via three intermediate steps.

First step: tight typings of normal forms. The first step is to show that, when a tightly typed term is a head normal form, then the first index \(b\) of its type derivation is 0, so that it correctly captures the number of steps, and the second index \(r\) coincides exactly with its head size. An interesting auxiliary lemma relating \(hd\)-neutral terms and tight typings is required.

Lemma 3.3 (Tight spreading on neutral terms). Let \(t\) be such that \(\text{neutral}_{hd}(t)\) and \(\Phi \vdash_{\text{hd}} \Gamma \vdash (b, r) t : A\) be a typing derivation such that tight\((\Gamma)\). Then tight\((A)\) and the last rule of \(\Phi\) is not app\(_b\).

Proof. By induction on \(\text{neutral}_{hd}(t)\). Cases:

- **Variable**, i.e. \(t = x\). Then \(\Gamma = x : [A]\), and \(A\) is tight because \(\Gamma\) is tight by hypothesis.
- **Application**, i.e. \(t = pu\) and \(\text{neutral}_{hd}(t)\) because \(\text{neutral}_{hd}(p)\). The last rule of \(\Phi\) can only be \(\text{app}_b\) or \(\text{app}_p^{\text{hd}}\). In both cases the left subterm \(p\) is typed by a sub-derivation \(\Phi' \vdash \Gamma'_p \vdash (b', r') p : B\) such that all types in \(\Gamma'_p\) appear in \(\Gamma\), and so they are all tight by hypothesis. Since \(\text{neutral}_{hd}(p)\), we can apply the \(i.h.\) and obtain that \(B\) is tight. The only possible case is then \(B = \text{neutral}\) and the last rule of \(\Phi\) is then \(\text{app}_p^{\text{hd}}\). Then \(A = B = \text{neutral}\).

The lemma expresses the fact that tightness of neutral terms only depends on their contexts. Morally, this fact is what makes tightness expressible as a property of the final judgement only. We shall see in Sect. 5 that a similar property is hidden in more traditional approaches to weak normalisation (see Lemma 5.6). Such a spreading property appears repeatedly in our study, and we believe that its isolation is one of the contributions of our work, induced by the modular and comparative study of various strategies.

Proposition 3.4 (Properties of hd typings for normal forms). Let \(t\) be such that \(\text{normal}_{hd}(t)\), and \(\Phi \vdash_{\text{hd}} \Gamma \vdash (b, r) t : A\) be a typing derivation.

1. **Size bound:** \(|t|_{hd} \leq |\Phi|\).
2. **Tight indices:** if \(\Phi\) is tight then \(b = 0\) and \(r = |t|_{hd}\).
3. **Neutrality:** if \(A = \text{neutral}\) then \(\text{neutral}_{hd}(t)\).

Proof. By induction on \(t\). Note that \(\text{neutral}_{hd}\) implies \(\text{normal}_{hd}\) and so we can apply the \(i.h.\) when \(\text{neutral}_{hd}\) holds on some subterm of \(t\). The proof is mostly straightforward, there is only one interesting case, the one using the tight spreading on neutral terms (Lemma 3.3). The case is when \(\text{normal}_{hd}(t)\) because \(\text{neutral}_{hd}(t)\) and \(t = pu\), that in turn implies \(\text{neutral}_{hd}(p)\). If the last rule of \(\Phi\) is \(\text{app}_b\) then \(\Phi\) has the form

\[
\frac{\Phi_p \vdash_{\text{hd}} \Gamma_p \vdash (b_p, r_p) \ p : M \to A \quad \Phi_u \vdash_{\text{hd}} \Gamma_u \vdash (b_u, r_u) \ u : M}{\Gamma_p \uplus \Gamma_u \vdash (b_p + b_u, r_p + r_u) \ p u : A \quad \text{app}_b}
\]

with \(b = b_p + b_u, r = r_p + r_u,\) and \(\Gamma = \Gamma_p \uplus \Gamma_u\).

1. **Size bound:** by \(i.h., |p|_{hd} \leq |\Phi_p|,\) from which it follows \(|t|_{hd} = |p|_{hd} + 1 \leq b_h. |\Phi_p| + 1 \leq |\Phi|\).
2. **Tight size bound:** we show that the pre-condition for this case is impossible. If \(\Phi\) is tight then \(\Gamma = \Gamma_p \uplus \Gamma_u\) is a tight typing context, and so is \(\Gamma_p\). Since \(\text{neutral}_{hd}(t)\), the tight spreading
on neutral terms (Lemma 3.3) implies that the type of p in Φ_p has to be tight, while it is $M \rightarrow A$—absurd.

(3) **Neutrality**: $\text{neutral}_{hd}(t)$ holds by hypothesis.

If the last rule of Φ is app_{hd}^{bd} the statement follows easily from the i.h.

Note that Proposition 3.4.2 indirectly shows that all tight derivations of a same term carry the same indices, and essentially have the same size (it can be easily shown that they all have the same number of axioms). The only way in which two tight derivations can differ, in fact, is whether the variables in the type context are typed with neutral or abs, but the structure of different derivations is necessarily the same, which is also the structure of the head normal form itself.

Second step: substitution lemma. Then one has to show that types, typings, and indices behave well with respect to substitution, which is essential, given that β-reduction is based on it.

Lemma 3.5 (Substitution and typings for hd). Let $\Phi_t \vdash_{hd} \Delta; x : M \vdash (b, r) t : A$ and $\Phi_p \vdash_{hd} \Gamma \vdash (b', r') p : M$. Then there exists a derivation $\Phi_t\{x=p\} \vdash_{hd} \Gamma \vdash (b+b', r+r') t\{x=p\} : A$ where $|\Phi_t\{x=p\}| = |\Phi_t| + |\Phi_p| - |M|$.

Note that the lemma also holds for $M = []$, in which case Γ is necessarily empty. As already pointed out, in system hd it can be that $M = []$ and yet $x \infv(t)$ and $t\{x=p\} \neq t$.

Proof. Easy induction on the derivation of $\Delta; x : M \vdash (b, r) t : A$, see Appendix A.1.

Third step: quantitative subject reduction. Finally, one needs to shows a quantitative form of type preservation along evaluation. When the typing is tight, every evaluation step decreases the first index b by exactly 1, accounting for the abstraction constructor consumed by the firing of the redex.

Proposition 3.6 (Quantitative subject reduction for hd). If $\Phi \vdash_{hd} \Gamma \vdash (b, r) t : A$ and $t \rightarrow_{hd} p$ then $b \geq 1$ and there exists a typing Φ' such that $\Phi' \vdash_{hd} \Gamma \vdash (b-1, r) p : A$ and $|\Phi| > |\Phi'|$.

Proof. By induction on $t \rightarrow_{hd} p$. The only case not following immediately from the i.h. is the one of reduction at the root of the term, that is when $t = (\lambda x. u)q \rightarrow_{hd} u\{x=q\} = p$. Assume $\Phi \vdash_{hd} \Gamma \vdash (b, r) (\lambda x. u)q : A$. The derivation Φ must end with rule app_{b}, and the derivation of its premiss for $(\lambda x. u)$ must end with fun_{b}. Hence, there are two derivations $\Phi_u \vdash_{hd} \Gamma_u; x : M \vdash (b_u, r_u) u : A$ and $\Phi_q \vdash_{hd} \Gamma_q \vdash (b_q, r_q) q : M$, with $(b, r) = (b_u + b_q + 1, r_u + r_q)$ and $\Gamma = \Gamma_u \uplus \Gamma_q$. Applying the substitution lemma (Lemma 3.5), we obtain $\Phi' \vdash_{hd} \Gamma \vdash (b_u + b_q - 1, r_u + r_q) u\{x=q\} : A$ such that $|\Phi'| = |\Phi_u| + |\Phi_q| - |M| < |\Phi_u| + |\Phi_q| + 2 = |\Phi|$.

Summing up. The tight correctness theorem is proved by a straightforward induction on the evaluation length relying on quantitative subject reduction (Proposition 3.6) for the inductive case, and the properties of tight typings for normal forms (Proposition 3.4) for the base case.

Theorem 3.7 (Tight correctness for hd). Let $\Phi \vdash_{hd} \Gamma \vdash (b, r) t : A$ be a derivation. Then there exists p and k such that $t \rightarrow_{hd}^k p$, $k \leq b$, $\text{neutral}_{hd}(p)$, and $|p|_{hd} + k \leq |\Phi|$. Moreover, if Φ is tight, then $b = k$, $|p|_{hd} = r$ and ($A = \text{neutral}$ implies $\text{neutral}_{hd}(p)$).

Proof. By induction on $|\Phi|$. If t is a abs normal form—that covers the base case $|\Phi| = 1$, for which t is necessarily a variable—then by taking $p := t$ and $k := 0$ the first statement follows from Proposition 3.4.1, the tight statement follows from the tight indices and neutrality properties of tight typings of normal forms (Proposition 3.4.2-3).

Otherwise, $t \rightarrow_{hd} u$ and by quantitative subject reduction (Proposition 3.6) there is a derivation $\Phi' \vdash_{hd} \Gamma \vdash (b-1, r) u : A$ such that $|\Phi'| < |\Phi|$. By i.h., there exists p and k' such that $\text{neutral}_{hd}(p)$ and

we have to first show that typability can also be pulled back along substitutions. For the tight statement we know by the i.h. that $k' = b - 1$ so that $k := k' + 1$ verifies $k = b$. The i.h. also gives $|p|_{hd} = r$ and $(A = \text{neutral} \implies \text{neutral}_{hd}(p))$, which concludes the proof.

3.2 Tight Head Completeness

Completeness of tight head typings expresses the fact that every head normalising term has a tight derivation in system hd. As for correctness, the completeness theorem is always obtained via three intermediate steps, dual to those for correctness. Essentially, one shows that every head normal form has a tight derivation and then extends the result to head normalising terms by pulling typability back through evaluation, using a subject expansion property.

First step: normal forms are tightly typable. A simple induction on the structure of normal forms proves the following proposition.

Proposition 3.8 (Normal forms are tightly typable for hd). Let t be such that $\text{normal}_{hd}(t)$. Then

1. Existence: there exists a tight derivation $\Phi \triangleright_{hd} \Gamma^{(0,|t|_{hd})} t : A$
2. Structure: moreover, if $\text{neutral}_{hd}(t)$ then $A = \text{neutral}$, and if $\text{abs}_{hd}(t)$ then $A = \text{abs}$.

In contrast to the proposition for normal forms of the correctness part (Proposition 3.4), here there are no auxiliary lemmas, so the property is simpler.

Proof. Easy induction on $\text{normal}_{hd}(t)$, see Appendix A.2.

Second step: anti-substitution lemma. In order to pull typability back along evaluation sequences, we have to first show that typability can also be pulled back along substitutions.

Lemma 3.9 (Anti-substitution and typings for hd). Let $\Phi \triangleright_{hd} \Gamma \triangleright^{(b,r)} t \{x \leftarrow p\} : A$. Then there exist:

- a multi-set M;
- a typing derivation $\Phi_t \triangleright_{hd} \Gamma_t; x : M \triangleright^{(b_t,r_t)} t : A$; and
- a typing derivation $\Phi_p \triangleright_{hd} \Gamma_p \triangleright^{(b_p,r_p)} p : M$

such that:

- Typing context: $\Gamma = \Gamma_t \uplus \Gamma_p$;
- Indices: $(b, r) = (b_t + b_p, r_t + r_p)$.
- Size: $|\Phi| = |\Phi_t| + |\Phi_p| - |M|$.

Proof. Easy induction on Φ, see Appendix A.2.

Let us point out that the anti-substitution lemma holds also in the degenerated case in which x does not occur in t and p is not hd-normalising: rule many can indeed be used to type any term p with $\Gamma^{(0,0)} p : []$ by taking an empty set I of indices for the premisses. Note also that this is forced by the fact that $x \notin \text{fv}(t)$, and so $\Gamma_t(x) = [\cdot]$. Finally, this fact does not contradict the correctness theorem, because here p is typed with a multi-set, while the theorem requires a type.

Third step: quantitative subject expansion. This property guarantees that typability can be pulled back along evaluation sequences.

Proposition 3.10 (Quantitative subject expansion for hd). Let $\Phi \triangleright_{hd} \Gamma \triangleright^{(b,r)} p : A$ be a derivation. If $t \rightarrow_{hd} p$ then there exists a typing Ψ such that $\Psi \triangleright_{hd} \Gamma \triangleright^{(b+1,r)} t : A$ and $|\Psi| > |\Phi|$.
Proof. By induction on \(t \to_{hd} p \). The only case not following immediately from the \(i.h. \) is the one of reduction at the root of the term, that is when \(t = (\lambda x.u)q \to_{hd} u[x\leftarrow q] = p \). Assume \(\Phi \vdash_{hd} \Gamma \vdash^{(b,r)} u[x\leftarrow q] : A \). By applying the anti-substitution lemma (Lemma 3.9) we obtain the premisses of the following derivation \(\Psi \):

\[
\Phi_u \vdash_{hd} \Gamma_u, x : M \vdash^{(b_u,r_u)} u : A \\
\Gamma_u \vdash^{(b_u+1,r_u)} \lambda x.u : M \to A \\
\Phi_q \vdash_{hd} \Gamma_q \vdash^{(b_q,r_q)} q : M
\]

with \((b, r) = (b_u+b_q, r_u+r_q) \) and \(\Gamma = \Gamma_u \uplus \Gamma_q \). By the same Lemma 3.9 we have \(|\Phi_u| + |\Phi_q| - |M| = |\Phi| \). Then \(|\Psi| = |\Phi_u| + |\Phi_q| + 2 > |\Phi_u| + |\Phi_q| - |M| = |\Phi| \). Note that the difference between the sizes of \(\Psi \) and \(\Phi \) is indeed between 2 and \(2 + |M| \).

\[\square\]

Summing up. The tight completeness theorem is proved by a straightforward induction on the evaluation length relying on quantitative subject expansion (Proposition 3.10) for the inductive case, and the existence of tight typings for normal forms (Proposition 3.8) for the base case.

Theorem 3.11 (Tight completeness for \(hd \)). Let \(t \to_{hd}^k p \) with norm_{1hd}(p). Then there exists a tight typing \(\Phi \vdash_{hd} \Gamma \vdash^{(k,p)} t : A \). Moreover, if neutral_{lhd}(p) then \(A = \text{neutral} \), and if abs_{hd}(p) then \(A = \text{abs} \).

Proof. By induction on \(t \to_{hd}^k p \). If \(k = 0 \) the statement is given by the existence of tight typings for norm_{1hd} terms (Proposition 3.8), that also provides the moreover part. Let \(k > 0 \) and \(t \to_{hd} u \to_{hd}^{k-1} p \). By \(i.h. \), there exists a tight typing derivation \(\Psi \vdash_{\text{tight}}^{(k-1,p)} u \). By subject expansion (Proposition 3.10) there exists a typing derivation \(\Phi \) of \(u \) with the same types in the ending judgement of \(\Psi \)—then \(\Phi \) is tight—and with indices \((k,|p|_{hd})\).

\[\square\]

4 LEFTMOST-OUTERMOST EVALUATION

In this section we slightly modify the system for head evaluation to provide tight bounds for leftmost-outermost (shortened leftmost in the text and \(lo \) in mathematical symbols) evaluation, the iteration of head evaluation into arguments. Lo evaluation is an important strategy for two main reasons. First, it is a normalising strategy, that is, it reaches a normal form, whenever it exists. Second, its number of steps can be taken as a reasonable time cost model.

The development follows the same lines of the head case. There are however subtle and important differences. Essentially, the typing system is tweaked, as discussed below, so that arguments of typed applications are always typed, and the tight hypothesis has to be added to various properties, that would otherwise not hold. In particular, it has to be added to subject reduction (and, of course, subject expansion) whose proof then becomes subtler, because tightness has to somehow spread to sub-derivations, while it is defined as a property of the final judgement only.

Basic definitions. The predicates norm_{llo} and neutral_{llo} defining normal and neutral terms are in Fig. 6—the note the case neutral_{llo}(tp) which is the one distinguishing the leftmost case from the head one. As in the head case, the predicates abs_{llo}(t) is true simply when \(t \) is an abstraction. The leftmost-outermost strategy \(\to_{llo} \) is defined in Fig. 7—note the case \(ut \to_{llo} up \).

Proposition 4.1 (Leftmost evaluation system). (\(\Lambda, \to_{llo}, \text{neutral}_{llo}, \text{normal}_{llo}, \text{abs}_{llo} \) is an evaluation system.

The proof is routine, and it is then omitted also from the Appendix.
\[
|x|_\lo := 0 \quad |\lambda x.p|_\lo := |p|_\lo + 1 \quad |pu|_\lo := |p|_\lo + |u|_\lo + 1
\]

Fig. 5. Leftmost size of terms

\[
\begin{array}{ccc}
\text{neutral}_\lo(x) & \text{neutral}_\lo(t) & \text{neutral}_\lo(p) \\
\text{neutral}_\lo(t) & \text{normal}_\lo(t) & \text{normal}_\lo(t) \\
\text{normal}_\lo(t) & \text{normal}_\lo(t) & \text{normal}_\lo(\lambda y.t)
\end{array}
\]

Fig. 6. Leftmost-outermost neutral and normal terms

\[
\begin{array}{cccc}
(\lambda x.u)q \rightarrow_\lo u[x-q] & t \rightarrow_\lo p & \lambda x.t \rightarrow_\lo \lambda x.p & -\text{abs}_\lo(t) \quad t \rightarrow_\lo p \\
\lambda x.t \rightarrow_\lo \lambda x.p & tu \rightarrow_\lo pu & \text{neutral}_\lo(u) \quad t \rightarrow_\lo p & ut \rightarrow_\lo up
\end{array}
\]

Fig. 7. Leftmost-outermost strategy

Size of normal forms. The notion of leftmost(-outermost) size \(|t|_\lo\) of a term \(t\) is defined in Fig. 5—the difference with the head size is on applications. Note that \(|t|_\lo\) counts the number of internal nodes of the syntax tree of \(t\). Variable occurrences—that are ignored—are the leaves of the syntax tree and thus are at most \(|t|_\lo + 1\), that is, the size of the syntax tree of \(t\) is bound by \(2|t|_\lo + 1\). Therefore, the considerations about size explosion in the introduction are unaffected by considering \(|t|_\lo\) rather than the size of its syntax tree.

The leftmost type system. The typing rules are in Fig. 8, where the only difference with the head case is in rule \(\text{app}^r_\lo\), that replaces rule \(\text{app}^d_r\): leftmost evaluation enters into arguments and so the added argument \(p\) now also has to be typed, and with a tight constant. Note also a key difference between \(\text{app}^r_\lo\) and \(\text{app}_b\): in the former the argument \(p\) is typed exactly once (that is, the type is not a multi-set), because its leftmost normal form \(p'\) appears exactly once in the leftmost normal form \(t'p'\) of \(tp\) (where \(t'\) is the leftmost normal form of \(t\)), while in the latter it can be typed any number of times, depending on the cardinality of \(M\).

We write \(\Phi \vdash_\lo \Gamma \vdash^{(b,r)}_t t : A\), to stress that the type derivation is built out of the rules of the leftmost type system.

As in the head case, the size of a typing derivation |\(\Phi\)| is the number of rules in \(\Phi\), not counting the occurrences of rule many. Here again, |\(\Phi\)| gives an upper bound to the sum of the indices \((b, r)\) on its final judgement: whenever \(\Phi \vdash_\lo \Gamma \vdash^{(b,r)}_t t : A\), we have \(b + r \leq |\Phi|\).

Definition 4.2 (Tight and traditional derivations). A derivation \(\Phi \vdash_\lo \Gamma \vdash^{(b,r)}_t t : B\) is tight if \(\text{tight}(B)\) and \(\text{tight}(\Gamma)\). A derivation \(\Psi\) is traditional if it is tight-free, i.e. no tight type occurs in \(\Phi\) (and therefore it does not use rules \(\text{fun}_r\) or \(\text{app}^{\omega}_r\)).

Traditional derivations do not really play a role in this section, only in the next one. We introduce them here because the two sections share the same anti-substitution lemma.

4.1 Tight Leftmost Correctness

The proof of tight correctness of the type system follows exactly the same structure in sub-properties than for head evaluation. There are however two relevant differences. The first one is that without the tight hypothesis there is no bound on the leftmost size of normal forms—this shall be refined in Sect. 5. The second one is that quantitative subject reduction also holds only for tight derivations. Moreover, its proof is subtler and more involved.
Lemma 4.3 (Tight spreading on neutral terms). Let \(t \) be such that \(\text{neutral}_{\text{hd}}(t) \) and \(\Phi \vdash_{lo} \Gamma \vdash^{(b,r)}t : A \) be a typing derivation such that \(\text{tight}(\Gamma) \). Then \(\text{tight}(A) \) and the last rule of \(\Phi \) is not \(\text{app}_{b} \).

Note that the lemma assumes \(\text{neutral}_{\text{hd}}(t) \) and not \(\text{neutral}_{lo}(t) \), and this is not a typo: as \(\text{neutral}_{lo}(t) \) implies \(\text{neutral}_{\text{hd}}(t) \), the lemma is stronger than if stated with \(\text{neutral}_{lo}(t) \). The proof of this lemma is the same of that of Lemma 3.3, but for the fact that \(\text{app}_{r}^{lo} \) replaces \(\text{app}_{r}^{hd} \).

Proposition 4.4 (Properties of \(lo \) typings for normal forms). Let \(t \) be such that \(\text{normal}_{lo}(t) \), and \(\Phi \vdash_{lo} \Gamma \vdash^{(b,r)}t : A \) be a tight type derivation. Then
1. Tight indices: \(b = 0 \) and \(r = |t|_{lo} \). As a consequence \(|t|_{lo} \leq |\Phi| \).
2. Neutrality: if \(A = \text{neutral} \) then \(\text{neutral}_{lo}(t) \).

Proof. The proof follows the same lines of the one for the head case. In particular, it uses the tight spreading on neutral terms exactly in the same way. See Appendix B.1.

The substitution lemma also follows the same pattern of the head case.

Lemma 4.5 (Substitution and typings for \(lo \)). Let \(\Phi_{t} \vdash_{lo} \Delta; x : M \vdash^{(b,r)}t : A \) and \(\Phi_{p} \vdash_{lo} \Gamma \vdash^{(b',r')}p : M \). Then there exists a derivation \(\Phi_{t}(x \downarrow p) \vdash_{lo} \Gamma \cup \Delta t^{(b+b',r+r')}t\{x \leftarrow p\} : A \) where \(|\Phi_{t}(x \downarrow p)| = |\Phi_{t}| + |\Phi_{p}| - |M| \). Moreover, if \(\Phi_{t} \) and \(\Phi_{p} \) are traditional, then \(\Phi_{t}(x \downarrow p) \) is traditional too.

Proof. See Appendix B.1.

Leftmost subject reduction. To obtain the quantitative version of subject reduction, for which the \(b \) index decreases of exactly one, we are now forced to add the tight hypothesis. Basically, when reduction takes place in the argument, tightness ensures that the argument is typed only once. An example of argument that may go untyped is given by the following non-tight derivation \(\Phi \):

\[
\begin{align*}
\Gamma & \vdash^{(b,r)}t : A \\
\Gamma \cup \Delta t^{(b+b',r+r')}t\{x \leftarrow p\} & \vdash^{(b',r')}p : M \\
\end{align*}
\]

\[y : [:] \rightarrow X \vdash^{(0,0)}y : [:] \rightarrow X \quad \text{many} \quad \text{app}_{b} \]

\[y : [:]
ightarrow X \vdash^{(0,0)}y\Omega : X \quad \text{app}_{b} \]

Note that \(y\Omega \rightarrow_{lo} y\Omega \) and so the reduct is typed again by the derivation \(\Phi \) and nothing has changed. Incidentally, this example shows that the type system is not even correct for \(\rightarrow_{lo} \) termination. We then need a predicate restricting the set of derivations. Tightness is one such predicate, but in Sect. 5 we shall see another possible predicate.
Arguments may also be typed more than once. Consider the following non-tight derivation.

\[
\begin{align*}
\text{App}\Gamma &
\frac{y : [[X, X] \rightarrow X] \frac{z : [X, X] \frac{(z : [X] \frac{(0,0)}{I}z : X)i=1,2}{\frac{[X, X] \frac{(0,0)}{I}y : X}}}{\frac{y : [[X, X] \rightarrow X], z : [X, X] \frac{(0,0)}{I}y(i\z) : X}}{\text{many}}{\text{app}_{b}}
\end{align*}
\]

Now, \(y(i\z) \rightarrow_{lo} yz\) and the corresponding derivation for \(yz\) is:

\[
\begin{align*}
\text{App}\Gamma &
\frac{y : [[X, X] \rightarrow X] \frac{z : [X, X] \frac{(z : [X] \frac{(0,0)}{I}z : X)i=1,2}{\frac{[X, X] \frac{(0,0)}{I}y : X}}}{\frac{y : [[X, X] \rightarrow X], z : [X, X] \frac{(0,0)}{I}yz : X}}{\text{many}}{\text{app}_{b}}
\end{align*}
\]

Both sub-derivations inside the many rule have been reduced, and so the first counter on the final judgement decreases by 2 and not by 1.

In both examples, if the derivation were tight then \(y\) would be typed with \(\text{neutral}\) and the last application rule would be \(\text{app}_{lo}^{0}\), which requires the argument to be typed only once, avoiding both examples of inaccurate counting.

Adding the tight hypothesis impacts on the proof of subject reduction. The inductive cases of the proof change, because to apply the \(i.h.\) on a sub-derivation \(\Phi\) one now needs to show that \(\Phi\) is tight. In fact, since tightness is a global property not necessarily true for all sub-derivations, the proof actually proves a strengthened statement. Moreover, the last case relies crucially on the tight spreading on neutral terms (Lemma 4.3).

Proposition 4.6 (Quantitative Tight Subject Reduction for \(lo\)). If \(\Phi_{\rightarrow_{lo}}\Gamma \frac{t : A}{t : A\lambda} {\rightarrow_{lo} p}\) then \(b \geq 1\) and there exists a typing \(\Phi’\) such that \(\Phi’_{\rightarrow_{lo}}\Gamma \frac{t(b,r)q : A}{t(b,r)q : A\lambda} {\rightarrow_{lo} p}\) and \(|\Phi’| > |\Phi’|\).

Proof. We prove the following stronger statement (tightness is decomposed in two predicates tight(\(\Gamma\)) and tight(\(A\)), and the second is paired together with a further assumption):

Let \(t {\rightarrow_{lo} p}, \Phi_{\rightarrow_{lo}}\Gamma \frac{t(b,r)}{t(b,r)q : A, \text{tight}(\Gamma)}\), and \((t \text{tight}(A))\). Then \(b \geq 1\) and there exists a typing \(\Phi’_{\rightarrow_{lo}}\Gamma \frac{t(b,r)}{t(b,r)q : A\lambda}{\rightarrow_{lo} p}\) and \(|\Phi’| > |\Phi’|\).

By induction on \(t {\rightarrow_{lo} p}\). Cases:

- **Rule**

\[
\frac{(\lambda x.u)q {\rightarrow_{lo} u\{x\leftarrow q\}}}{\text{App}\Gamma\rightarrow_{lo} \frac{\lambda x.u}{\lambda x.u} \frac{\{x\leftarrow q\}}{t : A\lambda}}
\]

Assume \(\Phi_{\rightarrow_{lo}}\Gamma \frac{(b,r)q : A\lambda}{t : A\lambda}{\rightarrow_{lo} p}\). The derivation \(\Phi\) must end with rule \(\text{app}_{b}\), and the derivation of its premiss for \(\lambda x.u\) must end with \(\text{fun}_{b}\). Hence, there are two derivations \(\Phi_{u}{\rightarrow_{lo}}\Gamma_{u}x : M \frac{t(b\lambda,ru)q : A\lambda}{t(b\lambda,ru)q : A\lambda}\) and \(\Phi_{q}{\rightarrow_{lo}}\Gamma_{q} b_{r}q : M\), with \((b, r) = (b_{u} + b_{q} + 1, r_{u} + r_{q})\) and \(\Gamma = \Gamma_{u} \cup \Gamma_{q}\). Applying the substitution Lemma 4.5, we obtain \(\Phi’_{\rightarrow_{lo}}\Gamma \frac{t(bu+1,bq+1,ru+rq)}{t(bu+1,bq+1,ru+rq)q : A\lambda}{\rightarrow_{lo} p}\) and \(|\Phi’| = |\Phi’| + |\Phi’| - |M| < |\Phi’| + |\Phi’| + 2 = |\Phi’|\).

- **Rule**

\[
\frac{u {\rightarrow_{lo} q}}{\lambda x.u {\rightarrow_{lo} \lambda x.q}}
\]

Assume \(\Phi_{\rightarrow_{lo}}\Gamma \frac{(b,r)\lambda x.u : A\lambda}{t : A\lambda}{\rightarrow_{lo} p}\). Since \(\text{abs}_{lo}(\lambda x.u)\) we must have hypothesis \(\text{tight}(A)\). Then, the last rule of \(\Phi\) has to be with \(\text{fun}_{r}\), and we must have a subderivation \(\Phi_{u}{\rightarrow_{lo}}\Gamma, x : \text{Tight}(b,r-1) q : t : A\lambda\). As \(\text{tight}(\Gamma, x : \text{Tight})\) we can apply the \(i.h.\) and get the premiss of the derivation \(\Phi’\) below:
\[\Phi_q \vdash_{lo} \Gamma, x : \text{Tight } t^{(b-1, r-1)} q : \text{tight} \]

We conclude \(|\Phi| = |\Phi_u| + 1 > |\Phi_q| + 1 = |\Phi'|\) thanks to the i.h. |\Phi_u| > |\Phi_q|.

- Rule

\[\neg \text{abs}_{lo}(u) \quad u \rightarrow_{lo} q \]
\[t = um \rightarrow_{lo} q m = p \]

Assume \(\Phi \vdash_{lo} \Gamma \vdash^{(b, r)} um : A\) and \(\text{tight}(\Gamma)\). The derivation \(\Phi\) must end with rule \(\text{app}_{b}\) or \(\text{app}_{r}^{lo}\).

In both cases there are derivations \(\Phi_u \vdash_{lo} \Gamma_u \vdash^{(b_u, r_u)} u : A_u\) and \(\Phi_m \vdash_{lo} \Gamma_m \vdash^{(b_m, r_m)} m : A_m\) (\(A_m\) may be a multi-set), with \(\Gamma = \Gamma_u \uplus \Gamma_m\). Since \(\text{tight}(\Gamma)\) we have \(\text{tight}(\Gamma_u)\), and since \(\neg \text{abs}_{lo}(u)\) we can apply the i.h. (even if \(A_u\) is not tight) obtaining the derivation \(\Phi_q \vdash_{lo} \Gamma_u \vdash^{(b_u-1, r_u)} q : A_u\) such that \(|\Phi_q| < |\Phi_u|\). Now, using the same rule \(\text{app}_{b}\) or \(\text{app}_{r}^{lo}\) at the end of \(\Phi\), we build the following derivation \(\Phi':\)

\[\Phi_q \vdash_{lo} \Gamma_u \vdash^{(b_u-1, r_u)} q : A_u \quad \Phi_m \vdash_{lo} \Gamma_m \vdash^{(b_m, r_m)} m : A_m \]
\[\Gamma \vdash^{(b-1, r)} q m : A \]

that satisfies \(|\Phi'| = |\Phi_q| + |\Phi_m| + 1 < |\Phi_u| + |\Phi_m| + 1 = |\Phi|\).

- Rule

\[\text{neutral}_{lo}(m) \quad u \rightarrow_{lo} q \]
\[t = mu \rightarrow_{lo} q m = p \]

Assume \(\Phi \vdash_{lo} \Gamma \vdash^{(b, r)} mu : A\) and \(\text{tight}(\Gamma)\). The derivation \(\Phi\) must end with rule \(\text{app}_{b}\) or \(\text{app}_{r}^{lo}\), and therefore there are two derivations \(\Phi_m \vdash_{lo} \Gamma_m \vdash^{(b_m, r_m)} m : A_m\) and \(\Phi_u \vdash_{lo} \Gamma_u \vdash^{(b_u, r_u)} u : A_u\), for some types \(A_m\) and \(A_u\) (\(A_u\) may be a multi-set), with \(\Gamma = \Gamma_m \uplus \Gamma_u\). Since \(\text{tight}(\Gamma)\) we have \(\text{tight}(\Gamma_m)\) and \(\text{tight}(\Gamma_u)\). By the tight spreading on neutral terms (Lemma 4.3), from \(\text{tight}(\Gamma_m)\) and \(\text{neutral}_{lo}(m)\) it follows \(\text{tight}(A_m)\). Therefore, the last rule of \(\Phi\) must be \(\text{app}_{r}^{lo}\), whence \(A_m = A = \text{neutral}\) and \(A_u = \text{tight}\). Now, the sub-derivation \(\Phi_u\) is tight (\(\text{tight}(\Gamma_u)\) and \(A_u = \text{tight}\)) and we can apply the i.h., obtaining the derivation \(\Phi_q \vdash_{lo} \Gamma_u \vdash^{(b_u-1, r_u)} q : A_u\) such that \(|\Phi_q| < |\Phi_u|\). Now, using the same rule \(\text{app}_{b}\) or \(\text{app}_{r}^{lo}\) at the end of \(\Phi\), we build the following derivation \(\Psi:\)

\[\Phi_m \vdash_{lo} \Gamma_m \vdash^{(b_m, r_m)} m : A_m \quad \Phi_q \vdash_{lo} \Gamma_u \vdash^{(b_u-1, r_u)} q : A_u \]
\[\Gamma \vdash^{(b-1, r)} q m : A \]

that satisfies \(|\Psi| = |\Phi_q| + |\Phi_m| + 1 < |\Phi_u| + |\Phi_m| + 1 = |\Phi|\).

\[\square \]

Correctness then follows by the same reasoning used for tight head derivations.

Theorem 4.7 (Tight correctness for \(lo\)). Let \(\Phi \vdash_{lo} \Gamma \vdash^{(b, r)} t : A\) be a tight derivation. Then there exists \(p\) such that \(t \rightarrow^b_{lo} p\), \(\text{normal}_{lo}(p)\), and \(|p|_{lo} = r\). Moreover, if \(A = \text{neutral}\) then \(\text{neutral}_{lo}(p)\).

Proof. See Appendix B.1.

\[\square \]

Note that the statement of the correctness theorem is different from the one for head evaluation (Theorem 3.7), because here nothing is said about derivations that are not tight. The whole of Sect. 5 is devoted to the study of such derivations. Let us just sketch the point. Consider the following derivation that types the argument exactly once, as the tight derivation would. Consider now the
The proof of completeness of tight derivations for leftmost evaluation follows the same structure as the proof of subject reduction. The unsurprising differences exist: between the correctness parts of the two systems. In particular, the proof of subject expansion is refined along the same lines of the proof of subject reduction.

4.2 Tight Leftmost Completeness

The proof of completeness of tight derivations for leftmost evaluation follows the same structure of completeness for the head case. There are some differences, that are exactly the same differences between the correctness parts of the two systems. In particular, the proof of subject expansion is refined along the same lines of the proof of subject reduction.

Proposition 4.8 (Normal Forms are Tightly Typable for lo). Let t be such that $\text{normal}_{lo}(t)$. Then

1. Existence: there exists a tight derivation $\Phi \triangleright_{lo} \Gamma \cdot \Gamma(0,|t|_{lo}) : t : A$.
2. Structure: moreover, if $\text{neutral}_{lo}(t)$ then $A = \text{neutral}$, and if $\text{abs}_{lo}(t)$ then $A = \text{abs}$.
3. Unique size: if Ψ is another tight derivation for t then $|\Phi| = |\Psi|$.

Proof. See Appendix B.2. □

Lemma 4.9 (Anti-substitution and Typings for lo). Let $\Phi \triangleright_{lo} \Gamma \cdot \Gamma(b,r)t\{x\leftarrow p\} : A$. Then there exist:

- a multi-set M;
- a typing derivation $\Phi_{t} \triangleright_{lo} \Gamma_{t} ; x : M \cdot \Gamma(b,r)t : A$; and
- a typing derivation $\Phi_{p} \triangleright_{lo} \Gamma_{p} \cdot \Gamma(b,r)p : M$ such that:
 - Typing context: $\Gamma = \Gamma_{t} \uplus \Gamma_{p}$;
 - Indices: $(b,r) = (b_{t} + b_{p}, r_{t} + r_{p})$.
 - Sizes: $|\Phi| = |\Phi_{t}| + |\Phi_{p}| - |M|$.
 - If Φ is traditional, then Φ_{t} and Φ_{p} are traditional too.

Proof. See Appendix B.2. □

The proof of quantitative subject expansion mimicks the elaborated one for subject reduction: it uses anti-substitution in the base case, it needs a strengthened hypothesis for the inductive cases, and it makes use of the tight spreading on neutral terms in the last inductive case. The unsurprising details are in the Appendix.

Proposition 4.10 (Quantitative Tight Subject Expansion for lo). Let $\Phi \triangleright_{lo} \Gamma \cdot \Gamma(b,r)p : A$ be a tight derivation. If $t \rightarrow_{lo} p$ then there exists a (tight) typing Ψ such that $\Psi \triangleright_{lo} \Gamma \cdot \Gamma(b+1,r)p : A$ and $|\Psi| > |\Phi|$.

Proof. See Appendix B.2. □

Theorem 4.11 (Tight Completeness for lo). Let $t \rightarrow_{lo}^{k} p$ with $\text{normal}_{lo}(p)$. Then

1. Existence: there exists a tight typing $\Phi \triangleright_{lo} \Gamma \cdot \Gamma(k,|p|_{lo}) : A$.
2. Structure: moreover, if $\text{neutral}_{lo}(p)$ then $A = \text{neutral}$, and if $\text{abs}_{lo}(p)$ then $A = \text{abs}$.

Proof. See Appendix B.2. □
5 LEFTMOST-OUTERMOST EVALUATION AND SHRINKING TYPINGS

This section focuses on the leftmost(-outermost) evaluation system and on the relationship between tight and tight-free—deemed traditional in Definition 4.2—typings. Contributions are manyfold:

1. Leftmost normalisation, revisited: we revisit the characterisation of leftmost normalising terms as those typable with shrinking typings, that is, those where the empty multi-set has no negative occurrences [Krivine 1993]. The insight is that the shrinking and tight constraints are of a very similar nature, showing that our technique is natural rather than ad-hoc. Moreover, our notion of shrinking derivation can also include the tight constants, thus we provide a strict generalisation of the characterisation in the literature.

2. Proof technique: the technical development follows the schema of the previous sections and differs considerably by others in the literature. The literature always relies, necessarily, on shrinking typings. Krivine uses the reducibility technique (because he deals with idempotent intersection types and cannot use the simpler size-decreasing technique allowed by multi types) [Krivine 1993], de Carvalho also uses the reducibility technique (despite studying multi types) [de Carvalho 2018], and Kesner and co-authors use the size-decreasing technique and rely on typed redex occurrences [Bucciarelli et al. 2017; Kesner and Ventura 2014]. We use the size-decreasing technique and replace typed redex occurrences with a detailed study of how shrinking typings propagate, based on properties of neutral terms.

3. Unitary shrinking typings: we study a notion of minimal traditional typings, deemed unitary shrinking, that is a slight variation over principal types or de Carvalho’s 1-typings [de Carvalho 2018], playing a role akin to that of tight typings in the absence of the tight constants. The insight here is that tight typings are simply a device to focalise what traditional types can already observe in a somewhat more technical way.

4. Type bound: we show that for traditional shrinking derivations, the types in the last judgement provide a bound on the size of normal forms—with no reference to the type derivation—and this bound is exact if the typing is unitary shrinking and minimal. This is a reformulation of a key point of de Carvalho’s work [de Carvalho 2018]. The insight is then the inherent inadequacy of multi types as a tool for reliable complexity measures for the leftmost strategy, because of size explosion.

This study is done with respect to leftmost evaluation because among the case studies of the paper it is the most relevant one for reasonable cost models. It may however be easily adapted, mutatis mutandis, to the other systems.

Shrinking typings. It is standard to characterise leftmost normalising terms as those typable with intersection types without negative occurrences of Ω [Krivine 1993], or, those typable with multi types without occurrence of the empty multi-set [] [Bucciarelli et al. 2017]. We call this constraint shrinking. To explain it, let’s recall the examples we considered before tight subject reduction for the leftmost strategy (Proposition 4.6). Consider the derivation of end sequent:

\[y : [[]] \rightarrow X] \vdash (0,0) yΩ : X \] (3)

Since \(yΩ \) is \(\rightarrow_{lo} \)-diverging, this derivation has to be excluded somehow. The problem here is that since \(y \) has an erasing type—that is an arrow type with [] on the left—then the diverging subterm \(Ω \) does not get typed. Excluding the use of [] is too drastic, because the paradigmatic erasing term \(λx.y \) is normal and can be typed only with:

\[y : [X] \vdash (1,0) λx.y : [] \rightarrow X \]

The idea is that only some occurrences of [] are dangerous. The given examples seem to suggest that if [] occurs on the right side of \(\vdash \) is fine, while if it occurs in the typing context it is not.
in fact are subtler. Extending example (3) with an abstraction, one obtains the →_lo-diverging term λy.yΩ and the typing

\[T^{1,0} \lambda y. y\Omega : [[] \rightarrow X] \rightarrow X \]

demonstrating that [] can be dangerous also on the right. The correct shrinking constraint takes into account the polarity of the occurrence [], which is the number of arrows for which the occurrence is in the left branch. The types associated to reducing sub-terms are exactly those of even polarity on the right of + and those of odd polarity on the left of +, which then must not be [].

Shrinking allows to capture termination [Krivine1993]. Counting exactly the number of steps, however, requires a slight refinement. Not only all reducing sub-terms have to be typed (that is, they cannot be typed with []), but they have to be typed exactly once—this is the unitary shrinking constraint. Let’s go back to the example (1) of inaccurate counting of the previous section (page 19), for instance.

\[y : [[X, X] \rightarrow X], z : [X, X] \vdash T^{2,0} y(Iz) : X \]

Here the redex Iz is typed twice, which can be seen by [X, X] in the type of \(y \), even if it is not duplicated. A unitary shrinking typing of \(y(Iz) \) necessarily has a different end sequent and types Iz only once:

\[
\begin{align*}
 y : [[X] \rightarrow X] & \vdash T^{0,0} y : [X] \rightarrow X \\
 & \vdash T^{1,0} Iz : [X] \\
 & \vdash z : [X] \vdash T^{1,0} y(Iz) : X
\end{align*}
\]

We need some basic notions. We use the notation \(T \) to denote a (multi)-type, that is, either a type \(A \) or a multi-set of types \(M \).

Definition 5.1 (Positive and negative occurrences). Let \(T \) be a (multi)-type. The sets of positive and negative occurrences of \(T \) in a type/multi-set of types/typing context are defined by mutual induction as follows:

\[
\begin{align*}
 A \in \operatorname{Occ}_+(A) & \quad \exists B \in M \text{ such that } T \in \operatorname{Occ}_+(B) \\
 T \in \operatorname{Occ}_+(M) & \quad \exists B \in M \text{ such that } T \in \operatorname{Occ}_-(B) \\
 M \in \operatorname{Occ}_+(M) & \quad T \in \operatorname{Occ}_-(M) \text{ or } T \in \operatorname{Occ}_+(A) \\
 T \in \operatorname{Occ}_-(M \rightarrow A) & \quad T \in \operatorname{Occ}_-(M \rightarrow A) \\
 T \in \operatorname{Occ}_-(M) \text{ or } T \in \operatorname{Occ}_+(\Gamma) & \quad T \in \operatorname{Occ}_-(M) \text{ or } T \in \operatorname{Occ}_-(\Gamma) \\
 T \in \operatorname{Occ}_-(x : M, \Gamma) & \quad T \in \operatorname{Occ}_-(x : M, \Gamma)
\end{align*}
\]

Shrinking typings are defined by imposing a condition on the final judgement of the derivation, similarly to tight typings. It is technically convenient to also define its dual predicate, being (unitary) co-shrinking.

Definition 5.2 ((Unitary) shrinking typing). Let \(\Phi \vdash_{\text{lo}} \Gamma \vdash^{(b,r)} t : A \) be a typing derivation.

- \(A \) is **shrinking** if \(|M| \geq 1 \) for all \(M \in \operatorname{Occ}_+(A) \), and it is **unitary shrinking** if \(|M| = 1 \);
- \(A \) is **co-shrinking** if \(|M| \geq 1 \) for all \(M \in \operatorname{Occ}_-(A) \), and it is **unitary co-shrinking** if \(|M| = 1 \);
- \(M \) is shrinking/co-shrinking/unitary shrinking/unitary co-shrinking if every \(A \in M \) is;
- \(\Gamma \) is **shrinking** (resp. unitary shrinking) if \(M \) is shrinking (resp. unitary shrinking) for all type declarations \(x : M \) in \(\Gamma \);
- \(\Phi \) is **shrinking** (resp. **unitary shrinking**) if \(A \) is shrinking (resp. unitary shrinking) and \(\Gamma \) is co-shrinking (resp. unitary co-shrinking).
For example, $[] \in \text{Occ}_-([] \to A)$, $[] \in \text{Occ}_-([] \to A, A)$ and $[[] \to A, A]$ is shrinking but not unitary, $[] \in \text{Occ}_-(x : [] \to A)$, and $[] \in \text{Occ}_+([] \to A)$ and $[[] \to A] \to A$ is unitary co-shrinking.

Note that

- **Final judgement**: being shrinking is a local condition, which depends only on the final judgement of a typing derivation, and that
- **Tight implies unitary shrinking**: a tight typing derivation is always shrinking, and even unitary shrinking.

In this section we also have a close look to traditional derivations, that is, derivations without tight constants, see Definition 4.2 on page 17.

We shall need a natural property of type occurrences (used in Lemma 5.6 below).

Lemma 5.3 (Transitivity of polarities). Let T, U, V be (multi)-types and $a, b \in \{+, -\}$. If $U \in \text{Occ}_a(T)$ and $V \in \text{Occ}_b(U)$ then $V \in \text{Occ}_\delta(a, b)(T)$, where

$$\delta(+, +) := + \quad \delta(-, +) := - \quad \delta(-, -) := + \quad \delta(+, -) := -$$

Proof. Easy induction on $U \in \text{Occ}_a(T)$. See Appendix C for details. \hfill \square

Type sizes. One of our results is that the types appearing in the final judgement of a derivation bound the size of lo normal forms, for traditional typings, according to a notion of type size given below, and independently of the derivation itself. To give an idea, consider the easily derivable (unitary shrinking) typing

$$\text{t}^{(1, 0)}_\lambda y. y y : [[X] \to X, X] \to X$$

(4)

There are 2 arrows in the type (judgement) and the normal form has leftmost size 2. Of course, one also has to take into account the arrow symbols appearing in the typing judgement, when present.

Note, however, that types in general only give an upper bound: taking the derivation of (4) and replacing X with $[X] \to X$ produces the derivable (unitary shrinking) judgement

$$\text{t}^{(1, 0)}_\lambda y. y y : [[[X] \to X] \to [X] \to X, [X] \to X] \to [X] \to X$$

which has many more arrows than the size of the term.

Definition 5.4 (Type size). The size $\#(\cdot)$ of types, multi-sets, and typing contexts is defined as follows:

$$\begin{align*}
\#(X) & := 0 \\
\#(M) & := \sum_{A \in M} \#(A) \\
\#(e) & := 0 \\
\#(t) & := 0 \\
\#(M \to A) & := \#(M) + \#(A) + 1 \\
\#(x : M; \Gamma) & := \#(M) + \#(\Gamma)
\end{align*}$$

Exact measures via unitary shrinking traditional typings. One of the aims of this section is to show how to exactly measure the number of steps and the size of normal forms without using tight constants, that is, using traditional derivations only. Essentially, this is done using unitary shrinking typings. The measurements however are more involved than in the tight case, as they have to be extracted from other information that can be found in the typing derivations. In particular, for traditional derivations, the index r is always 0 (it is only incremented by rules fun_a and $\text{app}^{(i)}_r$), so that all the information is collapsed on the b index. The basic ideas are the following:

- The size $\#(\Gamma) + \#(A)$ in a unitary shrinking traditional typing $\Gamma \text{t}^{(b, 0)}_t : A$ provides the size of the normal form of t;
- Being unitary shrinking ensures that b decreases by exactly 1 at every \to_{lo} step (as in the tight case);
- Then $b - \#(\Gamma) - \#(A)$ gives the exact number of \to_{lo} steps to normal form.
Things are however slightly more complex than as just described, for the following reasons:

1. Unitary shrinking traditional type sizes are lax in general: the first item above is not really true, only unitary shrinking traditional derivations giving minimal types do capture exactly the size of normal forms (otherwise they only provide a bound, as the example above shows). We build such typings in the completeness subsection (and so in the correctness part there are no exact measures).

2. Sizes mismatch: the third item above is also not really true, because, even when \(\#(\Gamma) + \#(A) \) does match the size of normal forms, we have that \(b \) counts abstractions, so that we should subtract from it only the number of abstractions in the normal form (and not the applications). This is done by replacing the size of types with a polarised size extracting from types the number of abstractions, defined below.

Extracting the number of abstractions from types. Polarity as used for the shrinking predicate is the key concept to isolate the number of abstractions. Re-consider the following example.

\[
\Gamma \vdash \Phi \triangleright (1, 0) \lambda y.y y : [[X] \rightarrow X, X] \rightarrow X
\]

Note that arrows of positive polarity (that is, on the left branch of an even number of abstractions) count abstractions, and arrows of negative polarity count applications. Of course, things are reversed for types in the typing judgement, as the next example shows.

\[
z : [[[X] \rightarrow X, X] \rightarrow X] \rightarrow X \quad \vdash \Gamma \vdash (1, 0) z \lambda y.y y : X
\]

We use \(|t|_\lambda \) to denote the number of abstractions in a term. The following refined notion of size for types shall be used to count the number of abstractions in the normal form.

Definition 5.5 (Polarised type size). The polarised sizes \(\#^P(\cdot) \) and \(\#^N(\cdot) \) of types, multi-sets, and typing contexts is defined as follows:

\[
\begin{align*}
\#^P(X) & := 0 & \#^P(\text{tight}) & := 0 \\
\#^P(M) & := \sum_{A \in M} \#^P(A) & \#^P(M \rightarrow A) & := \#^N(M) + \#^P(A) + 1 \\
\#^P(\epsilon) & := 0 & \#^P(x : M; \Gamma) & := \#^P(M) + \#^P(\Gamma)
\end{align*}
\]

\[
\begin{align*}
\#^N(X) & := 0 & \#^N(\text{tight}) & := 0 \\
\#^N(M) & := \sum_{A \in M} \#^N(A) & \#^N(M \rightarrow A) & := \#^P(M) + \#^N(A) \\
\#^N(\epsilon) & := 0 & \#^N(x : M; \Gamma) & := \#^N(M) + \#^N(\Gamma)
\end{align*}
\]

5.1 Shrinking Correctness

Here we show that shrinking typability is preserved by leftmost evaluation and that the size of shrinking typings decreases along it—hence the name—so that every shrinkingly typable term is leftmost normalising. Moreover, the \(b \) index of unitary shrinking typings decreases by exactly 1, as for tight typings (for shrinking derivations it may decrease of an arbitrary positive amount). For the sake of completeness, we also show that typability is always preserved, but if the typing is not shrinking then its size may not decrease.

Once more, we follow the abstract schema of the other sections, but replacing tight with (unitary) shrinking.

We start, as usual, with a spreading property on neutral terms, expressed by the following lemma.

Lemma 5.6 (Occurrences spreading on neutral terms). Let \(t \) be such that neutral \(\alpha_1 h_d(t) \) and \(\Phi \Rightarrow_0 \Gamma \vdash^{(b,r)} t : A \) be a typing derivation. Then \(A \) is a positive occurrence of \(\Gamma \). Moreover, if \(\Gamma \) is co-shrinking (resp unitary co-shrinking) then \(A \) is co-shrinking (resp unitary co-shrinking).

Proof. See Appendix C.1. \(\square \)
Two observations:

1. **Subsumption of tight spreading**: this lemma subsumes the tight spreading on neutral terms (Lemma 3.3). Indeed, if the typing context Γ is tight, the fact that A is a positive occurrence of Γ implies that A is tight.

2. **Being co-shrinking spreads**: note that in the tight case the corresponding lemma allows to conclude that the derivation is tight, while here we cannot conclude that the derivation is shrinking, because it is being co-shrinking that spreads, giving that A is co-shrinking, while to obtain that Φ is shrinking we would instead need that A is shrinking.

Properties of normal forms. For normal forms we prove two properties. First, the shrinking hypothesis allows to use type derivations to bound the size of normal forms. Moreover, the index b provides a bound to the number of abstractions in the normal form.

Similarly to the case of tight subject reduction for system lo (Proposition 4.6), the next three propositions require a slightly strengthened statement, having as particular case what we are actually interested in, that is, that the derivation is shrinking.

Proposition 5.7 (Shrinking derivations bound the size of normal forms). Let $\text{neutral}_{lo}(t)$ and $\Phi \vdash_{lo} \Gamma \vdash_{lo}^{(b,r)} t : A$ be a derivation, and let $|\Phi|_{ax}$ denote the number of axiom rules in Φ.

1. If Γ is co-shrinking and (A is shrinking or t is not an abstraction) then $|t|_{lo} \leq |\Phi| - |\Phi|_{ax}$. Moreover, if Φ is traditional then $|t|_{i} \leq b$.

2. If Γ is unitary co-shrinking and (A is unitary shrinking or t is not an abstraction) then $|t|_{lo} = |\Phi| - |\Phi|_{ax}$. Moreover, if Φ is traditional then $|t|_{i} = b$.

Proof. By induction on t. Note that neutral_{lo} implies normal_{lo} and so we can apply the i.h. when neutral_{lo} holds on some subterm of t. See Appendix C.1.

The second property of normal forms is relative to traditional derivations, for which (size of) the types in the final judgement—rather than the type derivation—bound the size of the normal form.

Moreover, the index b is bound by the polarised sizes of such types. As in the previous sections, neutral terms play a key role, showing that our isolation of the relevance of neutral terms for characterisation via multi types is not specific to tight types.

Proposition 5.8 (Traditional types bounds the size of neutral and normal terms). Let $\Phi \vdash_{lo} \Gamma \vdash_{lo}^{(b,r)} t : A$ be a traditional derivation such that Γ is co-shrinking. Then:

1. If $\text{neutral}_{lo}(t)$ then $\#(A) + |t|_{lo} \leq \#(\Gamma)$ and $\#^{N}(A) + b \leq \#^{N}(\Gamma)$.

2. If $\text{normal}_{lo}(t)$ and A is shrinking then $|t|_{lo} \leq \#(\Gamma) + \#(A)$ and $b \leq \#^{N}(\Gamma) + \#^{P}(A)$.

Proof. See Appendix C.1.

The substitution lemma for the lo system has already been proved in Sect. 3 (Lemma 4.5).

As usual, shrinking correctness is based on a subject reduction property. Note that for unitary shrinking derivations b decreases by exactly 1.

Proposition 5.9 (Shrinking subject reduction). Let $\Phi \vdash_{lo} \Gamma \vdash_{lo}^{(b,r)} t : A$. If $t \rightarrow_{lo} p$ then $b \geq 1$ and there exists Ψ such that $\Psi \vdash_{lo} \Gamma \vdash_{lo}^{(b',r)} p : A$ with $b' \leq b$ and $|\Psi| \leq |\Phi|$. Moreover, Φ traditional implies Ψ traditional, and if Φ is shrinking (resp. unitary shrinking) then $b' < b$ (resp. $b' = b - 1$) and $|\Psi| < |\Phi|$.

Proof. See Appendix C.1.

Note that a leftmost diverging term like $x(\delta \delta)$ is typable in system lo by assigning to x the type $[] \rightarrow X$ and typing $\delta \delta$ with $[]$, and that its type is preserved by leftmost evaluation, by
Proposition 5.9. Note however that the resulting judgement is not shrinking—only shrinkingly typable terms are leftmost normalising, in fact.

Theorem 5.10 (Shrinking Correctness). Let $\Phi \triangleright \Gamma \vdash \lambda^\langle b, r \rangle t : A$ be a shrinking derivation. Then there exists p such that normal$_{\lambda_0}(p)$ and $k \leq b$ such that

1. Steps: $t \rightarrow_{\lambda_0}^* p$ in k steps, i.e. $t \rightarrow_{\lambda_0}^k p$;
2. Size bound: $|p|_\lambda + k \leq |\Phi|$;

Moreover, if Φ is traditional then $|p|_\lambda \leq |\Gamma| + |A|$ and $|p|_\lambda \leq \#N(\Gamma) + \#P(A)$, and if Φ is also unitary shrinking then $|p|_\lambda = b - k$.

Proof. See Appendix C.1. □

Note that when Φ is unitary shrinking it does not follow that $|p|_{\lambda_0} = |\Gamma| + |A|$ and $|p|_\lambda = \#N(\Gamma) + \#P(A)$. The equalities indeed hold only if additionally the types in the last judgement of Φ are minimal. Such minimal derivations are built in the proof of Proposition 5.11 below.

5.2 Shrinking Completeness

The proof of completeness for shrinking typings also follows, mutatis mutandis, the usual schema. Normal forms and anti-substitution have already been treated (Proposition 3.8 and Lemma 3.9). Again, however, we repeat the study of the existence of typings for leftmost normal terms focussing now on traditional typings and on the bound provided by types. Their study is yet another instance of spreading on (leftmost) neutral terms, in this case of the size bound provided by types: for neutral terms the size of the typing context Γ allows bounding both the size of the term and the size of its type, which is stronger than what happens for general leftmost normal terms.

One of the key points of the following proposition is that its proofs builds typing judgements having types of minimal size, refining Proposition 5.8.

Proposition 5.11 (Neutral and normal terms have minimal traditional shrinking typings).

1. If neutral$_{\lambda_0}(t)$ then for every unitary co-shrinking type A there exists a traditional derivation $\Phi \triangleright \Gamma \vdash \lambda^\langle b, 0 \rangle t : A$ such that Γ is unitary co-shrinking, $|A| + |t|_{\lambda_0} = |\Gamma|$, and $\#N(A) + b = \#N(\Gamma)$.
2. If normal$_{\lambda_0}(t)$ then there exists a traditional unitary shrinking derivation $\Phi \triangleright \Gamma \vdash \lambda^\langle b, 0 \rangle t : A$ such that $|t|_{\lambda_0} = |\Gamma| + |A|$ and $b = \#N(\Gamma) + \#P(A)$.

Proof. By mutual induction on neutral$_{\lambda_0}(t)$ and normal$_{\lambda_0}(t)$. Point 1 is along the lines of the case of Proposition 5.8. Here we only show the proof of Point 2; see Appendix C.2 for the full proof. Cases of normal$_{\lambda_0}(t)$:

1. neutral$_{\lambda_0}(t)$. By i.h. (point 1), for every unitary co-shrinking type A there exists a traditional typing $\Phi \triangleright \Gamma \vdash \lambda^\langle b, 0 \rangle t : A$ such that Γ is unitary co-shrinking. It is then enough to pick $A := X$, that is both unitary shrinking and unitary co-shrinking, so that Φ is unitary shrinking, $\#(A) = 0$, and the statement trivially holds, because then $|t|_{\lambda_0} = |\Gamma| + |t|_{\lambda_0} = |A| + |t|_{\lambda_0} = |\Gamma| + |A|$. Moreover, $\#P(A) = \#N(A) = 0$, so that by i.h. $\#N(\Gamma) + b = \#N(\Gamma)$, which is equivalent to $b = \#N(\Gamma) + \#P(A)$, as required.
2. Abstraction, i.e. $t = \lambda y.p$ and normal$_{\lambda_0}(p)$. By i.h. (point 2), there exists a unitary shrinking traditional typing $\Phi \triangleright \Gamma \vdash \lambda^\langle b_p, 0 \rangle p : B$ with $|p|_{\lambda_0} = |\Gamma_p| + |B|$. Then let $y : M (M$ possibly $[])$ the declaration of y in Γ_p and set Γ be Γ_p without $y : M$. Then let Φ be the derivation

$$
\Phi \triangleright \Gamma \vdash \lambda y.p : M; \Gamma \vdash \lambda^\langle b_p, 0 \rangle p : B
$$

$$
\frac{
\text{fun}_b
}{\Gamma \vdash \lambda y.p : M \rightarrow B}
$$
which is traditional and unitary shrinking because Φ_p is. We have

\[
|\lambda y.p|_{lo} = |p|_{lo} + 1 =_{lh} \#(y : M; \Gamma) + \#(B) + 1 = \#(\Gamma) + \#(M) + \#(B) + 1 = \#(\Gamma) + \#(M \rightarrow B)
\]

and

\[
b_p + 1 =_{lh} \#^N(y : M; \Gamma) + \#^P(B) + 1 = \#^N(\Gamma) + \#^N(M) + \#^P(B) + 1 = \#^N(\Gamma) + \#^P(M \rightarrow B)
\]

\[
\Box
\]

The last bit is a subject expansion property. Note in particular that since β-redxes are typed using traditional rules, the expansion preserves traditional typings.

Proposition 5.12 (Shrinking Subject Expansion). If $t \rightarrow^{k_{lo}} p$ and $\Phi \vdash_{lo} \Gamma \vdash^{(b',r)} t : A$ then there exists Ψ such that $\Psi \vdash_{lo} \Gamma \vdash^{(b',r)} t : A$ with $b' \geq b$. Moreover, if Φ is shrinking (resp. unitary shrinking) then $b' \geq b + 1$ (resp. $b' = b + 1$) and $|\Psi| > |\Phi|$, and if Φ is traditional then Ψ is traditional.

Proof. The proof is along the lines of the one for shrinking subject reduction, requiring the same kind of strengthened statement, see Appendix C.2.

The completeness theorem then follows. We are finally able to measure exactly and separately both the number of steps and the size of of leftmost normal form via a traditional unitary shrinking derivation.

Theorem 5.13 (Shrinking Completeness). Let $t \rightarrow^{k_{lo}} p$ with p such that $normal_{lo}(p)$. Then there exists a traditional unitary shrinking typing $\Phi \vdash_{lo} \Gamma \vdash^{(b',0)} t : A$ such that $k = b - \#^N(\Gamma) - \#^P(A)$ and $|p|_{lo} = \#(\Gamma) + \#(A)$.

Proof. See Appendix C.2.

Minimality. The minimality (with respect to size) of both tight and unitary shrinking derivations is implicitly contained in the statement of Proposition 5.7. For shrinking derivations one has $|t|_{lo} \leq |\Phi| - |\Phi|_ax$ and the equality holds exactly when the derivation is tight or unitary shrinking. The part about axioms is harmless: it is easily seen that for tight and unitary shrinking derivations the number of axioms is exactly the number of variable occurrences in the term (and so they all have the same size), and for shrinking derivations it is greater or equal to such number.

It is expected that the result holds more generally for all tight and unitary shrinking derivations, not just those for normal terms. Proving it, however, requires an (even more) involved study. Intuition tells that minimality can be pulled back to all typable terms via subject expansion. The problem is that subject expansion is formulated as an existential property (there exists a derivation...) and establishing minimality requires to compare the obtained expanded derivation with all the derivations for the expanded term, that may bear no similarity with the derivation in the hypothesis of subject expansion. A possible approach is to formalise subject reduction and expansion as operations over derivations (and not as existential properties). The precise definition of these operations is however very technical, because they can rewrite multi-sets of sub-derivations at once, if the rewriting step takes place in some arguments (in the term).

We estimated that the technical effort is not worth the minor additional result, given that this paper already has its good amount of technical material.
Type bounds and relational denotational semantics. The fact that for traditional typings the types in the final judgements provide a bound on the size of the normal form is a strong property. It is in particular the starting point for de Carvalho’s transfer of the study of bounds to the relational semantics of terms [de Carvalho 2007, 2018]—a term is interpreted as the set of its possible typings (thus including the typing context), that is a notion independent of the typing derivations themselves.

As we said in the introduction, multi types can be seen as a syntactic presentation of relational denotational semantics, which is the model obtained by interpreting the \(\lambda\)-calculus into the relational model of linear logic [Bucciarelli and Ehrhard 2001; de Carvalho 2007, 2016; Girard 1988], often considered as a canonical model.

The idea is that the interpretation (or semantics) of a term is simply the set of its types, together with their typing contexts. More precisely, let \(t\) be a term and \(x_1, \ldots, x_n\) (with \(n \geq 0\)) be pairwise distinct variables. If \(\text{fv}(t) \subseteq \{x_1, \ldots, x_n\}\), we say that the list \(\vec{x} = (x_1, \ldots, x_n)\) is suitable for \(t\). If \(\vec{x} = (x_1, \ldots, x_n)\) is suitable for \(t\), the (relational) semantics of \(t\) for \(\vec{x}\) is

\[
[t]_{\vec{x}} := \left\{ ((M_1, \ldots, M_n), A) \mid \exists \Phi \triangleright_{t_0} x_1 : M_1, \ldots, x_n : M_n \vdash (b, r) t : A \text{ such that } \Phi \text{ is shrinking} \right\}.
\]

By subject reduction and expansion, the interpretation \([t]_{\vec{x}}\) is an invariant of evaluation, and by correctness and completeness it is non-empty if and only if \(t\) is leftmost normalisable. Said differently, shrinking multi typing judgements provide an adequate denotational model with respect to the leftmost strategy. If the interpretation is restricted to traditional typing derivations, then it coincides with the one in the relational model in the literature. General derivations still provide a relational model, but a slightly different one, with the two new types \text{abs} and \text{neutral}, whose categorical semantics still has to be studied.

6 EXTENSIONS

In the rest of the paper we are going to further explore the properties of the tight approach to multi types along two independent axes:

1. **Maximal evaluation**: we adapt the tight methodology to the case of maximal evaluation, which relates to strong normalisation in that the maximal evaluation strategy terminates only if the term being evaluated is strongly normalising. This case is a simplification of [Bernadet and Graham-Lengrand 2013a] that can be directly related to the head and leftmost evaluation cases. It is in fact very close to leftmost evaluation but for the fact that, during evaluation, typing contexts are not necessarily preserved and the size of the terms being erased has to be taken into account. The statements of the properties have to be adapted accordingly.

2. **Linear head evaluation**: we reconsider head evaluation in the linear substitution calculus obtaining exact bounds on the number of steps and on the size of normal forms. The surprise here is that the type system is essentially unchanged and that it is enough to count also axiom rules (that are ignored for head evaluation in the \(\lambda\)-calculus) in order to exactly bound also the number of linear substitution steps.

Let us stress that these two variations on a theme can be read independently.

7 MAXIMAL EVALUATION

In this section we consider the maximal strategy, which gives the longest evaluation sequence from any strongly normalising term to its normal form. The maximal evaluation strategy is perpetual in that, if a term \(t\) has a diverging evaluation path then the maximal strategy diverges on \(t\). Therefore, its termination subsumes the termination of any other strategy, which is why it is often used to reason about strong normalisation property [van Raamsdonk et al. 1999].
Strong normalisation and erasing steps. It is well-known that in the framework of relevant (i.e., without weakening) multi types it is technically harder to deal with strong normalisation (all evaluations terminate)—which is equivalent to the termination of the maximal strategy—than with weak normalisation (there exists a terminating evaluation)—which is equivalent to the termination of the leftmost strategy. The reason is that one has to ensure that all subterms that are erased along any evaluation are themselves strongly normalising.

The simple proof technique that we used in the previous section does not scale up—in general—to strong normalisation (or to the maximal strategy), because subject reduction breaks for erasing steps, as they change the final typing judgement. Of course the same is true for subject expansion. There are at least three ways of circumventing this problem:

1. **Memory**: to add a memory constructor, as in Klop’s calculus [Klop 1980], that records the erased terms and allows evaluation inside the memory, so that diverging subterms are preserved. Subject reduction then is recovered.

2. **Subsumption/weakening**: adding a simple form of sub-typing, that allows stabilising the final typing judgement in the case of an erasing step, or more generally, adding a strong form of weakening, that essentially removes the empty multi type.

3. **Big-step subject reduction**: abandon the preservation of the typing judgement in the erasing cases, and rely on a more involved big-step subject reduction property relating the term directly to its normal form, stating in particular that the normal form is typable, potentially by a different type.

Surprisingly, the tight characterisation of the maximal strategy that we are going to develop does not need any of these workarounds: in the case of tight typings subject reduction for the maximal strategy holds, and the simple proof technique used before adapts smoothly. To be precise, an evaluation step may still change the final typing judgement, but the key point is that the judgement stays tight. Morally, we are employing a form of subsumption of tight contexts, but an extremely light one, that in particular does not require a sub-typing relation. We believe that this is a remarkable feature of tight multi types.

Maximal evaluation and predicates. The maximal strategy shares with leftmost evaluation the predicates neutral\textsubscript{lo}, normal\textsubscript{lo}, abs\textsubscript{lo}, and the notion of term size |t|\textsubscript{lo}, which we respectively write neutral\textsubscript{max}, normal\textsubscript{max}, abs\textsubscript{max}, and |t|\textsubscript{max}. We actually define, in Fig. 9, a version of the maximal strategy, denoted $\mathbin{\rightarrow^r_{\text{max}}}$, that is indexed by an integer r representing the size of what is erased by the evaluation step. We define the transitive closure of $\mathbin{\rightarrow^r_{\text{max}}}$ as follows:

- $\lambda x.t \xrightarrow{\text{max}} \lambda x.p$
- $t \xrightarrow{\text{max}} p$ implies $\lambda x.u \xrightarrow{\text{max}} u$
- $\lambda x.0 \xrightarrow{\text{max}} u$

Fig. 9. Maximal strategy
The correctness theorem is proved following the same schema used for head and leftmost evaluations. Most proofs are similar, and are therefore omitted.

Multi types. Multi types are defined exactly as in Section 3. The type system max for max-evaluation is defined in Fig. 10. Rules many\(_{>0}\) and none (which is a special 0-ary version of many), are both used to prevent an argument \(p\) in rule app\(_b\) to be untyped: either it is typed by means of rule many\(_{>0}\)—and thus it is typed with at least one type—or it is typed by means of rule none—and thus it is typed with exactly one type: the type itself is then forgotten, but requiring the premiss to have a type forces the term to be \(\rightarrow_{max}\) normalising. The fact that arguments are always typed, even those that are erased during reduction, is essential to guarantee strong normalisation: system \(\text{max}\) cannot type anymore a term like \(x\ Ω\).

The next lemma expresses the relevance property of system \(\text{max}\), that distinguishes it from the head and leftmost cases, and that can be proved by a straightforward induction on \(\Phi\).

Lemma 7.2 (Relevance). Let \(\Phi \vdash_{\text{max}} \Gamma \vdash^{(b, r)} t : A\). Then \(x \in \text{fv}(t)\) if and only if \(x \in \text{dom}(\Gamma)\).

The size \(|\Phi|\) of a typing derivation \(\Phi\) is naturally adapted to system \(\text{max}\), counting all rule applications in \(\Phi\), except those of rules many\(_{>0}\) and none. And again if \(\Phi \vdash_{\text{max}} \Gamma \vdash^{(b, r)} t : A\) then \(b + r \leq |\Phi|\).

Similarly to the head and leftmost cases, the quantitative information in typing derivations is used to characterise evaluation lengths and sizes of normal forms, as captured by the correctness and completeness theorems that we now present.

7.1 Tight Correctness

The correctness theorem is proved following the same schema used for head and leftmost evaluations. Most proofs are similar, and are therefore omitted.

We start with the properties of typed normal forms. The proof of the tight spreading on neutral terms (Lemma 4.3) also applies to typing system \(\text{max}\), providing the following lemma.

Lemma 7.3 (Tight spreading on neutral terms for \(\text{max}\)). If neutral\(_{\text{hd}}(t)\) and \(\Phi \vdash_{\text{max}} \Gamma \vdash^{(b, r)} t : A\) such that tight(\(\Gamma\)), then tight(\(A\)) and the last rule of \(\Phi\) is not app\(_b\).

The general properties of typed normal forms hold as well, using the same notion of tightness as in Definition 3.2.

Proposition 7.4 (Properties of typings for normal forms). Given \(\Phi \vdash_{\text{max}} \Gamma \vdash^{(b, r)} t : A\) with normal\(_{\text{max}}(t)\).

1. Size bound: \(|t| \leq |\Phi|\)
2. Tight indices: if \(\Phi\) is tight then \(b = 0\) and \(r = |t|\).
3. Neutrality: if \(A = \text{neutral}\) then neutral\(_{max}(t)\).

Proof. See Appendix D.1.
We now turn to the typing derivations of terms that are not necessarily in normal form. The case of maximal evaluation starts differing from head and leftmost evaluations: indeed, rule none is not used in tight derivations of normal forms but must be used to type terms that are erased by reduction. If the types of such terms are left unconstrained, then precision is lost regarding the quantitative information that typing derivations contain about erasable terms. For maximal evaluation we must therefore strengthen the notion of tightness for typing derivations, which becomes a global condition because it is no longer a property of the final judgment only:

Definition 7.5 (Max-tight derivations). A derivation $\Phi \vdash_{\text{max}} \Gamma \vdash_{\beta,r} t : B$ is garbage-tight if in every instance of rule (none) in Φ we have tight(A). It is max-tight if also Φ is tight, in the sense of Definition 3.2.

Then we can type substitutions:

Lemma 7.6 (Substitution and typings for max). Let $M \neq [\]$, $\Phi_t \vdash_{\text{max}} \Delta_1 : x_1 : M \vdash_{\beta,r} t_1 : A$, and $\Phi_p \vdash_{\text{max}} \Gamma \vdash_{\beta,r} p : M$. Then there exists a derivation $\Phi_t[x_1 \rightarrow p] \vdash_{\text{max}} \Gamma \cup \Delta_1 \vdash_{\beta,r} t_1[x_1 \rightarrow p] : A$ where $|\Phi_t[x_1 \rightarrow p]| = |\Phi_t| + |\Phi_p| - |M|$. Moreover if Φ_t and Φ_p are garbage-tight, then so is $\Phi_t[x_1 \rightarrow p]$.

Note that the substitution lemma differs in two points with respect to the those for the head and leftmost cases (Lemma 3.5 and Lemma 4.5):

(1) Relevance: we assume that the multi-set M is not empty, so that the typing hypothesis for p is derived with rule many,r,0 rather than none. Note that indeed meta-level substitution is used in the definition of $t \vdash_{\text{max}} p$ only when the substituted variable x does occur, that by relevance (Lemma 7.2), corresponds to having x assigned to a non-empty multi-set M in the type context typing the body of the abstraction.

(2) Garbage-tightness: the substitution lemma has to ensure that garbage-tightness is preserved. This has no analogous on the head and leftmost cases because their notions of tightness only concern the final judgement, while here tightness has also an internal component, given precisely by garbage-tightness.

Nonetheless, the proof of the substitution lemma follows exactly the same schemas in the head and leftmost cases, and is therefore omitted.

Subject reduction. The statement of the subject reduction property here slightly differs from the corresponding ones for the head and leftmost cases. Indeed, if $t \vdash_{\text{max}} \Gamma$ then the typing environment Γ for term t is not necessarily preserved when typing p, because the evaluation step may erase a subterm of t. Consider for instance term $t = (\lambda x . x')(yy)$. In any max-typing derivation of t, the typing context must declare y with an appropriate type that ensures that, when applying a well-typed substitution to t, the resulting term is still normalising for \vdash_{max}. For instance, the context should declare $y : \llbracket \lambda \rrbracket \rightarrow A, A$, or even $y : \text{neutral}$ if the typing derivation for t is max-tight. However, as $t \vdash_{\text{max}} x'$, the typing derivation for x' will clearly have a typing environment Γ' that maps y to $\llbracket \]$. Hence, the subject reduction property has to take into account the change of typing context, as shown below. In what follows we write $\Gamma \subseteq \Gamma'$ if $\Gamma(x) \subseteq \Gamma'(x)$ for every variable x, where \subseteq denotes multi-set inclusion.

Proposition 7.7 (Quantitative tight subject reduction for max). If $\Phi \vdash_{\text{max}} \Gamma \vdash_{\beta,r} t : A$ is max-tight and $t \vdash_{\text{max}} p$, then there exist $\Gamma' \subseteq \Gamma$ and an max-tight typing Ψ such that $\Psi \vdash_{\text{max}} \Gamma' \vdash_{\beta,r} p : A$ and $|\Phi| > |\Psi|$.

Proof. As for the leftmost case (Proposition 4.6) we need to strengthen the statement, as follows:

Let $t \vdash_{\text{max}} p$, $\Phi \vdash_{\text{max}} \Gamma \vdash_{\beta,r} t : A$ is garbage-tight, tight(Γ), and (tight(A) or $\text{abs}_{\text{max}}(t)$). Then there exist Γ' and a garbage-tight typing $\Psi \vdash_{\text{max}} \Gamma' \vdash_{\beta,r} p : A$ such that tight(Γ').
We give here the two interesting cases of evaluation at top level: the non-erasing one, that requires the strengthen substitution lemma, and the erasing one, that modifies the type context. The full proof is in Appendix D.1.

- Non-erasing top-level step:

\[
\begin{align*}
x \in f\nu(u) \\
(\lambda x.u)q & \xrightarrow{\text{max}} u\{x\leftarrow q\}
\end{align*}
\]

Assume \(\Phi \triangleright_{\text{max}} \Gamma \vdash (b,r)(\lambda x.u):A \) is garbage-tight and t\text{ight}(\Gamma). The derivation \(\Phi \) must end with rule \(\text{app}_b \), the derivation of its premiss for \(\lambda x.u \) must end with \(\text{fun}_b \). Hence, there are two garbage-tight derivations \(\Phi_u \triangleright_{\text{max}} \Gamma_u; x : M \vdash (b_u,r_u)u : A \) and \(\Phi_q \triangleright_{\text{max}} \Gamma_q \vdash (b_p,\text{r}_p)p : M \), with \((b,r) = (b_u + b_q + 1, r_u + r_q) \) and \(\Gamma = \Gamma_u \cup \Gamma_p \). Moreover, by hypothesis \(x \in f\nu(u) \), and so \(M \neq [\,] \) by relevance (Lemma 7.2). Then, the substitution lemma (Lemma 7.6) gives a garbage-tight derivation \(\Psi \triangleright_{\text{max}} \Gamma \vdash (b_u+b_q,r_u+r_q)u\{x\leftarrow q\} : A \) such that \(|\Psi| = |\Phi_u| + |\Phi_q| - |M| < |\Phi_u| + |\Phi_q| + 2 = |\Phi| \).

- Erasing top-level step:

\[
\begin{align*}
x \notin f\nu(u) \quad & \text{normal}_{\text{max}}(q) \\
(\lambda x.u)q & \xrightarrow{|q|_{\text{max}}} u
\end{align*}
\]

Assume \(\Phi \triangleright_{\text{max}} \Gamma \vdash (b,r)(\lambda x.u):A \) is garbage-tight and t\text{ight}(\Gamma). The derivation \(\Phi \) must end with rule \(\text{app}_b \), and the derivation of its premiss for \(\lambda x.u \) must end with \(\text{fun}_b \). Moreover, since \(x \notin f\nu(u) \), then by relevance (Lemma 7.2) the derivation of its premiss \(q \) must end with rule none:

\[
\begin{align*}
\Phi_u & \triangleright_{\text{max}} \Gamma_u \vdash (b_u,r_u)u : A \\
\Gamma_u & \vdash \text{fun}_b \\
\Gamma & = \Gamma_u \cup \Gamma_q
\end{align*}
\]

with \((b,r) = (b_u + b_q + 1, r_u + r_q) \) and \(\Gamma = \Gamma_u \cup \Gamma_q \). Since \(\Phi \) is garbage-tight, then \(\Gamma_q \) is tight and \(A_q \) must be tight, and since normal_{\text{max}}(q), we can apply the tight indices property of normal forms (Proposition 7.4) and obtain \((b_q, r_q) = (0, |q|_{\text{max}}) \), so that \((b_u, r_u) = (b - 1, r - q_{\text{max}}) \). Since \text{tight}(\Gamma_u \cup \Gamma_q) we have \text{tight}(\Gamma_u), so \Phi_u is the desired garbage-tight derivation. Moreover, \(|\Phi_u| < |\Phi_u| + |\Phi_q| + 2 = |\Phi| |.

\[\square\]

Correctness theorem. Now the correctness theorem easily follows. It differs from the corresponding theorem in Section 3.1 in that the second index in the max-tight typing judgement does not only measure the size of the normal form but also the sizes of all the terms erased during evaluation (and necessarily in normal form).

Theorem 7.8 (Tight correctness for max-evaluation). Let \(\Phi \triangleright_{\text{max}} \Gamma \vdash (b,r)t : A \) be a max-tight derivation. Then there is an integer \(e \) and a term \(p \) such that normal_{\text{max}}(p), \(t \xrightarrow{e_{\text{max}}} p \) and \(|p|_{\text{max}} + e = r \). Moreover, if \(A = \text{neutral} \) then neutral_{\text{max}}(p).

Proof. See Appendix D.1. \[\square\]

On removing the measure of erased terms. It is possible to slightly modify the definition of system \(\text{max} \) so that the second counter \(r \) is exactly the size \(|p|_{\text{max}} \) of the normal form. Simply, one needs to modify the none rule as follows:

Indeed, by setting the second counter to 0, rule none\(^0\) ignores the size of erasable arguments.

7.2 Tight Completeness

Completeness is again similar to completeness in the head and leftmost cases, and differs from them in the same way as correctness differs from their correctness. Namely, the second index in the completeness theorem also accounts for the size of erased terms, and the appendix provides the proof of the subject expansion property. The completeness statement follows.

Proposition 7.9 (Normal forms are tightly typable in max). Let \(t \) be such that \(\text{normal}_{\text{max}}(t) \). Then

1. **Existence:** There exists a max-tight derivation \(\Phi \triangleright_{\text{max}} \Gamma \vdash^{(b, r)} t : A \).
2. **Structure:** Moreover, if \(\text{neutral}_{\text{max}}(t) \) then \(A = \text{neutral} \), and if \(\text{abs}_{\text{max}}(t) \) then \(A = \text{abs} \).

Lemma 7.10 (Anti-substitution and typings for max). If \(\Phi \triangleright_{\text{max}} \Gamma \vdash^{(b, r)} t \{ x \mapsto p \} : A \) and \(x \in \text{fv}(t) \), then there exist:

- A multi-set \(M \) different from \([\cdot]\);
- A typing derivation \(\Phi_t \triangleright_{\text{max}} \Gamma_t ; x : M \vdash ^{(b_t, r_t)} t : A \); and
- A typing derivation \(\Phi_p \triangleright_{\text{max}} \Gamma_p \vdash ^{(b_p, r_p)} p : M \)

such that:

- Typing context: \(\Gamma = \Gamma_t \uplus \Gamma_p \);
- Indices: \((b, r) = (b_t + b_p, r_t + r_p) \).
- Sizes: \(|\Phi| = |\Phi_t| + |\Phi_p| - |M| \).

Moreover, if \(\Phi \) is garbage-tight then so are \(\Phi_t \) and \(\Phi_p \).

Proposition 7.11 (Quantitative tight subject expansion for max). If \(\Phi \triangleright_{\text{max}} \Gamma \vdash ^{(b, r)} p : A \) is max-tight and \(t \xrightarrow{\text{max}} p \), then there exist \(\Gamma' \supseteq \Gamma \) and a max-tight typing \(\Psi \) such that \(\Psi \triangleright_{\text{max}} \Gamma' \vdash ^{(b + 1, r + e)} t : A \) and \(|\Phi| < |\Psi| \).

Proof. See Appendix D.2.

Theorem 7.12 (Tight completeness for for max). If \(t \xrightarrow{\text{max}}^k p \) with \(\text{normal}_{\text{max}}(p) \), then there exists an max-tight typing \(\Phi \triangleright_{\text{max}} \Gamma \vdash ^{(k, |p|_{\text{max}} + e)} t : A \). Moreover, if \(\text{neutral}_{\text{max}}(p) \) then \(A = \text{neutral} \), and if \(\text{abs}_{\text{max}}(p) \) then \(A = \text{abs} \).

Proof. See Appendix D.2.

8 Linear Head Evaluation

In this section, we consider the linear version of the head evaluation system, where **linear** comes from the linear substitution calculus (LSC), a formalism that is a subtle reformulation of Milner’s calculus with explicit substitutions [Kesner and Conchúir 2008; Milner 2007], which is inspired from the structural lambda-calculus [Accattoli and Kesner 2010]. The linear substitution calculus has all the good properties one expect from a calculus with explicit substitutions, inherited from those of Milner’s calculus [Kesner and Conchúir 2008]. It also has properties that no other calculus with explicit substitutions has, such as a residual system and a theory of standardisation [Accattoli et al. 2014].

Concretely, the LSC is a refinement of the \(\lambda \)-calculus where the language is extended with an explicit substitution constructor \([x \vdash p] \), and **linear substitution** is a micro-step rewriting rule
replacing one occurrence at a time—therefore, *linear* does not mean that variables have at most one occurrence, only that their occurrences are replaced one by one. Linear head evaluation—first studied in [Danos and Regnier 2004; Mascari and Pedicini 1994]—admits various presentations. The one in the LSC adopted here is the simplest one and has been introduced in [Accattoli 2012].

The insight here is that switching from head to linear head, and from the λ-calculus to the LSC only requires counting αx rules for the size of typings and the head variable for the size of terms—the type system, in particular is the same. The correspondence between the two system is spelled out in the last subsection of this part. Of course, switching to the LSC some details have to be adapted: a further index traces linear substitution steps, there is a new typing rule to type the new explicit substitution constructor, and the proof schema slightly changes, as the (anti-)substitution lemma is replaced by a *linear* (anti-)substitution one—these are unavoidable and yet inessential modifications.

Thus, the main point of this section is to split the complexity measure among the multiplicative steps (beta steps) and the exponential ones (substitutions). Moreover, linear logic proof nets are known to simulate the λ-calculus, and LSC is known to be isomorphic to the proof-nets used in the simulation [Accattoli 2018b]. Therefore, the results of this section directly apply to those proof nets.

Explicit substitutions. We start by introducing the syntax of our language, which is given by the following set Λ_{LSC} of terms, where $t[x\backslash p]$ is a new constructor called *explicit substitution* (shortened ES), that is equivalent to let $x = p$ in t:

\[
\text{LSC Terms} \quad t,p ::= x \mid \lambda x.t \mid tp \mid t[x\backslash p]
\]

The notion of *free* variable is defined as expected, in particular, $fv(t[x\backslash p]) := (fv(t) \setminus \{x\}) \cup fv(p)$.

(List of) substitutions and *linear head contexts* are given by the following grammars:

\[
\text{(List of) substitution contexts} \quad L ::= (L) \mid \langle \cdot \rangle \mid L[x\backslash t] \\
\text{Linear head contexts} \quad H ::= (H) \mid \langle \cdot \rangle \mid \lambda x.H \mid Ht \mid H[x\backslash t]
\]

We write $L(t)$ (resp. $H(t)$) for the term obtained by replacing the hole $\langle \cdot \rangle$ in context L (resp. H) by the term t. This *plugging* operation, as usual with contexts, can capture variables. We write $H\langle t \rangle$ when we want to stress that the context H does not capture the free variables of t.

Normal, neutral, and abs predicates. The predicate $\text{normal}_{\text{lhd}}$ defining linear head normal terms and $\text{neutral}_{\text{lhd}}$ defining linear head neutral terms are introduced in Fig. 11. They are a bit more involved than before, because switching to the micro-step granularity of the LSC the study of normal forms requires a finer analysis. The predicates are now based on three auxiliary predicates $\text{neutral}^{x}_{\text{lhd}}$, $\text{normal}^{x}_{\text{lhd}}$, and $\text{normal}^{y}_{\text{lhd}}$; the first two characterise neutral and normal terms whose head variable x is free, the third instead characterises normal forms whose head variable is bound. Note also that the abstraction predicate abs_{lhd} is now defined *modulo* ES, that is, a term such as $(\lambda x.t)[z\backslash p][y\backslash u]$ satisfies the predicate. It is worth noticing that a term t of the form $H\langle y \rangle$ does not necessarily verify $\text{normal}_{\text{lhd}}(t)$, e.g. $(\lambda z.(yx))[x\backslash y]p$, because it has a multiplicative redex (defined below). Examples of linear head normal forms are $\lambda x.xy$ and $(yx)[x\backslash z](II)$.

Micro-step semantics. Linear head evaluation is often specified by means of a non-deterministic strategy having the diamond property [Accattoli 2012]. Here, however, we present a minor deterministic variant, in order to follow the general schema presented in the introduction. The deterministic notion of linear head evaluation lhd is in Fig. 12. An example of \rightarrow_{lhd}-sequence is

\[
(\lambda z.(xx)[x\backslash y]p)[y\backslash w] \rightarrow_{\text{lhd}} (xx)[x\backslash y][z\backslash p][y\backslash w] \rightarrow_{\text{lhd}} (wx)[x\backslash y][z\backslash p][y\backslash w]
\]
way to understand why ES do not count for with ES by counting 1 for variables—note that ES do not contribute to the linear head size. One

\[\text{linear substitution} \]

\[\Rightarrow \]

\[\text{linear substitution} \]
head normal then amounts to go through the left branch of the syntax tree, as for the head case, and once arrived on the head variable, verifying that the variable does not point to a ES (that is, it points to an abstraction or nowhere, if it is a free variable).

Multi types. We consider the same multi types of Sect. 3, but now typing judgements are of the form $\Gamma \vdash \lfloor b, e, r \rfloor t : A$, where (b, e, r) is a triple of integers whose intended meaning is explained in the next paragraph. The typing system $\mathit{lh}d$ is defined in Fig. 14. By abuse of notation, we use for all the typing rules—except ES which is a new rule—the same names used for hd. As in the case of hd and lo, there is an alternative way to specify the functional rules, which is also applicable now to rule ES. These formulations are often used in the technical proofs, they look as follows:

$$\Gamma; x : M \vdash \lfloor b, e, r \rfloor t : A \quad \Gamma; x : \mathit{Tight} \vdash \lfloor b, e, r \rfloor t : \mathit{Tight} \quad \Gamma; x : \mathit{Abs} \vdash \lfloor b, e, r \rfloor t : \mathit{Abs}$$

As in the head and leftmost case, the size of a typing derivation $|\Phi|$ is the number of rules in Φ, not counting the occurrences of rule many.

Indices. The roles of the three components of (b, e, r) in a typing derivation $\Gamma \vdash \lfloor b, e, r \rfloor t : A$ can be described as follows:

- **b and multiplicative steps:** similarly to the head case, b is supposed to bound the number of multiplicative redexes, i.e. the number of subterms of the form $L(\lambda x.t)u$ that are reduced during an evaluation to normal form.
- **e and exponential steps:** the index e is supposed to bound the number of exponential redexes, i.e. subterms of the form $H(\langle x \rangle[x\setminus t])$ that are reduced during an evaluation to normal form.
Note that \(e \) is incremented by axioms, and thus it counts the number of times an axiom is replaced by an exponential step. The ES typing rule does not change the index because a single ES can be involved in many exponential steps along an evaluation sequence.

- **r and size of the result**: \(r \) counts the rules typing variables, abstractions and applications (i.e. \(\text{ax}, \text{fun} \) and \(\text{app}^{hd} \)) that cannot be consumed by \(lhd \) evaluation, so that they appear in the linear head normal form of a term. Note that the ES constructor is not consider part of the head of terms.

Note also that the typing rules assume that variable occurrences (corresponding to ax rules) end up in the result, by having the third index set to 1. When a variable \(x \) becomes bound by an ES (rule ES) or by an abstraction destined to be applied (\(\text{fun}_b \)), the number of uses of \(x \), expressed by the multiplicity of the multi-set \(M \) typing it, is subtracted from the size of the result, because those uses of \(x \) correspond to the times that it shall be replaced via a linear substitution step, and thus they should no longer be considered as contributing to the result. Coherently, that number instead contributes to the index tracing linear substitution steps.

Definition 8.2 (Tight derivations). A derivation \(\Phi \vdash_{lhd} \Gamma \vdash^{(b,e,r)} : B \) is **tight** if \(\text{tight}(B) \) and \(\text{tight}(\Gamma) \).

Example. Consider again the term \(t_0 = (\lambda x_1.(\lambda x_0.x_0 x_1) x_1) I \), where \(I \) is the identity function \(\lambda x_3.x_3 \). The linear head evaluation sequence from \(t_0 \) to \(lhd \) normal-form is given below, in which we distinguish the multiplicative steps from the exponential ones.

\[
\begin{align*}
(\lambda x_1.(\lambda x_0.x_0 x_1) x_1) I & \quad \rightarrow_m (\lambda x_0.x_0 x_1) x_1 \mid x_1 I \quad \rightarrow_m \\
(x_0 x_1) [x_0 \mid x_1] [x_1 I] & \quad \rightarrow_e (x_1 x_1) [x_0 \mid x_1] [x_1 I] \quad \rightarrow_e \\
(\lambda x_0.x_0 x_1) [x_0 \mid x_1] & \quad \rightarrow_m x_3 [x_3 \mid x_1] [x_0 \mid x_1] [x_1 I] \quad \rightarrow_e \\
x_1 [x_3 \mid x_1] [x_0 \mid x_1] [x_1 I] & \quad \rightarrow_e I [x_3 \mid x_1] [x_0 \mid x_1] [x_1 I]
\end{align*}
\]

The evaluation sequence has length 7: 3 multiplicative steps and 4 exponential steps. The linear head normal form has size 2. We now give a tight typing for the term \(t_0 \), by writing again \(\text{abs}^{abs} \) for \(\text{abs} \).

\[
\begin{align*}
x_1 : [\text{abs}] & \vdash^{(0,0,1)} x_1 : \text{abs} \\
x_0 : [\text{abs}^{abs}] & \vdash^{(0,0,1)} x_0 : \text{abs}^{abs} \\
x_1 : [\text{abs}] & \vdash^{(0,0,1)} x_1 : [\text{abs}] \\
x_0 : [\text{abs}^{abs}] & \vdash^{(1,1,1)} x_0 : x_1 : [\text{abs}^{abs}] \\
x_1 : [\text{abs}] & \vdash^{(1,1,1)} x_1 : [\text{abs}^{abs}] \\
x_1 : [\text{abs}, \text{abs}^{abs}] & \vdash^{(1,1,2)} (\lambda x_1.(\lambda x_0.x_0 x_1) x_1) : \text{abs} \\
x_0 : [\text{abs}^{abs}] & \vdash^{(0,0,1)} x_0 : x_1 : [\text{abs}^{abs}] \\
x_1 : [\text{abs}] & \vdash^{(0,0,1)} x_1 : [\text{abs}^{abs}] \\
k^{(0,3,0)} & \vdash^{(1,1,2)} (\lambda x_1.(\lambda x_0.x_0 x_1) x_1) I : \text{abs}
\end{align*}
\]

Indeed, the pair \((3, 4, 2)\) represents 3 (resp. 4) multiplicative (resp. exponential) evaluation steps to \(lhd \) normal-form, and a linear head normal form of size 2.

8.1 Tight Correctness

As in the case of head and LO evaluation, the correctness proof is based on three main properties: properties of normal forms—themselves based on a lemma about neutral terms—the interaction between (linear head) substitution and typings, and subject reduction.

Neutral terms and properties of normal forms. As for the head case, the properties of tight typing of \(lhd \) normal forms depend on a spreading property of \(lhd \) neutral terms. Additionally, they also
require a characterisation of the shape of type contexts for tight derivations of neutral and normal terms.

Lemma 8.3 (Tight spreading on neutral terms, plus typing contexts). Let \(\Phi_{\text{thd}} \Gamma \vdash (b,e,r) t : A \) be a derivation.

1. If \(\text{neutral}_{\text{thd}}(t) \) then \(x \in \text{dom}(\Gamma) \). Moreover, if tight(\(\Gamma(x) \)) then tight(A) and \(\text{dom}(\Gamma) = \{x\} \).
2. If \(\text{normal}_{\text{thd}}(t) \) then \(x \in \text{dom}(\Gamma) \). Moreover, if tight(\(\Gamma(x) \)) then \(\text{dom}(\Gamma) = \{x\} \).
3. If \(\text{normal}_{\text{thd}}(t) \) and tight(A) then \(A = \text{abs} \) and \(\Gamma \) is empty.

In all the cases, if tight(\(\Gamma \)), then the last rule of \(\Phi \) is not \(\text{app}_0 \).

Proof. By induction on \(\Phi \). See Appendix E.1. \(\square \)

Proposition 8.4 (Properties of thd tight typings for normal forms). Let \(t \) be such that \(\text{normal}_{\text{thd}}(t) \), and \(\Phi_{\text{thd}} \Gamma \vdash (b,e,r) t : A \) be a typing derivation.

1. Size bound: \(|t|_{\text{thd}} \leq |\Phi| \).
2. Tightness: if \(\Phi \) is tight then \(b = e = 0 \) and \(r = |t|_{\text{thd}} \).
3. Neutrality: if \(A = \text{neutral} \) then \(\text{neutral}_{\text{thd}}(t) \).

Proof. The proof is by induction on \(\Phi \). We only show here the interesting case which allows to understand the use of Lemma 8.3, the full proof can be found in Appendix E.1. Let \(t = p[x\backslash u] \), whose derivation \(\Phi \) has the following form:

\[
\begin{array}{ll}
\Psi_{\text{thd}} \quad \Delta; x : M \vdash (b',e',r') p : A \\
\end{array}
\]

with \(b = b' + b'', e = e' + e'', r = r' + r'' \), and \(\Gamma = \Delta \uplus \Pi \).

1. Size bound: by i.h. \(|p|_{\text{thd}} \leq |\Psi| \). Then \(|t|_{\text{thd}} = |p|_{\text{thd}} \leq |\Psi| < |\Phi| \).

2. Tight bound: There are two cases:
 - \(\text{normal}_{\text{thd}}(p) \) for some \(y \neq x \). By Lemma 8.3.2 \(y \in \text{dom}(\Delta) \). All assignments in \(\Delta \) are tight because \(\Phi \) is tight, and so applying Lemma 8.3.2 again we obtain that \(\text{dom}(\Delta) = \{y\} \), that is, that \(M = [\] \). Two consequences: first, the ES has no right premiss, that is, it rather has the following shape:

\[
\begin{array}{ll}
\Psi_{\text{thd}} \quad \Delta; x : M \vdash (b', e', r') p : A \\
\end{array}
\]

second, \(\Psi \) is tight, and so by i.h. \(b = e = 0 \) and \(r = |p|_{\text{thd}} \). The statement follows from the fact that \(|p|_{\text{thd}} = |p[x\backslash u]|_{\text{thd}} \).

- \(\text{normal}_{\text{thd}}(p) \). If \(\Phi \) is tight then \(A = \text{tight} \) and by Lemma 8.3.3 the context \(\Delta; x : M \) is empty, that is, \(M = [\] \). Two consequences: first, the ES has no right premiss, that is, it rather has the following shape:

\[
\begin{array}{ll}
\Psi_{\text{thd}} \quad \Delta; x : M \vdash (b', e', r') p : A \\
\end{array}
\]

second, \(\Psi \) is tight, and so by i.h. \(b = e = 0 \) and \(r = |p|_{\text{thd}} \). The statement follows from the fact that \(|p|_{\text{thd}} = |p[x\backslash u]|_{\text{thd}} \). \(\square \)
Linear substitution lemma. The main difference in the proof schema with respect to the head case is about the substitution lemma, that is now expressed differently, because evaluation no longer relies on meta-level substitution. Linear substitutions consume one type at a time; performing a linear head substitution on a term of the form $H\langle x\rangle[x_1,t]$ consumes exactly one type resource associated to the variable x, and all the other ones remain in the typing context after the partial substitution.

Lemma 8.5 (Linear substitution and typings for lhd). Let $\Phi \vdash_{lhd} x : M ; \Gamma t^{(b,e,r)}H\langle x\rangle : A$. Then there exists $B \in M$ such that for all $\Phi_t \vdash_{lhd} \Gamma_t t^{(b_t,e_t,r_t)}t : B$ there exists a derivation $\Psi \vdash_{lhd} x : M \setminus \{B\}; \Gamma \cup \Gamma_t t^{(b+b_t,e+e_t,r+r_t-1)}H\langle t\rangle : A$. Moreover, $|\Psi| = |\Phi| + |\Phi_t| - 1$.

Proof. By induction on H. See Appendix E.1. \qed

Subject reduction. Quantitative subject reduction is also refined, by taking into account the fact that now there are two evaluation steps, whose numbers are traced by two different indices.

Proposition 8.6 (Quantitative subject reduction for lhd). If $\Phi \vdash \Gamma t^{(b,e,r)}t : A$ then
1. If $t \rightarrow_m u$ then $b \geq 1$ and there is a typing Φ' such that $\Phi' \vdash \Gamma t^{(b-1,e,r)}u : A$ and $|\Phi'| = |\Phi| - 1$.
2. If $t \rightarrow_e u$ then $e \geq 1$ and there is a typing Φ' such that $\Phi' \vdash \Gamma t^{(b,e-1,r)}u : A$ and $|\Phi'| = |\Phi| - 1$.

Proof. The proof is by induction on $t \rightarrow_m u$ and $t \rightarrow_e u$, using Lemma 8.5. See Appendix E.1. \qed

Note that quantitative subject reduction does not assume that the typing derivation is tight: as for the head case, the tight hypothesis is only used for the study of normal forms—it is needed for subject reduction / expansion only if evaluation can take place inside arguments, as in the leftmost and maximal cases.

Note also that the size of derivations decreases of exactly 1—it follows from the *moreover* part of the linear substitution lemma. This fact contrasts strikingly with respect to the other subject reduction properties in the paper, where it is not possible to have such an uniform bound, because they adopt an operational semantics based on meta-level (full) substitution, that may replace many or no variable occurrences at the same time. This is one of the reasons behind our slogan that multi types more naturally measure evaluation in the LSC rather than in the λ-calculus.

Correctness. According to the spirit of tight typings, linear head correctness does not only provide the size of (linear head) normal forms, but also the lengths of evaluation sequences to (linear head) normal form: the two first integers b and e in the final judgement count exactly the total number of evaluation steps to (linear head) normal form.

Theorem 8.7 (Tight correctness for lhd). Let $\Phi \vdash_{lhd} \Gamma t^{(b,e,r)}t : A$ be a tight derivation. Then there exists p such that $t \rightarrow_{lhd}^{b+e} p$, normal_{lhd}(p) and $|p|_{lhd} = r$. Moreover, if $A = \text{neutral}$ then neutral_{lhd}(p).

Proof. See Appendix E.1. \qed

8.2 Tight Completeness

As in the case of head and LO evaluation the completeness proof is based on the following properties: typability of linear head normal forms, interaction between (linear head) anti-substitution and typings, and subject expansion. The proofs are analogous to those of the completeness for head and LO evaluation, up to the changes for the linear case, that are instead analogous to those of the correctness of the previous subsection. The statements follow.

Proposition 8.8 (Linear head normal forms are tightly typable for lhd). Let t be such that normal_{lhd}(t). Then there exists a tight typing $\Phi \vdash_{lhd} \Gamma t^{(0,0,|t|_{lhd})}t : A$. Moreover, if neutral_{lhd}(t) then $A = \text{neutral}$, and if abs_{lhd}(t) then $A = \text{abs}$.
The head and linear head strategies are specifications at different granularities of the same notion.

Lemma 8.9 (Linear anti-substitution and typings for lhd). Let $\Phi \triangleright_{lhd} \Gamma \vdash (b, e, r) H \langle \mu \rangle : A$, where $x \notin u$. Then there exists
- a type B
- a typing derivation $\Phi_u \triangleright_{lhd} \Gamma_u \vdash (b_u, e_u, r_u) u : B$
- a typing derivation $\Phi_H \langle \langle x \rangle \rangle \triangleright_{lhd} \Gamma' \cup \exists x: [B] \vdash (b', e', r') H \langle \langle x \rangle \rangle : A$

such that
- Typing contexts: $\Gamma = \Gamma' \cup \Gamma_u$.
- Indices: $(b, e, r) = (b' + b_u, e' + e_u, r' + r_u - 1)$.
- Sizes: $|\Phi| = |\Phi_u| + |\Phi_H \langle \langle x \rangle \rangle | - 1$.

Proof. By induction on H. See Appendix E.2.

Proposition 8.10 (Quantitative subject expansion for lhd). If $\Phi' \triangleright_{lhd} \Gamma \vdash (b, e, r)t : A$ then
1. If $t \odot_m t'$ then there is a derivation $\Phi' \triangleright_{lhd} \Gamma \vdash (b+1, e, r)t : \tau$ and $|\Phi'| = |\Phi| + 1$.
2. If $t \to_\epsilon t'$ then there is a derivation $\Phi' \triangleright_{lhd} \Gamma \vdash (b, e+1, r)t : A$ and $|\Phi'| = |\Phi| + 1$.

Proof. See Appendix E.2.

As for linear head correctness, linear head completeness also refines the information provided about the lengths of the evaluation sequences: the number k of evaluation steps to (linear head) normal form is now split into two integers k_1 and k_2, respectively, the multiplicative and exponential steps in such evaluation sequence.

Theorem 8.11 (Tight completeness for lhd). Let $t \to_{lhd}^k p$, where $\text{normal}_{lhd}(p)$. Then there exists a tight type derivation $\Phi \triangleright_{lhd} \Gamma \vdash (k_1, k_2, p|_{lhd}) t : A$, where $k = k_1 + k_2$. Moreover, if $\text{neutral}_{lhd}(p)$, then $A = \text{neutral}$, and if $\text{abs}_{lhd}(p)$ then $A = \text{abs}$.

Proof. See Appendix E.2.

8.3 Relationship Between Head and Linear Head

The head and linear head strategies are specifications at different granularities of the same notion of evaluation. Their type systems are also closely related—in a sense that we now make explicit, they are the same system.

In order to formalise this relationship we define the transformation \mathcal{L} of hd-derivations into (linear, hence the notation) lhd-derivations as: ax in hd is mapped to ax in lhd, fun_r in hd is mapped to fun_r in lhd, fun_p in hd is mapped to fun_p in lhd, and so on. This transformation preserves the context and the type of all the typing judgements. Of course, if one restricts the lhd system to λ-terms, there is an inverse transformation N of lhd-derivations into (non-linear, hence the notation) hd-derivations, defined as expected. Together, the two transformation realise an isomorphism.

Proposition 8.12 (Head isomorphism). Let t be a λ-term without explicit substitutions. Let $|\cdot|_{\text{ax}}$ denote the number of axiom rules in a derivation. Then
1. Non-linear to linear: if $\Phi \triangleright_{hd} \Gamma \vdash (b, r)t : A$ then there exists $s \geq 0$ such that $\mathcal{L}(\Phi) \triangleright_{lhd} \Gamma \vdash (b, e, r')t : A$, where $r' = r - e + |\Phi|_{\text{ax}}$. Moreover, $N(\mathcal{L}(\Phi)) = \Phi$.
2. Linear to non-linear: if $\Phi \triangleright_{lhd} \Gamma \vdash (b, e, r)t : A$ then $N(\Phi) \triangleright_{hd} \Gamma \vdash (b, r')t : A$, where $r = e + r' - |\Phi|_{\text{ax}}$. Moreover, $\mathcal{L}(N(\Phi)) = \Phi$.

The proof is straightforward.

Morally, the same type system measures both head and linear head evaluations. The difference is that to measure head evaluation and head normal forms one forgets the number of axiom typing.
rules, that coincides exactly with the number of linear substitution steps, plus 1 for the head variable of the linear normal form. In this sense, multi types more naturally measure linear head evaluation. Roughly, a tight multi type derivation for a term is nothing else but a coding of the evaluation in the LSC, including the normal form itself.

On the number of substitution steps. It is natural to wonder how the index e introduced by L in Proposition 8.12.1 is related to the other indices b and r. This kind of questions has been studied at length in the literature about reasonable cost models. It is known that $e = O(b^2)$ for any λ-term, even for untypable ones, see [Accattoli and Dal Lago 2012] for details. The bound is typically reached by the diverging term $\delta\delta$, which is untypable, but also by the following terminating (and therefore typable) term $t_n := (\lambda x_n\ldots(\lambda x_1.(\lambda x_0.(x_0x_1\ldots x_n))x_1)x_2\ldots x_n)I$. Indeed, t_n evaluates in $2n$ multiplicative steps (one for turning each β-redex into an ES, and one for each time that the identity comes in head position) and $\Omega(n^2)$ exponential steps.

On terms with ES. Relating typing judgements for λ-terms with ES to judgements for ordinary λ-terms is a bit trickier—we only sketch the idea. One needs to introduce the unfolding operation $(\cdot) : \Lambda_{lsc} \rightarrow \Lambda$ on λ-terms with ES, that turns all ES into meta-level substitutions, producing the underlying ordinary λ-term. For instance, $(x[x'y][y'z]) = z$. As in Proposition 8.12.2, types are preserved:

Lemma 8.13 (Unfolding and lhd derivations). Let $t \in \Lambda_{lsc}$.
If $\Phi \vdash_{lhd} \Gamma \vdash^{(b,e,r)} t : A$ then there exists $\Psi \vdash_{hd} \Gamma \vdash^{(b,r-1)} t : A$.

Note that the indices are also preserved. It is possible to also spell out the relationship between Φ and Ψ (as done in [Kesner et al. 2018]), that simply requires a notion of unfolding of typing derivations, and that collapses on the transformation N in the case of ordinary λ-terms.

9 CONCLUSIONS

Type systems provide guarantees both internally and externally. Internally, a typing discipline ensures that a program in isolation has a given desired property. Externally, the property is ensured compositionally: plugging a typed program in a typed environment preserves the desired property. Multi types (a.k.a. non-idempotent intersection types) are used in the literature to quantify the resources that are needed to produce normal forms. Minimal typing derivations provide exact upper bounds on the number of β-steps plus the size of the normal form—this is the internal guarantee. Unfortunately, such minimal typings provide almost no compositionality, as they essentially force the program to interact with a linear environment. Non-minimal typings allow compositions with less trivial environments, at the price of laxer bounds.

In this paper we have engineered typing so that, via the use of tight constants among base types, some typing judgements express compositional properties of programs while other typing judgements, namely the tight ones, provide exact and separate bounds on the lengths of evaluation sequences on the one hand, and on the sizes of normal forms on the other hand. The distinction between the two counts is motivated by the size explosion problem, where the size of terms can grow exponentially with respect to the number of evaluation steps.

We conducted this study building on some of the ideas in [Bernadet and Graham-Lengrand 2013a], by presenting a flexible and parametric typing framework, which we systematically applied to three evaluation strategies of the pure λ-calculus: head, leftmost-outermost, and maximal.

In the case of leftmost-outermost evaluation, we have also developed the traditional shrinking approach which does not make use of tight constants. One of the results is that the number of (leftmost) evaluation steps can be measured using only the (sizes) of the types of the final typing
judgement, in contrast to the size of the whole typing derivation. Another point, is the connection between tight typings and minimal unitary shrinking typings without tight constants.

In the case of maximal evaluation, we have circumvented the traditional techniques to show strong normalisation: by focusing on the maximal deterministic strategy, we do not require any use of memory operator or subtyping for abstractions to recover subject reduction.

We have also extended our (pure) typing framework to linear head evaluation, presented in the linear substitution calculus (LSC). The result is that tight typings naturally encode evaluation in the LSC, which can be seen as the natural computing device behind multi types. In particular, and surprisingly, exact bounds for head and linear head evaluation rely on the same type system.

ACKNOWLEDGMENTS
We are grateful to Alexis Bernadet, Antonio Bucciarelli, Giulio Guerrieri, Maico Leberle, Pierre Vial, Andrés Viso and the anonymous reviewers for useful discussions and comments. This work has been partially funded by the ANR JCJC grant COCA HOLA (ANR-16-CE40-004-01).

Conflicts of Interest
None.

REFERENCES

A APPENDIX: HEAD EVALUATION

A.1 Tight Head Correctness

Lemma A.1 (Multi-Set Decomposition for hd). Let \(M = \bigcup_{k \in K} M_k \). Then \(\Phi \vdash_{\text{hd}} \Gamma \vdash^{(b, r)} t : M \) if and only if there exist \((\Phi_k)_{k \in K} \), \((\Gamma_k)_{k \in K} \), \((b_k)_{k \in K} \) and \((r_k)_{k \in K} \) such that \(\Phi_k \vdash_{\text{hd}} \Gamma_k \vdash^{(b_k, r_k)} t : M_k \), where \(\Gamma = \bigcup_{k \in K} \Gamma_k \), \(b = \sum_{k \in K} b_k \) and \(r = \sum_{k \in K} r_k \). Moreover, \(|\Phi|_{\text{hd}} = +_{k \in K} |\Phi_k|_{\text{hd}} \).

Proof. By induction on the size of \(K \). \(\square \)

Lemma 3.5 (Substitution and typings for hd). Let \(\Phi_t \vdash_{\text{hd}} \Delta; x : M \vdash^{(b, r)} t : A \) and \(\Phi_p \vdash_{\text{hd}} \Gamma \vdash^{(b', r')} p : M \). Then there exists a derivation \(\Phi_{t(x-p)} \vdash_{\text{hd}} \Gamma \cup \Delta \vdash^{(b+b', r+r')} \{ x = p \} : A \) where \(|\Phi_{t(x-p)}| = |\Phi_r| + |\Phi_p| - |M| \).

Proof. Let \(\Phi_p \) (resp. \(\Phi_t \)) be the typing derivation of \(\Gamma \vdash^{(b, r)} p : M \) (resp. \(\Delta; x : M \vdash^{(b, r)} t : A \)) in system \(\text{hd} \). We prove that there exists a typing \(\Phi_{t(x-p)} \vdash_{\text{hd}} \Gamma \cup \Delta \vdash^{(b+b', r+r')} \{ x = p \} : A \). The proof is by induction on \(\Phi_t \). Let us write \(M \) as \([B_i]_{i \in I} \) for some (potentially empty) set of indices \(I \). We reason by cases of the last rule of \(\Phi_t \):

- Rule \(\text{ax} \): Two cases:
 (1) \(t = x \), and so \(t(x-p) = x(x-p) = p \) and \(\Phi_t \vdash_{\text{hd}} x : [A] \vdash^{(b, r)} x : A \). Thus, \(|I| = 1 \) and \(M = [A] \), and the hypothesis \(\Phi_p \vdash_{\text{hd}} \Gamma \vdash^{(b', r')} p : [A] \) is obtained by applying a unary many rule to a derivation of the form \(\Psi_p \vdash_{\text{hd}} \Gamma \vdash^{(b', r')} p : A \). Given that \(x(x-p) = p \), \(r + r' = 0 + r' = r' \), and \(b + b' = b' \), the typing derivation \(\Phi_{t(x-p)} := \Psi_p \) satisfies the requirements.
 (2) \(t = y \), and so \(M = [] \), \(b' = r' = 0 \) and \(t(x-p) = y(x-p) = y \). Then it is enough to take \(\Phi_{t(x-p)} := \Phi_t \).

- Rule \(\text{fun}_b \). Then \(t = \lambda y.u \), and \(\Phi_t \) is such that \(b = b_u + 1 \), and it has the following form:
 \[
 \Phi_u \vdash_{\text{hd}} \Delta; x : M; y : N \vdash^{(b_u, r)} \{ u(x-p) \} : B
 \]
 By \(i.h. \) there exists \(\Phi_{u(x-p)} \) such that
 \[
 \Phi_{u(x-p)} \vdash_{\text{hd}} \Gamma \cup \Delta \vdash^{(b_u+b', r+r')} \{ u(x-p) \} : B
 \]
 from which by applying \(\text{fun}_b \) we obtain:
 \[
 \Phi_{t(x-p)} \vdash_{\text{hd}} \Gamma \cup \Delta \vdash^{(b_u+b'+1, r+r')} \lambda y.u \vdash^{(b_u+b', r+r')} \{ x = p \} : N \rightarrow B
 \]
 The derivation \(\Phi_{t(x-p)} \) satisfies the requirements because \(b_u + b' + 1 = b + b' \).

- Rule \(\text{fun}_r \). Then \(t = \lambda y.u \), and \(\Phi_t \) is such that \(r = r'' + 1 \) and it has the following form:
 \[
 \Phi_u \vdash_{\text{hd}} \Delta; x : M; y : \text{Tight} \vdash^{(b, r')} \{ u(x-p) \} \vdash^{\text{tight}} \lambda y.u : \text{abs}
 \]
 By \(i.h. \) there exists \(\Phi_{u(x-p)} \) such that
 \[
 \Phi_{u(x-p)} \vdash_{\text{hd}} \Gamma \cup \Delta \vdash^{(b+b', r''+r')} \{ u(x-p) \} \vdash^{\text{tight}} \lambda y.u : \text{abs}
 \]
 from which by applying \(\text{fun}_r \) we obtain:
 \[
 \Phi_{t(x-p)} \vdash_{\text{hd}} \Gamma \cup \Delta \vdash^{(b+b'+r'', r''+r'+1)} \lambda y.u \vdash^{(b+b', r''+r')} \{ x = p \} : \text{abs}
 \]
 that satisfies the requirements because \(r'' + r' + 1 = r + r' \).

- Rule \(\text{app}_b \). Then \(t = uq \). The left premiss of the \(\text{app}_b \) rule in \(\Phi_t \), assigns a type \(u : N \rightarrow A \) and the right premiss is a many rule with \(k := |N| \) premisses. The multiset \(M \) assigned to \(x \) can be partioned in \(k + 1 \) (potentially empty) multisets \(M_1, \ldots, M_k \) and \(M_u \), to be distributed among
the premisses of the \(\text{app}_b \) rule of \(\Phi \) as follows (if \(k=0 \) then the many rule has no premisses):

\[
\frac{\Phi_u \vdash_{\text{hd}} \Delta_u; x : M_u \triangleright (b^*, r^*) u : N \rightarrow A \quad (\Phi^j_{q} \vdash_{\text{hd}} \Delta^j_q; x : M_j \triangleright (b_j, r_j) q : C_j)_{j=1, \ldots, k}}{\Delta_u \uplus \Delta_q; x : M \triangleright (b^* + b^*, r^* + r^*) uq : A \quad \text{app}_b}
\]

where the notations satisfy:

\[
b^* = \sum_{j=1}^{k} b_j, r^* = \sum_{j=1}^{k} r_j, \quad \Delta_q = \biguplus_{j=1}^{k} \Delta^j_q, \quad \text{and} \quad M^* = \biguplus_{j=1}^{k} M_j,
\]

\[
\Delta = \Delta_u \uplus \Delta_q,
\]

\[
b = b^* + b^*, \quad \text{and}
\]

\[
r = r^* + r^*.
\]

Moreover, given the partition of \(M \) into \(M_1, \ldots, M_k, M_u \), the derivation \(\Phi_p \vdash_{\text{hd}} \Gamma \triangleright (b', r') p; M \)

of the first hypothesis gives rise, by Lemma A.1 to derivations \(\Psi_u \vdash_{\text{hd}} \Gamma_u \triangleright (b_u, r_u) p; M_u \)

and \((\Psi^j_q \vdash_{\text{hd}} \Gamma_j \triangleright (b'_j, r'_j) p; M_j)_{j=1, \ldots, k} \) with

\[
\Gamma = \Gamma_u \uplus \biguplus_{j=1}^{k} \Gamma_j,
\]

\[
b' = \sum_{j=1}^{k} b'_j, \quad \text{and}
\]

\[
r' = \sum_{j=1}^{k} r'_j.
\]

Now, by i.h. we can substitute these derivations \(\Psi_u \) and \(\Psi^j_q \) into the premisses of the \(\text{app}_b \)

rule, obtaining the derivations \(\Phi_{u(x-p)} \), \(\Phi^j_{q(x-p)} \), and \(\Psi_{q(x-p)} \) such that

\[
\Phi_{u(x-p)} \vdash_{\text{hd}} \Delta_u \uplus \Gamma_u \triangleright (b^* + b_u, r^* + r_u) u(x-p) : N \rightarrow A
\]

\[
\Psi_{q(x-p)} \vdash_{\text{hd}} \Delta_q \uplus \Gamma_q \triangleright (b^* + b^*, r^* + r^*) u(x-p) q(x-p) : (uq)(x-p) : A
\]

We conclude since

\[- \Delta_u \uplus \Delta_q \uplus \Gamma_u \uplus \Gamma_q = \Delta \uplus \Gamma.
\]

- The resulting first counter is as required:

\[
b^* = b^* + \sum_{j=1}^{k} (b_j + b'_j)
\]

\[
= b^* + \sum_{j=1}^{k} b_j + \sum_{j=1}^{k} b'_j
\]

\[
= b^* + b^* + b'
\]

\[
= b + b'
\]

- The resulting second counter is as required:

\[
r^* = r^* + \sum_{j=1}^{k} (r_j + r'_j)
\]

\[
= r^* + \sum_{j=1}^{k} r_j + \sum_{j=1}^{k} r'_j
\]

\[
= r + r'
\]

• **Rule \(\text{app}^{hd}_b \)**. Then \(t = uq \) and \(\Phi_t \) is such that \(r = r_u + 1 \) and it has the following form:

\[
\frac{\Phi_u \vdash_{\text{hd}} \Delta; x : M \triangleright (b, r_u) u : \text{neutral}}{\Delta; x : M \triangleright (b, r_u+1) uq : \text{neutral} \quad \text{app}^{bd}_b}
\]

By i.h. we can substitute \(\Phi_p \) into \(\Phi_u \), obtaining \(\Phi_{u(x-p)} \) such that

\[
\Psi \vdash_{\text{hd}} \Gamma \uplus \Delta \triangleright (b^* + b', r^* + r^*) u(x-p) q(x-p) : \text{neutral}
\]

By applying \(\text{app}^{hd}_b \) we obtain

\[
\Theta \vdash_{\text{hd}} \Gamma \uplus \Delta \triangleright (b^* + b', r^* + r^*) u(x-p) q(x-p) = (uq)(x-p) : \text{neutral}
\]
A.2 Tight Head Completeness

Proposition 3.8 (Normal forms are tightly typable for hd). Let t be such that $\text{normal}_{hd}(t)$. Then

1. Existence: there exists a tight derivation $\Phi \vdash_{hd} \Gamma \vdash^{(0,|t|_{hd})} t : A$.
2. Structure: moreover, if $\text{neutral}_{hd}(t)$ then $A = \text{neutral}$, and if $\text{abs}_{hd}(t)$ then $A = \text{abs}$.

Proof. By induction on $\text{normal}_{hd}(t)$. Cases:

1. Variable, i.e. $t = x$. Then the following derivation evidently satisfies all points of the statement:

 $$x : [\text{neutral}] \vdash^{(0,0)} x : \text{neutral} \quad \text{ax}$$

2. Abstraction, i.e. $t = \lambda y.p$ with $\text{normal}_{hd}(p)$. By i.h. there is a tight derivation $\Phi_p \vdash_{hd} \Delta \vdash^{(0,|p|_{hd})} p : \text{tight}$. Since the derivation Φ_p is tight, the typing context Δ has the shape $\Gamma ; y : \text{Tight}$ (potentially, $y : [\]$). Then the following is a tight derivation for $\lambda y.p$:

 $$\Phi_p \vdash_{hd} \Gamma ; y : \text{Tight} \vdash^{(0,|p|_{hd})} p : \text{tight} \quad \text{fun}_r$$

 Moreover, t is not neutral so the part about neutral terms is trivially true, while it is an abstraction and it is indeed typed with abs.

3. Application, i.e. $t = pu$ and $\text{normal}_{hd}(t)$ implies $\text{neutral}_{hd}(t)$, that implies $\text{neutral}_{hd}(p)$, that implies $\text{normal}_{hd}(p)$. By i.h., there is a tight derivation $\Psi \vdash_{hd} \Gamma \vdash^{(0,|p|_{hd})} p : \text{tight}$ typing p with neutral. Then the following is a tight derivation Φ types $t = pu$ with neutral, and having as second index satisfies $|p|_{hd} + 1 = |pu|_{hd} = |t|_{hd}$, as required:

 $$\Psi \vdash_{hd} \Gamma \vdash^{(0,|p|_{hd})} p : \text{neutral} \quad \text{app}_{hd}^r$$

 Moreover, $\text{neutral}_{hd}(t)$ and Φ does indeed type t with neutral. Dually, t is not an abstraction and so that point trivially holds.

\[\square\]

Lemma 3.9 (Anti-substitution and typings for hd). Let $\Phi \vdash_{hd} \Gamma \vdash^{(b,r)} t(x\leftarrow p) : A$. Then there exist:

- a multi-set M;
- a typing derivation $\Phi_t \vdash_{hd} \Gamma_t ; x : M \vdash^{(b_t,r_t)} t : A$; and
- a typing derivation $\Phi_p \vdash_{hd} \Gamma_p \vdash^{(b_p,r_p)} p : M$

such that:

- Typing context: $\Gamma = \Gamma_t \uplus \Gamma_p$;
- Indices: $(b,r) = (b_t + b_p, r_t + r_p)$.
- Size: $|\Phi| = |\Gamma_t| + |\Gamma_p| - |M|$.

Proof. By induction on t. Cases:

- Variable, i.e. $t = y$. Two subcases, depending on the identity of y:
(1) $x = y$. Then $t\{x\leftarrow p\} = x\{x\leftarrow p\} = p$, so that $\Phi_{\vdash_{hd}} \Gamma \vdash^{(b, r)} p : A$. There is only one possibility: $|M| = 1$, Φ_p is

$$\Phi_{\vdash_{hd}} \Gamma \vdash^{(b, r)} p : A \quad \frac{\text{many}}{\Gamma \vdash^{(b, r)} p : [A]}$$

and Φ_t is

$$x : [A] \vdash^{(0, 0)} x : A \quad \text{ax}$$

(2) $x \neq y$. Then $t\{x\leftarrow p\} = y\{x\leftarrow p\} = y$. There is only one possibility: $|M| = 0$, Φ_t is exactly Φ, that is,

$$y : [A] \vdash^{(0, 0)} y : A \quad \text{ax}$$

and Φ_p is

$$\vdash^{(0, 0)} p : [_] \quad \text{many}$$

- Abstraction, i.e. $t = \lambda y. u$. Then $t\{x\leftarrow p\} = \lambda y. u\{x\leftarrow p\}$. Two sub-cases, depending on the last rule of Φ:

1. **Rule fun_b.** Then Φ has the following form:

$$\Phi_{u\{x\leftarrow p\}} \vdash_{hd} \Gamma; y : N \vdash^{(b_{u\{x\leftarrow p\}}, r)} u\{x\leftarrow p\} : D \quad \frac{\text{fun}_b}{\Gamma \vdash^{(b_{u\{x\leftarrow p\}} + 1, r)} \lambda y. u\{x\leftarrow p\} : N \rightarrow D}$$

with $b = b_{u\{x\leftarrow p\}} + 1$. By i.h. there exist M and typing derivations

$$\Phi_{u\{x\leftarrow p\}} \vdash_{hd} \Delta_u; y : N; x : M \vdash^{(b_{u}, r_u)} u : A \quad \text{and} \quad \Phi_p \vdash_{hd} \Delta_p \vdash^{(b_p, r_p)} p : M$$

such that:
- **Typing context:** $\Gamma; y : N = (\Delta_u; y : N \uplus \Delta_p)$;
- **Indices:** $(b_{u\{x\leftarrow p\}}, r) = (b_u + b_p, r_u + r_p)$.

Then the derivation Φ_t defined as

$$\Phi_{u\{x\leftarrow p\}} \vdash_{hd} \Gamma; y : N; x : M \vdash^{(b_{u}, r_u)} u : D \quad \frac{\text{fun}_b}{\Gamma; x : M \vdash^{(b_{u} + 1, r_u)} \lambda y. u : N \rightarrow D}$$

satisfies the statement with respect to $b_t := b_u + 1$ and $r_t := r_u$ because:
- **Typing context:** the i.h. implies $\Gamma = (\Delta_u \uplus \Delta_p)$;
- **Indices:**
 - (a) $b_t + b_p = b_u + 1 + b_p = i.h. b_{u\{x\leftarrow p\}} + 1 = b$,
 - (b) $r_t + r_p = r_u + r_p = i.h. r_{u\{x\leftarrow p\}} = r$.

2. **Rule fun_r.** Then Φ has the following form:

$$\Phi_{u\{x\leftarrow p\}} \vdash_{hd} \Gamma; y : \text{Tight} \vdash^{(b_{u\{x\leftarrow p\}}, r_u)} u\{x\leftarrow p\} : \text{Tight} \quad \frac{\text{fun}_r}{\Gamma \vdash^{(b_{u\{x\leftarrow p\}} + 1)} \lambda y. u\{x\leftarrow p\} : \text{abs}}$$

with $r = r_{u\{x\leftarrow p\}} + 1$. By i.h. there exist M and typing derivations

$$\Phi_{u\{x\leftarrow p\}} \vdash \Delta_u; y : \text{Tight}; x : M \vdash^{(b_{u}, r_u)} u : \text{Tight} \quad \text{and} \quad \Phi_p \vdash \Delta_p \vdash^{(b_p, r_p)} p : M$$

such that:
- **Typing context:** $(\Gamma; y : \text{Tight}) = (\Delta_u; y : \text{Tight} \uplus \Delta_p)$;
- **Indices:** $(b, r_{u\{x\leftarrow p\}}) = (b_u + b_p, r_u + r_p)$.
Then the derivation Φ_t defined as

$$\Phi_u \vdash_{hd} \Gamma; y : \text{Tight}; x : M \vdash (b_u ; r_u) u : \text{tight}$$
$$\Gamma; x : M \vdash (b_u ; r_u + 1) \lambda y. u : \text{abs}$$

satisfies the statement with respect to $r_t := r_u + 1$ because:
- **Typing context**: the i.h. implies $\Gamma = (\Delta_u \uplus \Delta_p)$
- **Indices**:
 (a) $b_u + b_p = \text{i.h.} b$,
 (b) $r_t + r_p = r_u + 1 + r_p = \text{i.h.} r_u(x-p) + 1 = r$.

- **Application**, i.e. $t = uq$. Then $t(x-p) = u(x-p)q(x-p)$. Two sub-cases, depending on the last rule of Φ:

 1. **Rule** app_b. Then Φ has the following form:

 $$\Phi_{u(x-p)} \vdash_{hd} \Gamma_1 \vdash (b_1 ; r_1) u(x-p) : M \rightarrow A \quad \Phi_{q(x-p)} \vdash_{hd} \Gamma_2 \vdash (b_2 ; r_2) q(x-p) : M$$

 $$\Phi_{u(x-p)} \vdash_{hd} \Delta_u ; x : M_u \vdash (b_u ; r_u) u : M$$

 $$\Phi_{q(x-p)} \vdash_{hd} \Delta_q ; x : M_q \vdash (b_q ; r_q) q : M$$

 $$\Phi_{u(x-p)} \vdash_{hd} \Delta_u ; x : M_u \vdash (b_u ; r_u) u : M \rightarrow A$$

 $$\Phi_{q(x-p)} \vdash_{hd} \Delta_q ; x : M_q \vdash (b_q ; r_q) q : M$$

 such that:

 - **Typing context**: $\Gamma_1 = \Delta_u \uplus \Pi_u$ and $\Gamma_2 = \Delta_q \uplus \Pi_q$.
 - **Indices**: $(b_1, r_1) = (b_u + b_p ; r_u + r_p)$ and $(b_2, r_2) = (b_q + b_p, r_q + r_p)$.

 The derivations $\Phi_{u(x-p)}$ and $\Phi_{q(x-p)}$ can be summed (by inverting their many final rules and reapplying a many rule to the union of the premisses) obtaining a derivation $\Phi_{u(x-p)} \vdash_{hd} \Pi \vdash (b_u ; r_u) p : M$, where $\Pi = \Pi_u \uplus \Pi_q$ and $b_p = b_u + b_p$ and $r_p = r_u + r_p$ and $M = M_u \uplus M_q$. We then apply app_b to obtain the following derivation Φ_t:

 $$\Phi_{u(x-p)} \vdash_{hd} \Delta_u ; x : M_u \vdash (b_u ; r_u) u : M \rightarrow A$$

 $$\Phi_{q(x-p)} \vdash_{hd} \Delta_q ; x : M_q \vdash (b_q ; r_q) q : M$$

 $$\Phi_{u(x-p)} \vdash_{hd} \Delta_u \uplus \Delta_q ; x : M_u \uplus M_q \vdash (b_u + b_q, r_u + r_q) uq : \text{tight}$$

 We let $\Delta := \Delta_u \uplus \Delta_q, b_t := b_u + b_q$ and $r_t := r_u + r_q$ and then observe that we obtained the statement, because of the following equalities:

 (a) **Typing context**: $\Gamma = \Gamma_1 \uplus \Gamma_2 = \Delta_u \uplus \Pi_u \uplus \Delta_q \uplus \Pi_q = \Delta \uplus \Pi$.

 (b) **Indices**: $(b, r) = (b_1 + b_2, r_1 + r_2) = (b_1 + b_p, r_1 + r_p)$.

 2. **Rule** app_{b^+}. Let $t = uq$ so that $t(x-p) = u(x-p)q(x-p)$. Then Φ has the following form:

 $$\Phi_{u(x-p)} \vdash_{hd} \Gamma_1 \vdash (b ; r^+) u(x-p) : \text{neutral}$$

 $$\Gamma_1 \vdash (b ; r^+) u(x-p)q(x-p) : \text{neutral}$$

 with $r = r^++ 1$.

 By i.h. applied to $u(x-p)$, there exists M and typing derivations:

 $$\Phi_u \vdash_{hd} \Gamma_u ; x : M \vdash (b_u ; r_u) u : \text{neutral}$$

 $$\Phi_p \vdash_{hd} \Gamma_p \vdash (b_p ; r_p) p : M$$
such that:
- **Typing context**: $\Gamma = \Gamma_u \cup \Gamma_p$.
- **Indices**: $(b, r') = (b_u + b_p, r_u + r_p)$.
We then apply app_r^{hd} to obtain the following derivation Φ_t:

$$
\Phi_u \vdash_{lo} \begin{array}{c}
\Gamma_u; x : M \vdash^{(b_u, r_u)} u : \text{neutral} \\
\Gamma_u; x : M \vdash^{(b_u, r_u+1)} u : \text{neutral}
\end{array}
\text{app}_r^{hd}
$$

We let $\Gamma_t := \Gamma_u$, $b_t := b_u$ and $r_t := r_u + 1$ and then observe that we obtained the statement, because of the following equalities:

(a) **Typing context**: $\Gamma = \Gamma_t \cup \Gamma_p$.
(b) **Indices**: $(b, r) = (b, r' + 1) = (b_u + b_p, r_u + r_p) = (b_t + b_p, r_t + r_p)$.

\[\square \]

B Appendix: Leftmost Evaluation

B.1 Tight Leftmost Correctness

Lemma B.1 (Multi-set decomposition for lo). Let $M = \{ k \in K \mid M_k \}$. Then $\Phi \vdash_{lo} \Gamma \vdash^{(b, r)} t : M$ if and only if there exist $(\Phi_k)_{k \in K}$, $(\Gamma_k)_{k \in K}$, $(b_k)_{k \in K}$ and $(r_k)_{k \in K}$ and such that $\Phi_k \vdash_{lo} \Gamma_k \vdash^{(b_k, r_k)} t : M_k$ for all $k \in K$, where $\Gamma = \{ \phi_k \in K \mid b = +_{k \in K} b_k \text{ and } r = +_{k \in K} r_k \}$. Moreover, $|\Phi|_{lo} = +_{k \in K} |\Phi_k|_{lo}$.

Proof. By induction on the size of M.

Proposition 4.4 (Properties of lo typings for normal forms). Let t be such that $\text{normal}_{lo}(t)$, and $\Phi \vdash_{lo} \Gamma \vdash^{(b, r)} t : A$ be a tight type derivation. Then

(1) **Tight indices**: $b = 0$ and $r = |t|_{lo}$. As a consequence $|t|_{lo} \leq |\Phi|$.
(2) **Neutrality**: if $A = \text{neutral}$ then $\text{neutral}_{lo}(t)$.

Proof. By induction on t. Note that neutral_{lo} implies normal_{lo} and so we can apply the *i.h.* when neutral_{lo} holds on some subterm of t. If $\text{normal}_{lo}(t)$ because $\text{neutral}_{lo}(t)$ there are two cases:

- **Variable**, i.e. $t = x$. Then Φ has the following form and evidently verifies all the points of the statement:

 \[
 \frac{x : [A] \Gamma \vdash^{(0, 0)} x : A}{\text{ax}}
 \]

- **Application**, i.e. $t = pu$, $\text{neutral}_{lo}(p)$ and $\text{normal}_{lo}(u)$. Cases of the last rule of Φ:
 - app_p rule: this case is excluded by Lemma 4.3.
 - app_r^{lo} rule:

 $\Phi_p \vdash_{lo} \Gamma_p \vdash^{(b_p, r_p)} p : \text{neutral} \quad \Phi_u \vdash_{lo} \Gamma_u \vdash^{(b_u, r_u)} u : \text{tight} \\
 \Gamma_p \cup \Gamma_u \vdash^{(b_p + b_u + r_p + r_u + 1)} pu : \text{neutral}
 \text{app}_r^{lo}$

 with $b = b_p + b_u$, $r = r_p + r_u + 1$, and $\Gamma = \Gamma_p \cup \Gamma_u$.

 (1) **Tight counters**: if Φ is tight, then Φ_p and Φ_u are tight and by *i.h.* $r_p = |p|_{lo}$ and $b_p = 0$, and $r_u = |u|_{lo}$ and $b_u = 0$. Then, $r = r_p + r_u + 1 = |t|_{lo} = |p|_{lo} + |u|_{lo} + 1 = |pu|_{lo} = |t|_{lo}$ and $b = b_p + b_u = 0 + 0 = 0$.

 (2) **Neutrality**: $\text{neutral}_{lo}(t)$ holds by hypothesis.

Now, there is only one case left for $\text{normal}_{lo}(t)$:

- **Abstraction**, i.e. $t = \lambda x.p$ and $\text{normal}_{lo}(t)$ because $\text{normal}_{lo}(p)$. Cases of the last rule of Φ:
Lemma 4.5 (Substitution and typings for lo). Let $\Phi_t \vdash_{lo} \Delta; x : M \Gamma^{(b',r')}t : A$ and $\Phi_p \vdash_{lo} \Gamma^{(b',r')}p : M$. Then there exists a derivation $\Phi_t(x\rightarrow p) \vdash_{lo} \Gamma \uplus \Delta \Gamma^{(b+b'+r+r')}(x\rightarrow p) : A$ where $|\Phi_t(x\rightarrow p)| = |\Phi_t| + |\Phi_p| - |M|$. Moreover, if Φ_t and Φ_p are traditional, then $\Phi_t(x\rightarrow p)$ is traditional too.

Proof. Let $\Phi_t \vdash_{lo} \Delta; x : M \Gamma^{(b',r')}t : A$ and $\Phi_p \vdash_{lo} \Gamma^{(b',r')}p : M$. We prove that there exists a derivation $\Phi_t(x\rightarrow p) \vdash_{S} \Gamma \uplus \Delta \Gamma^{(b+b'+r+r')}(x\rightarrow p) : A$ by induction on Φ_t. System lo differs from hd only for because it replaces rule app_{b}^{hd} with app_{r}^{lo}. Then the proof for all cases but app_{r}^{lo} is like the one for system hd (Lemma 3.5). We only treat here the case of app_{r}^{lo}.

- Rule app_{r}^{lo}. Now, $t = uq$ and M splits into two multisets M_u and M_q so that Φ has the following form:

$$
\Phi_u \vdash_{lo} \Delta_u; x : M_u \Gamma^{(b,u)}u : \text{neutral} \quad \Phi_q \vdash_{lo} \Delta_q; x : M_q \Gamma^{(b,q)}q : \text{tight}
$$

with

- $b = b_u + b_q$,
- $r = r_u + r_q + 1$, and
- $\Delta = \Delta_u \uplus \Delta_q$.

Since $M = M_u \uplus M_q$, Lemma B.1 gives two derivations $\Psi_u \vdash_{lo} \Gamma_u \Gamma^{(b',r')}u : M_u$ and $\Psi_q \vdash_{lo} \Gamma_q \Gamma^{(b',r')}q : M_q$ such that $\Gamma = \Gamma_u \uplus \Gamma_q$, $b' = b_u' + b_q'$, and $r' = r_u' + r_q'$. By i.h. there exist Θ_u and Θ_q such that:

$$
\Theta_u \vdash_{lo} \Delta_u \uplus \Gamma_u \Gamma^{(b,b_u')u}u(x\rightarrow p) : \text{neutral}
$$

$$
\Theta_q \vdash_{lo} \Delta_q \uplus \Gamma_q \Gamma^{(b,b_q')q}q(x\rightarrow p) : \text{tight}
$$

with $|\Theta_u| = |\Phi_u| + |\Psi_u| - |M_u|$ and $|\Theta_q| = |\Phi_q| + |\Psi_q| - |M_q|$. Then by applying app_{r}^{lo} we obtain:

$$
\Phi_t(x\rightarrow p) \vdash_{lo} \Gamma \uplus \Delta \Gamma^{(b,b')}u(x\rightarrow p)q(x\rightarrow p) = (uq)(x\rightarrow p) : \text{neutral}
$$

where:

- $b' = b_u' + b_q' + b_q' = b + b'$, and
- $r' = r_u' + r_q' + r_q' + 1 = r + r'$, and
- $|\Phi_t(x\rightarrow p)| = |\Theta_u| + |\Theta_q| + 1 = |\Phi_u| + |\Psi_u| - |M_u| + |\Phi_q| + |\Psi_q| - |M_q| + 1 = |\Phi_t| - |\Phi_p| - |M|$. \(\Box\)
Theorem 4.7 (Tight correctness for lo). Let $\Phi \triangleright_{\text{lo}} \Gamma \vdash^{(b,r)} t : A$ be a tight derivation. Then there exists p such that $t \rightarrow_{\text{lo}}^b p$, normal$_{\text{lo}}(p)$, and $|p|_{\text{lo}} = r$. Moreover, if $A = \text{neutral}$ then normal$_{\text{lo}}(p)$.

Proof. By induction on $|\Phi|$. If t is a \rightarrow_{lo} normal form—that covers the base case $|\Phi| = 1$, for which t is necessarily a variable—then by taking $p := t$ and $k := 0$ the statement follows from the tightness property of tight typings of normal forms (Proposition 4.4.1)—the moreover part follows from the neutrality property (Proposition 4.4.2). Otherwise, $t \rightarrow_{\text{lo}} u$ and by quantitative subject reduction (Proposition 4.6) there is a derivation $\Psi \triangleright_{\text{lo}} \Gamma \vdash^{(b-1,r)} u : A$ such that $|\Psi| < |\Phi|$. By i.h., there exists p such that normal$_{\text{lo}}(p)$ and $u \rightarrow_{\text{lo}}^{b-1} p$ and $|p|_{\text{lo}} = r$. Just note that $t \rightarrow_{\text{lo}} u \rightarrow_{\text{lo}}^{b-1} p$, that is, $t \rightarrow_{\text{lo}}^b p$. \qed

B.2 Tight Leftmost Completeness

Proposition 4.8 (Normal forms are tightly typable for lo). Let t be such that normal$_{\text{lo}}(t)$. Then

1. Existence: there exists a tight derivation $\Phi \triangleright_{\text{lo}} \Gamma \vdash^{(0,|t|_{\text{lo}})} t : A$.
2. Structure: moreover, if neutral$_{\text{lo}}(t)$ then $A = \text{neutral}$, and if $\text{abs}_{\text{lo}}(t)$ then $A = \text{abs}$.
3. Unique size: if Ψ is another tight derivation for t then $|\Phi| = |\Psi|$.

Proof. By induction on normal$_{\text{lo}}(t)$. Cases:

1. Variable, i.e. $t = x$. Then the following derivation evidently satisfies the first two points of the statement:

\[
\begin{array}{c}
x : [\text{neutral}] \Gamma \vdash^{(0,0)} x : \text{neutral} \\
\hline
\text{ax}
\end{array}
\]

The only other possible tight derivation for x is

\[
\begin{array}{c}
x : [\text{abs}] \Gamma \vdash^{(0,0)} x : \text{abs} \\
\hline
\text{ax}
\end{array}
\]

that has the same size.

2. Abstraction, i.e. $t = \lambda y.p$ with normal$_{\text{lo}}(p)$. By i.h. there is a tight derivation $\Phi_p \triangleright_{\text{lo}} \Delta \vdash^{(0,|p|_{\text{lo}})} p : \text{tight}$. (a) Existence: since the derivation Φ_p is tight, the typing context Δ has the shape $\Gamma ; y : \text{Tight}$ (potentially, $y : [\]$). Then the following is a tight derivation for $\lambda y.p$:

\[
\begin{array}{c}
\Phi_p \triangleright_{\text{lo}} \Gamma ; y : \text{Tight} \vdash^{(0,|p|_{\text{lo}})} p : \text{tight} \\
\hline
\text{fun}_{\text{r}}
\end{array}
\]

(b) Structure: Moreover, t is not neutral so the part about neutral terms is trivially true, while it is an abstraction and it is indeed typed with abs.

(c) Unique size: by i.h. all tight derivations for p have the same size. The statement follows by the evident fact that all tight derivations for $\lambda x.p$ are obtained by applying a fun_{r} rule to a tight derivation for p.

3. Application, i.e. $t = pu$. Then normal$_{\text{lo}}(t)$ implies neutral$_{\text{lo}}(t)$, that implies normal$_{\text{lo}}(p)$ and normal$_{\text{lo}}(u)$, and the first implies normal$_{\text{lo}}(p)$.

(a) Existence: By i.h., there are tight derivations

- $\Phi_p \triangleright_{\text{lo}} \Gamma_p \vdash^{(0,|p|_{\text{lo}})} p : \text{neutral}$ typing p with neutral (because normal$_{\text{lo}}(p)$), and
- $\Phi_u \triangleright_{\text{lo}} \Gamma_u \vdash^{(0,|u|_{\text{lo}})} u : \text{tight}$.

Then the following is a tight derivation Φ for $t = pu$ whose second index satisfies $|p|_{\text{lo}} + |u|_{\text{lo}} + 1 = |t|_{\text{lo}}$, as required:

\[
\begin{array}{c}
\Phi_p \triangleright_{\text{lo}} \Gamma_p \vdash^{(0,|p|_{\text{lo}})} p : \text{neutral} \\
\Phi_u \triangleright_{\text{lo}} \Gamma_u \vdash^{(0,|u|_{\text{lo}})} u : \text{tight} \\
\hline
\text{app}_{\text{r}}^{(0,|u|_{\text{lo}} + |u|_{\text{lo}} + 1)}
\end{array}
\]

}\text{neutral}
\]
(b) **Structure:** Moreover, neutral\(_{lo}(t)\) and \(\Phi\) does indeed type \(t\) with neutral. Dually, \(t\) is not an abstraction and so that point trivially holds.

(c) **Unique size:** from neutral\(_{lo}(t)\) we obtain neutral\(_{hd}(t)\). Now consider a tight derivation \(\Psi\) for \(t\). By Lemma 4.3 the last rule of \(\Psi\) is \(\text{app}\)\(_1\) and so—exactly as \(\Phi\) in the first point—the two premisses \(\Psi_p\) and \(\Psi_u\) of the last rule are both tight. Then by i.h. \(|\Psi_p| = |\Phi_p|\) and \(|\Psi_u| = |\Phi_u|\), from which it follows \(|\Psi| = |\Phi|\).

\[\square\]

Lemma 4.9 (Anti-substitution and typings for lo). Let \(\Phi \triangleright_{lo} \Gamma \vdash^{(b, r)} t\{x\leftarrow p\} : A\). Then there exist:

- a multi-set \(M\);
- a typing derivation \(\Phi_t \triangleright_{lo} \Gamma_t; x : M \vdash^{[b_t, r_t]} t : A\); and
- a typing derivation \(\Phi_p \triangleright_{lo} \Gamma_p \vdash^{(b_p, r_p)} p : M\)

such that:

- Typing context: \(\Gamma = \Gamma_t \uplus \Gamma_p\);
- Indices: \((b, r) = (b_t + b_p, r_t + r_p)\).
- Sizes: \(|\Phi| = |\Phi_t| + |\Phi_p| - |M|\).

- If \(\Phi\) is traditional, then \(\Phi_t\) and \(\Phi_p\) are traditional too.

Proof. By induction on \(t\). Cases:

- **Variable**, i.e. \(t = y\). Two subcases, depending on the identity of \(y\):
 1. \(x = y\). Then \(t\{x\leftarrow p\} = x\{x\leftarrow p\} = p\), so that \(\Phi \triangleright_{lo} \Gamma \vdash^{(b, r)} p : A\). There is only one possibility: \(|M| = 1\), \(\Phi_p\) is

\[
\frac{\Phi \triangleright_{lo} \Gamma \vdash^{(b, r)} p : A}{\Gamma \vdash^{(b, r)} p : [A]} \text{ many}
\]

and \(\Phi_t\) is

\[
\frac{x : [A] \vdash^{(0, 0)} x : A}{\text{ax}}
\]

that satisfies the all the equalities in the statement, in particular \(|\Phi_p| = |\Phi|\) and \(|M| = 1 = |\Phi_t|\).

2. \(x \neq y\). Then \(t\{x\leftarrow p\} = y\{x\leftarrow p\} = y\). There is only one possibility: \(|M| = 0\), \(\Phi_t\) is exactly \(\Phi\), that is,

\[
\frac{y : [A] \vdash^{(0, 0)} y : A}{\text{ax}}
\]

and \(\Phi_p\) is

\[
\vdash^{(0, 0)} p : [] \text{ many}
\]

that satisfies the all the equalities in the statement, in particular \(|\Phi_t| = |\Phi|\) and \(|M| = 0 = |\Phi_p|\).

- **Abstraction**, i.e. \(t = \lambda y.u\). Then \(t\{x\leftarrow p\} = \lambda y.u\{x\leftarrow p\}\). Two sub-cases, depending on the last rule of \(\Phi\):
 1. **Rule fun\(_b\).** Then \(\Phi\) has the following form:

\[
\frac{\Phi_u\{x\leftarrow p\} \triangleright_{lo} \Gamma; y : N \vdash^{[b_u(x\leftarrow p), r]} u\{x\leftarrow p\} : D}{\Gamma \vdash^{[b_u(x\leftarrow p) + 1, r]} \lambda y.u\{x\leftarrow p\} : N \rightarrow D} \text{ fun\(_b\)}
\]

with \(b = b_u(x\leftarrow p) + 1\). By i.h. there exist a \(M\) and type derivations

\[\Phi_u \vdash_{\lambda_0} \Delta_u; y : N; x : M \vdash (b_u, r_u) u : A \quad \Phi_p \vdash_{\lambda_0} \Delta_p \vdash (b_p, r_p) p : M \]

such that:
- **Typing context**: \((\Gamma; y : N) = (\Delta_u; y : N \uplus \Delta_p)\);
- **Indices**: \((b_u(x-p), r) = (b_u + b_p, r_u + r_p)\);
- **Sizes**: \(|\Phi_u(x-p)| = |\Phi_u| + |\Phi_p| - |M|\).

Then the derivation \(\Phi_i\) defined as
\[
\Phi_u \vdash_{\lambda_0} \Gamma; y : N; x : M \vdash (b_u, r_u) u : D \\
\Gamma; x : M \vdash (b_u + 1, r_u) \lambda y. u : N \rightarrow D \overset{\text{fun}_b}
\]
satisfies the statement with respect to \(b_t := b_u + 1\) and \(r_t := r_u\) because:
- **Typing context**: the \(i.h.\) implies \(\Gamma = (\Delta_u \uplus \Delta_p)\);
- **Indices**:
 (a) \(b_t + b_p = b_u + 1 + b_p =_{i.h.} b_u(x-p) + 1 = b\),
 (b) \(r_t + r_p = r_u + r_p =_{i.h.} r_u(x-p) = r\).
- **Sizes**: \(|\Phi| = |\Phi_u(x-p)| + 1 =_{i.h.} |\Phi_u| + |\Phi_p| - |M| + 1 = |\Phi_t| + |\Phi_p| - |M|\).

(2) **Rule** \(\text{fun}_r\). Then \(\Phi\) has the following form:
\[
\Phi_u \vdash_{\lambda_0} \Gamma; y : \text{Tight}; x : M \vdash (b_u, r_u) u : \text{tight} \quad \Phi_p \vdash_{\lambda_0} \Delta_p \vdash (b_p, r_p) p : M
\]
such that:
- **Typing context**: \((\Gamma; y : \text{Tight}) = (\Delta_u; y : \text{Tight} \uplus \Delta_p)\);
- **Indices**: \((b, r_u(x-p)) = (b_u + b_p, r_u + r_p)\).
- **Sizes**: \(|\Phi_u(x-p)| = |\Phi_u| + |\Phi_p| - |M|\).

Then the derivation \(\Phi_i\) defined as
\[
\Phi_u \vdash_{\lambda_0} \Gamma; y : \text{Tight}; x : M \vdash (b_u, r_u) u : \text{tight} \\
\Gamma; x : M \vdash (b_u + 1, r_u) \lambda y. u : \text{abs} \overset{\text{fun}_b}
\]
satisfies the statement with respect to \(r_t := r_u + 1\) because:
- **Typing context**: the \(i.h.\) implies \(\Gamma = (\Delta_u \uplus \Delta_p)\)
- **Indices**:
 (a) \(b_u + b_p =_{i.h.} b\),
 (b) \(r_t + r_p = r_u + 1 + r_p =_{i.h.} r_u(x-p) + 1 = r\).
- **Sizes**: \(|\Phi| = |\Phi_u(x-p)| + 1 =_{i.h.} |\Phi_u| + |\Phi_p| - |M| + 1 = |\Phi_t| + |\Phi_p| - |M|\).

Application, i.e. t = uq. Then \(t(x-p) = u(x-p)q(x-p)\). Two sub-cases, depending on the last rule of \(\Phi\):

(1) **Rule** \(\text{app}_p\). Then \(\Phi\) has the following form:
\[
\Phi_u \vdash_{\lambda_0} \Gamma_1 \vdash (b_1, r_1) u : \text{x-p} : M \rightarrow A \quad \Phi_q \vdash_{\lambda_0} \Gamma_2 \vdash (b_2, r_2) q : \text{x-p} : M \\
\Gamma_1 \uplus \Gamma_2 \vdash (b_1 + b_2, r_1 + r_2) u(x-p)q(x-p) : A \overset{\text{app}_b}
\]
with \(\Gamma = \Gamma_1 \uplus \Gamma_2\), \(b = b_1 + b_2\), and \(r = r_1 + r_2\).

By \(i.h.\) applied to \(u(x-p)\) and \(q(x-p)\), there exist (disjoint) finite sets \(M_u\) and \(M_q\) and type derivations:
\[
\Phi_u \vdash_{\lambda_0} \Delta_u; x : M_u \vdash (b_u, r_u) u : M \rightarrow A \\
\Phi_q \vdash_{\lambda_0} \Delta_q; x : M_q \vdash (b_q, r_q) q : M
\]
\[\Phi^u_p \triangleright_{lo} \Pi_u \vdash (b^u_p, r^u_p) \; p : M_u \]
\[\Phi^q_p \triangleright_{lo} \Pi_q \vdash (b^q_p, r^q_p) \; p : M_q \]

such that:
- **Type context:** \(\Gamma_1 = \Delta_u \uplus \Pi_u \) and \(\Gamma_2 = \Delta_q \uplus \Pi_q \).
- **Indices:** \((b_1, r_1) = (b_u + b^u_p, r_u + r^u_p) \) and \((b_2, r_2) = (b_q + b^q_p, r_q + r^q_p) \).
- **Sizes:** \(|\Phi_u(x-p)| = |\Phi_u| + |\Phi^u_p| - |M_u| \) and \(|\Phi_q(x-p)| = |\Phi_q| + |\Phi^q_p| - |M_q| \).

The derivations \(\Phi^u_p \) and \(\Phi^q_p \) can be summed (by inverting their many final rule and reapplying a many rule to the union of the premisses) obtaining a derivation \(\Phi_p \triangleright_{lo} \Pi \vdash (b_p, r_p) \; p : M \), where \(\Pi = \Pi_u \uplus \Pi_q \) and \(b_p = b^u_p + b^q_p \) and \(r_p = r^u_p + r^q_p \) and \(M = M_u + M_q \) and \(|\Phi_p| = |\Phi^u_p| + |\Phi^q_p| \). We then apply \(\text{app}_b \) to obtain the following derivation \(\Phi_t \):

\[
\Phi_u \triangleright_{lo} \Delta_u; x : M_u \vdash (b_u, r_u) u : M \rightarrow A \quad \Phi_q \triangleright_{lo} \Delta_q; x : M_q \vdash (b_q, r_q) q : M \quad \text{app}_b
\]

We let \(\Delta := \Delta_u \uplus \Delta_q \), \(b_t := b_u + b_q \) and \(r_t := r_u + r_q \) and then observe that we obtained the statement, because of the following equalities:

1. **Typing context:** \(\Gamma = \Gamma_1 \uplus \Gamma_2 = \Delta_u \uplus \Pi_u \uplus \Delta_q \uplus \Pi_q = \Delta \uplus \Pi \).
2. **Indices:** \((b, r) = (b_1 + b_2, r_1 + r_2) \).
3. **Sizes:** \(|\Phi| = |\Phi_u(x-p)| + |\Phi_q(x-p)| + 1 = |\Phi_u| + |\Phi^u_p| - |M_u| + |\Phi_q| + |\Phi^q_p| - |M_q| + 1 = |\Phi_u| + |\Phi_q| + |\Phi_p| - |M| + 1 = |\Phi_t| + |\Phi^q_p| - |M_q| \).

(2) **Rule \text{app}_t^o.** Let \(t = uq \) so that \(t(x-p) = u(x-p)q(x-p) \). Then \(\Phi \) has the following form:

\[
\Phi_u(x-p) \triangleright_S \Gamma_1 \vdash (b_1, r_1) u(x-p) : \text{neutral} \quad \Phi_q(x-p) \triangleright_S \Gamma_2 \vdash (b_2, r_2) q(x-p) : \text{tight} \quad \text{app}_t^o
\]

with \(\Gamma = \Gamma_1 \uplus \Gamma_2, b = b_1 + b_2, r = r_1 + r_2 + 1 \).

By i.h. applied to \(u(x-p) \) and \(q(x-p) \), there exist (disjoint) finite sets \(M_u \) and \(M_q \) and type derivations:

\[
\Phi_u \triangleright_{lo} \Delta_u; x : M_u \vdash (b_u, r_u) u : \text{neutral} \quad \Phi_q \triangleright_{lo} \Delta_q; x : M_q \vdash (b_q, r_q) q : \text{tight} \quad \Phi^u_p \triangleright_{lo} \Pi_u \vdash (b^u_p, r^u_p) : M_u \quad \Phi^q_p \triangleright_{lo} \Pi_q \vdash (b^q_p, r^q_p) : M_q
\]

such that:
- **Typing context:** \(\Gamma_1 = \Delta_u \uplus \Pi_u \) and \(\Gamma_2 = \Delta_q \uplus \Pi_q \).
- **Indices:** \((b_1, r_1) = (b_u + b^u_p, r_u + r^u_p) \) and \((b_2, r_2) = (b_q + b^q_p, r_q + r^q_p) \).
- **Sizes:** \(|\Phi_u(x-p)| = |\Phi_u| + |\Phi^u_p| - |M_u| \) and \(|\Phi_q(x-p)| = |\Phi_q| + |\Phi^q_p| - |M_q| \).

The derivations \(\Phi^u_p \) and \(\Phi^q_p \) can be summed (by inverting their many final rule and reapplying a many rule to the union of the premisses) obtaining a derivation \(\Phi_p \triangleright_{lo} \Pi \vdash (b_p, r_p) \; p : M \), where \(\Pi = \Pi_u \uplus \Pi_q \) and \(b_p = b^u_p + b^q_p \) and \(r_p = r^u_p + r^q_p \) and \(M = M_u + M_q \). We then apply \(\text{app}_t^o \) to obtain the following derivation \(\Phi_t \):

\[
\Phi_u \triangleright_{lo} \Delta_u; x : M_u \vdash (b_u, r_u) u : \text{neutral} \quad \Phi_q \triangleright_{lo} \Delta_q; x : M_q \vdash (b_q, r_q) q : \text{tight} \quad \text{app}_t^o
\]

We let \(\Delta := \Delta_u \uplus \Delta_q \), \(b_t := b_u + b_q \) and \(r_t := r_u + r_q + 1 \) and then observe that we obtained the statement, because of the following equalities:

(a) **Typing context:** \(\Gamma = \Gamma_1 \uplus \Gamma_2 = \Delta_u \uplus \Pi_u \uplus \Delta_q \uplus \Pi_q = \Delta \uplus \Pi \).
(b) Indices: \((b, r) = (b_1 + b_2, r_1 + r_2 + 1) = (b_t + b_r, r_t + r_p)\).

c) Sizes: \(|\Phi| = |\Phi_u(x\rightarrow p)| + |\Phi_q(x\rightarrow p)| + 1 = ih \ |\Phi_u| + |\Phi_u^u| - |M_u| + |\Phi_q| + |\Phi_p^q| - |M_q| + 1 = |\Phi_u| + |\Phi_q| + |\Phi_p| - |M| + 1 = |\Phi_t| + |\Phi_p| - |M|.

\(\square\)

Proposition 4.10 (Quantitative tight subject expansion for \(\Theta\)). Let \(\Phi \vdash_{\Theta} \Gamma \vdash^{(b, r)} p : A\) be a tight derivation. If \(t \rightarrow_{\Theta} p\) then there exists a (tight) typing \(\Psi\) such that \(\Psi \vdash_{\Theta} \Gamma \vdash^{(b+1, r)} t : A\) and \(|\Psi| > |\Phi|\).

Proof. We prove the following stronger statement by induction on \(t \rightarrow_{\Theta} p\) (tightness is decomposed in two predicates \(\text{tight}(\Gamma)\) and \(\text{tight}(A)\), and the second is paired together with a further assumption):

Let \(t \rightarrow_{\Theta} p, \Phi \vdash_{\Theta} \Gamma \vdash^{(b, r)} p : A, \text{tight}(\Gamma)\), and either \(\text{tight}(A)\) or \(\neg\text{abs}_{\Theta}(t)\). Then there exists a typing \(\Psi \vdash_{\Theta} \Gamma \vdash^{(b+1, r)} t : A\) with \(|\Psi| > |\Phi|\).

- **Rule**

\[
\frac{t = (\lambda x.t)q \rightarrow_{\Theta} u[x\leftarrow q] = p}{\Phi_u \vdash_{\Theta} \Gamma_u, x : M \vdash^{(b_u, r_u)} u : A \\ \Gamma_u \vdash^{(b_u+1, r_u)} \lambda x. u : M \rightarrow A} \quad \frac{\Phi_q \vdash_{\Theta} \Gamma_q \vdash^{(b_q, r_q)} q : M}{\Gamma_u \uplus \Gamma_q \vdash^{(b_u+b_q+2, r_u+r_q)} (\lambda x. u) q : A}
\]

with \((b, r) = (b_u + b_q, r_u + r_q)\) and \(\Gamma = \Gamma_u \uplus \Gamma_q\). We conclude since \(|\Psi| = |\Phi_u| + |\Phi_q| + 2 > |\Phi_u| + |\Phi_q| - |M| = |\Phi|\).

- **Rule**

\[
\frac{u \rightarrow_{\Theta} q}{t = \lambda x.u \rightarrow_{\Theta} \lambda x. q = p}
\]

Assume \(\Phi \vdash_{\Theta} \Gamma \vdash^{(b, r)} \lambda x. q : A\) and \(\text{tight}(\Gamma)\). Since \(\text{abs}_{\Theta}(\lambda x. u)\) we must have hypothesis \(\text{tight}(A)\), and as \(\Phi\) must then finish with rule \(\text{fun}\), we must have a subderivation \(\Phi_q \vdash_{\Theta} \Gamma, x : \text{Tight} \vdash^{(b, r-1)} q : \text{Tight}\). As \(\text{tight}(\Gamma, x : \text{Tight})\) we can apply the \(i.h.\) and get the premiss of the derivation \(\Phi'\) below:

\[
\frac{\Phi_u \vdash_{\Theta} \Gamma, x : \text{Tight} \vdash^{(b+1, r-1)} u : \text{Tight} \quad \Gamma \vdash^{(b+1, r)} \lambda x. u : A}{\Gamma \vdash^{(b+1, r)} \lambda x. u : A}
\]

The decrement of the size follows from the \(i.h.\)

- **Rule**

\[
\frac{\neg\text{abs}_{\Theta}(u) \quad u \rightarrow_{\Theta} q}{t = um \rightarrow_{\Theta} qm = p}
\]

Assume \(\Phi \vdash_{\Theta} \Gamma \vdash^{(b, r)} qm : A\) and \(\text{tight}(\Gamma)\). The derivation \(\Phi\) must end with rule \(\text{app}_b\) or \(\text{app}^\theta_b\). Then, there are derivations \(\Phi_q \vdash_{\Theta} \Gamma_q \vdash^{(b_q, r_q)} q : A_q\) and \(\Phi_m \vdash_{\Theta} \Gamma_m \vdash^{(b_m, r_m)} m : A_m\), with \(\Gamma = \Gamma_q \uplus \Gamma_m\). Since \(\text{tight}(\Gamma)\) we have \(\text{tight}(\Gamma_q)\), and since \(\neg\text{abs}_{\Theta}(u)\) we can apply the \(i.h.\) to \(q\) (independently of whether \(A_q\) is tight) obtaining the derivation \(\Phi_u \vdash_{\Theta} \Gamma_q \vdash^{(b_q+1, r_q)} u : A_q\) and build, using the same rule \(\text{app}_b\) or \(\text{app}^\theta_b\), the derivation \(\Phi'\) below:
\[\Phi_u \vdash_{l_0} \Gamma_q \vdash^{(b_q+1,r_q)} u : A_q \quad \Phi_m \vdash_{l_0} \Gamma_m \vdash^{(b_m,r_m)} m : A_m \]
\[
\Gamma \vdash^{(b+1,r)} um : A
\]

The decrement of the size follows from the i.h.

- Rule
\[
\text{neutral}_{l_0}(m) \quad u \rightarrow_{l_0} q
\]
\[
t = mu \rightarrow_{l_0} mq = p
\]

Assume \(\Phi \vdash_{l_0} \Gamma \vdash^{(b,r)} mq : A \) and tight(\(\Gamma \)). The derivation \(\Phi \) must end with rule \(\text{app}_b \) or \(\text{app}^{l_0}_r \), and therefore there are two derivations \(\Phi_m \vdash_{l_0} \Gamma_m \vdash^{(b_m,r_m)} m : A_m \) and \(\Phi_q \vdash_{l_0} \Gamma_q \vdash^{(b_q,r_q)} q : A_q \), for some types \(A_m \) and \(A_q \), with \(\Gamma = \Gamma_m \cup \Gamma_q \). Since tight(\(\Gamma \)) we have tight(\(\Gamma_m \)) and tight(\(\Gamma_q \)). By the tight spreading on neutral terms (Lemma 4.3), from tight(\(\Gamma_m \)) and neutral_{\(l_0 \)}(\(m \)) it follows tight(\(A_m \)). Therefore, the last rule of \(\Phi \) must be \(\text{app}^{l_0}_r \), whence \(A_m = A = \text{neutral} \) and \(A_q = \text{tight} \). Now, the sub-derivation \(\Phi_q \) is tight (tight(\(\Gamma_q \)) and \(A_q = \text{tight} \)) and we can apply the i.h. obtaining the derivation \(\Phi_u \vdash_{l_0} \Gamma_q \vdash^{(b_q+1,r_q)} u : A_q \) and build, using the same rule \(\text{app}^{l_0}_r \), the derivation \(\Phi' \) below:
\[
\Phi_m \vdash_{l_0} \Gamma_m \vdash^{(b_m,r_m)} m : A_m \quad \Phi_u \vdash_{l_0} \Gamma_q \vdash^{(b_q+1,r_q)} u : A_q
\]
\[
\Gamma \vdash^{(b+1,r)} mu : A
\]

The decrement of the size follows from the i.h.

\[\square \]

Theorem 4.11 (Tight completeness for \(l_0 \)). Let \(t \rightarrow_{l_0}^k p \) with normal_{\(l_0 \)}(\(p \)). Then

1. **Existence:** there exists a tight typing \(\Phi \vdash_{l_0} \Gamma \vdash^{(k, |p|_{l_0})} t : A \).
2. **Structure:** moreover, if neutral_{\(l_0 \)}(\(p \)) then \(A = \text{neutral} \), and if abs_{\(l_0 \)}(\(p \)) then \(A = \text{abs} \).

Proof. By induction on \(t \rightarrow_{l_0}^k p \). If \(k = 0 \) the statement is given by the existence of tight typings for normal_{\(l_0 \)} terms (Proposition 4.8), that also provides the moreover part. Let \(k > 0 \) and \(t \rightarrow_{l_0} u \rightarrow_{l_0}^{k-1} p \). By i.h., there exists a tight typing derivation \(\Psi \vdash_{l_0}^{(k-1, |p|_{l_0})} u \). By subject expansion (Proposition 4.10) there exists a typing derivation \(\Phi \) of \(u \) with the same types in the ending judgement of \(\Psi \)—then \(\Phi \) is tight—and with indices \((k, |p|_{l_0}) \).

\[\square \]

C APPENDIX: LEFTMOST EVALUATION AND MINIMAL TYINGPS

Lemma 5.3 (Transitivity of polarities). Let \(T, U, V \) be (multi)-types and \(a, b \in \{+, -\} \). If \(U \in \text{Occ}_a(T) \) and \(V \in \text{Occ}_b(U) \) then \(V \in \text{Occ}_{\delta(a,b)}(T) \), where
\[
\delta(+, +) := + \quad \delta(-, +) := - \qquad \delta(-, -) := + \quad \delta(+, -) := -
\]

Proof. Let \(\rightarrow := - \) and \(\rightarrow := + \). The proof can be presented in a way that is completely parametric in the polarities, but for readability reasons we spell out the positive and negative cases separately. Cases in which \(a = + \):

- **Axioms, i.e. \(U = T \).** Note that \(\delta(+, b) = b \). Then \(V \in \text{Occ}_b(U) \) becomes \(V \in \text{Occ}_b(T) = \text{Occ}_{\delta(+, b)}(T) \) as required.
- **Positive occurrence in an element \(A \) of a multiset \(M \), i.e. \(T = M \) and \(U \in \text{Occ}_+ (M) \) because \(U \in \text{Occ}_+(A) \).** By the i.h. \(V \in \text{Occ}_{\delta(+, b)}(A) \) and so \(V \in \text{Occ}_{\delta(+, b)}(M) \) by one of the two rules about multisets.
• **Positive occurrence on the right of** $M \to A$, *i.e.* $T = M \to A$ and $U \in 0\text{cc}_+(M \to A)$ because $U \in 0\text{cc}_-(A)$. By the i.h. $V \in 0\text{cc}_{\delta(+,b)}(A)$ and so $V \in 0\text{cc}_{\delta(+,b)}(M)$ by one of the two rules about arrow types.

• **Negative occurrence on the left of** $M \to A$, *i.e.* $T = M \to A$ and $U \in 0\text{cc}_+(M \to A)$ because $U \in 0\text{cc}_-(M)$. By the i.h. $V \in 0\text{cc}_{\delta(-,b)}(A)$ and so $V \in 0\text{cc}_{\delta(-,b)}(M) = 0\text{cc}_{\delta(+,b)}(M)$ by one of the two rules about arrow types.

Cases in which $a = \vdash$:

• **Negative occurrence in an element** A *of a multiset* M, *i.e.* $T = M$ and $U \in 0\text{cc}_-(M)$ because $U \in 0\text{cc}_-(A)$. By the i.h. $V \in 0\text{cc}_{\delta(-,b)}(A)$ and so $V \in 0\text{cc}_{\delta(-,b)}(M)$ by one of the two rules about multisets.

• **Negative occurrence on the right of** $M \to A$, *i.e.* $T = M \to A$ and $U \in 0\text{cc}_-(M \to A)$ because $U \in 0\text{cc}_-(A)$. By the i.h. $V \in 0\text{cc}_{\delta(-,b)}(A)$ and so $V \in 0\text{cc}_{\delta(-,b)}(M)$ by one of the two rules about arrow types.

• **Positive occurrence on the left of** $M \to A$, *i.e.* $T = M \to A$ and $U \in 0\text{cc}_-(M \to A)$ because $U \in 0\text{cc}_-(M)$. By the i.h. $V \in 0\text{cc}_{\delta(+,b)}(A)$ and so $V \in 0\text{cc}_{\delta(+,b)}(M)$ by one of the two rules about arrow types.

\[\Box\]

C.1 Shrinking Correctness

Lemma 5.6 (Occurrences spreading on neutral terms). Let t be such that $\text{neutral}_{1_{lo}}(t)$ and $\Phi \vdash_{lo} \Gamma \vdash^{(b,r)}_b t : A$ be a typing derivation. Then A is a positive occurrence of Γ. Moreover, if Γ is co-shrinking (resp unitary co-shrinking) then A is co-shrinking (resp unitary co-shrinking).

Proof. By induction on $\text{neutral}_{1_{lo}}(t)$:

• **Variable**, *i.e.* $t = x$. Then $\Gamma = x : [A]$ and $A \in 0\text{cc}_+(\Gamma)$. If Γ is co-shrinking (resp. unitary co-shrinking) then A is co-shrinking (resp. unitary co-shrinking) by definition of shrinking (resp. unitary shrinking) type context.

• **Application**, *i.e.* $t = pu$, the last rule of Φ can only be app_b or $\text{app}_{1_{lo}}$. In both cases the left subterm p is typed by a sub-derivation $\Phi_p \vdash_{lo} \Gamma_p \vdash^{(b',r')}_{b'} p : B$ such that all types in Γ_p appear in Γ. Since $\text{neutral}_{1_{lo}}(t)$ implies $\text{neutral}_{1_{lo}}(p)$, we can apply the i.h. and obtain that B has a positive occurrence in Γ_p, and thus in Γ, that is, that there is a declaration $x : M$ in Γ such that $B \in 0\text{cc}_+(M)$. There are two cases, either $B = A = \text{neutral}$ or $B = M' \to A$. In both cases A is a positive occurrence of B. By transitivity of polarised occurrences (Lemma 5.3), A is a positive occurrence of M, and thus of Γ. Let $M \in 0\text{cc}_-(A)$. Since $A \in 0\text{cc}_+(\Gamma)$ then $M \in 0\text{cc}_-(\Gamma)$ by transitivity of polarised occurrences. Suppose Γ is co-shrinking (resp. unitary co-shrinking), then A turns out to be co-shrinking (resp. unitary co-shrinking).

\[\Box\]

Proposition 5.7 (Shrinking derivations bound the size of normal forms). Let $\text{normal}_{1_{lo}}(t)$ and $\Phi \vdash_{lo} \Gamma \vdash^{(b,r)}_b t : A$ be a derivation, and let $|\Phi|_{ax}$ denote the number of axiom rules in Φ.

1. If Γ is co-shrinking and (A is shrinking or t is not an abstraction) then $|t|_{lo} \leq |\Phi| - |\Phi|_{ax}$. Moreover, if Φ is traditional then $|t|_{\lambda} \leq b$.

2. If Γ is unitary co-shrinking and (A is unitary shrinking or t is not an abstraction) then $|t|_{lo} = |\Phi| - |\Phi|_{ax}$. Moreover, if Φ is traditional then $|t|_{\lambda} = b$.

Proof. By induction on t. Note that $\text{neutral}_{1_{lo}}$ implies $\text{normal}_{1_{lo}}$ and so we can apply the i.h. when $\text{neutral}_{1_{lo}}$ holds on some subterm of t. If $\text{normal}_{1_{lo}}(t)$ because $\text{neutral}_{1_{lo}}(t)$ there are three cases:
• **Variable, i.e.** \(t = x \). Then \(\Phi \) has the following form and evidently verifies both statements because \(|x|_\omega = 0 = 1 - 1 = |\Phi| - |\Phi|_{ax} \) and \(|x|_\lambda = 0 = b \):

\[
x : [A] \mapsto (0,0) x : A
\]

• **Application, i.e.** \(t = pu \), neutral \(_{\iota 0}(p)\) and normal \(_{\iota 0}(u)\). Cases of the last rule of \(\Phi \):

- \(\text{app}_b \) rule:

\[
\frac{\Phi_p \triangleright \iota_0 \Gamma_p \mapsto (b_p, r_p) p : [B_i]_{i \in I} \quad (|\Phi|_{\iota 0} \triangleright \Gamma_i \mapsto (b_i, r_i) u : [B_i]_{i \in I} \quad \text{many}}{\Gamma_p \uplus (\cup_{i \in I} \Delta_i) \triangleright \Gamma \mapsto (b_p + r_i b_i, r_p + r_i r_i) p u : A}
\]

with \(b = b_p + \sum_{i \in I} b_i, \ r = r_p + \sum_{i \in I} r_i, \) and \(\Gamma = \Gamma_p \uplus \cup_{i \in I} \Delta_i \). Let \(M = [B_i]_{i \in I} \).

(1) Since neutral \(_{\iota 0}(p)\) and \(\Gamma \) is co-shrinking then \(M \to A \) is co-shrinking by Lemma 5.6, and so \(M \) is shrinking. Therefore, \(M \) is not empty, i.e. \(|I| \neq 0 \), and every \(B_i \) is shrinking. Moreover, \(\Gamma_p \) and every \(\Delta_i \) are also shrinking so that every \(\Phi_i^{\mu} \) is shrinking.

Since \(p \) is neutral and thus not an abstraction, we can apply the *i.h.* on normal \(_{\iota 0}(p)\) and obtain \(|p|_\omega \leq |\Phi|_p - |\Phi|_{ax} \). Since every \(\Phi_i^{\mu} \) is shrinking we can apply the *i.h.* on normal \(_{\iota 0}(u)\) obtaining \(|u|_\omega \leq |\Phi|_u - |\Phi|_{ax} \). Thus \(|I|_\omega = |p|_\omega + |u|_\omega + 1 \leq |\Phi|_p - |\Phi|_{ax} \). Moreover, if \(\Phi \) is traditional so are its sub-derivations and so the *i.h.* on normal \(_{\iota 0}(p)\) gives \(|p|_\lambda \leq b_p \) and the *i.h.* on normal \(_{\iota 0}(u)\) gives \(|u|_\lambda \leq b_i \) for all \(i \in I \). Then \(|I|_\lambda = |p|_\lambda + |u|_\lambda \leq b_p + \sum_{i \in I} b_i = b \).

(2) Since neutral \(_{\iota 0}(p)\) and \(\Gamma \) is unitary co-shrinking then \(M \to A \) is unitary co-shrinking by Lemma 5.6, and so \(M \) is unitary shrinking. Therefore, \(M \) is a singleton, i.e. \(M = [B_i] \), and \(B_i \) is unitary shrinking. Moreover, \(\Gamma_p \) and every \(\Delta_i \) are also unitary shrinking so that every \(\Phi_i^{\mu} \) is unitary shrinking.

Since \(p \) is neutral and thus not an abstraction, we can apply the *i.h.* on normal \(_{\iota 0}(p)\) and obtain \(|p|_\omega = |\Phi|_p - |\Phi|_{ax} \). Since \(\Phi_i^{\mu} \) is shrinking we can apply the *i.h.* on normal \(_{\iota 0}(u)\) obtaining \(|u|_\omega = |\Phi|_u - |\Phi|_{ax} \). Thus \(|I|_\omega = |p|_\omega + |u|_\omega + 1 = |\Phi|_p - |\Phi|_{ax} \). Moreover, if \(\Phi \) is traditional so are its sub-derivations and so the *i.h.* on normal \(_{\iota 0}(p)\) gives \(|p|_\lambda = b_p \) and the *i.h.* on normal \(_{\iota 0}(u)\) gives \(|u|_\lambda = b_i \). Then \(|I|_\lambda = |p|_\lambda + |u|_\lambda = b_p + b_i = b \).

- \(\text{app}_{p}^\iota_0 \) rule:

\[
\frac{\Phi_p \triangleright \iota_0 \Gamma_p \mapsto (b_p, r_p) p : \text{neutral} \quad \Phi_u \triangleright \iota_0 \Gamma_u \mapsto (b_u, r_u) u : \text{tight}}{\Gamma_p \uplus \Gamma_u \mapsto (b_p + b_u r_p r_u + 1) p u : \text{neutral}}
\]

with \(b = b_p + b_u, \ r = r_p + r_u + 1, \) and \(\Gamma = \Gamma_p \uplus \Gamma_u \).

(1) Since \(\Gamma \) is co-shrinking, then \(\Gamma_p \) and \(\Gamma_u \) are co-shrinking. Since neutral and tight are shrinking types, by *i.h.* \(|p|_\omega \leq |\Phi|_p - |\Phi|_{ax} \) and \(|u|_\omega \leq |\Phi|_u - |\Phi|_{ax} \). Then \(|I|_\omega = |p|_\omega + |u|_\omega + 1 = |\Phi|_p - |\Phi|_{ax} \). The moreover statement does not apply in this case.

(2) Since \(\Gamma \) is unitary co-shrinking, then \(\Gamma_p \) and \(\Gamma_u \) are unitary co-shrinking. Since neutral and tight are shrinking types, by *i.h.* \(|p|_\omega = |\Phi|_p - |\Phi|_{ax} \) and \(|u|_\omega = |\Phi|_u - |\Phi|_{ax} \). Then \(|I|_\omega = |p|_\omega + |u|_\omega + 1 = |\Phi|_p - |\Phi|_{ax} \). The moreover statement does not apply in this case.

Now, there is only one case left for normal \(_{\iota 0}(t): \)

Abstraction. i.e. $t = \lambda x.p$ and normal$_{lo}(t)$ because normal$_{lo}(p)$. Cases of the last rule of Φ:

- fun_b rule:

 \[
 \frac{\Phi_p \triangleright_S \Gamma; x : M \Gamma \vdash (b_{p,r}) p : A}{\Gamma \vdash (b_{p+1,r}) \lambda x.p : M \rightarrow A} \quad \text{fun}_b
 \]

 with $b = b_p + 1$.

(1) Since t is an abstraction, it must hold that $M \rightarrow A$ is shrinking, that is, A is shrinking, and M is co-shrinking. This last fact, together with the hypothesis that Γ is co-shrinking gives $\Gamma; x: M$ co-shrinking. Then we can apply the i.h. obtaining $|p|_{lo} \leq |\Phi_p| - |\Phi_p|_{ax}$, and $|t|_{lo} = |p|_{lo} + 1 \leq i.h. |\Phi_p| - |\Phi_p|_{ax} + 1 = |\Phi| - |\Phi|_{ax}$.

 Moreover, if Φ is traditional so is Φ_p and the i.h. gives $|p|_\lambda \leq b_p$. Then $|t|_\lambda = |p|_\lambda + 1 \leq b_p + 1 = b$.

(2) Since t is an abstraction, it must hold that $M \rightarrow A$ is unitary shrinking, that is, A is unitary shrinking and M is unitary co-shrinking. This last fact, together with the hypothesis that Γ is unitary co-shrinking gives $\Gamma; x : M$ unitary shrinking. Then we can apply the i.h., obtaining $|p|_{lo} = |\Phi_p| - |\Phi_p|_{ax}$. Then, $|t|_{lo} = |p|_{lo} + 1 = i.h. |\Phi_p| - |\Phi_p|_{ax} + 1 = |\Phi| - |\Phi|_{ax}$.

 Moreover, if Φ is traditional so is Φ_p and the i.h. gives $|p|_\lambda = b_p$. Then $|t|_\lambda = |p|_\lambda + 1 = b_p + 1 = b$.

- fun_r rule:

 \[
 \frac{\Phi_p \triangleright \Gamma; x : \text{Tight} \Gamma \vdash (b_{r,p}) p : \text{tight}}{\Gamma \vdash (b_{r,p+1}) \lambda x.p : \text{abs}} \quad \text{fun}_r
 \]

 with $r = r_p + 1$.

(1) If Γ is co-shrinking, then $\Gamma; x : \text{Tight}$ is co-shrinking. Since tight is a shrinking type, by i.h. $|p|_{lo} \leq |\Phi_p| - |\Phi_p|_{ax}$. Then, $|t|_{lo} = |p|_{lo} + 1 \leq i.h. |\Phi_p| - |\Phi_p|_{ax} + 1 = |\Phi| - |\Phi|_{ax}$. The moreover statement does not apply in this case.

(2) If Γ is unitary co-shrinking, then $\Gamma; x : \text{Tight}$ is unitary co-shrinking. Since tight is a unitary shrinking type, by i.h. $|p|_{lo} = |\Phi_p| - |\Phi_p|_{ax}$. Then, $|t|_{lo} = |p|_{lo} + 1 = i.h. |\Phi_p| - |\Phi_p|_{ax} + 1 = |\Phi| - |\Phi|_{ax}$. The moreover statement does not apply in this case.

\[\square\]

Proposition 5.8 (Traditional types bounds the size of neutral and normal terms). Let $\Phi \triangleright lo \Gamma \vdash (b_{r,p}) t : A$ be a traditional derivation such that Γ is co-shrinking. Then:

(1) If neutral$_{lo}(t)$ then $\#(A) + |t|_{lo} \leq \#(\Gamma)$ and $\#^N(A) + b \leq \#^N(\Gamma)$.

(2) If normal$_{lo}(t)$ and A is shrinking then $|t|_{lo} \leq \#(\Gamma) + \#(A)$ and $b \leq \#^N(\Gamma) + \#^P(A)$.

Proof. By mutual induction on neutral$_{lo}(t)$ and normal$_{lo}(t)$.

(1) Cases of neutral$_{lo}(t)$:

- **Variable**, i.e. $t = x$. Then

 \[
 x : [A] \vdash (0,0) x : A
 \]

 Moreover, $\#(A) + |x|_{lo} = \#(A) + 0 = \#(A) = \#([A]) = \#(x : [A])$ and $\#^N(A) + b = \#^N(A) + 0 = \#^N(A) = \#^N([A]) = \#^N(x : [A])$.

- **Application**, i.e. $t = pu$ with neutral$_{lo}(p)$ and normal$_{lo}(u)$. The hypothesis that Φ is traditional forces the last rule of Φ to be app_b and Φ to have the following form:

 \[
 \frac{\Phi_u \triangleright lo \Delta_i \vdash (b_{i,p})_0 u : B_i}_{\sum_{i \in I} \Delta_i \vdash (b_{i+p+i},0)_0 u : B_i}_{\text{many}} \quad \text{app}
 \]

 \[\Gamma_p \subseteq \sum_{i \in I} \Delta_i \vdash (b_{i+p+i})_0 pu : A \]

Let $M := \{B_i\}_{i \in I}$ and $\Gamma_u = \bigcup_{i \in I} A_i$. Since Φ is shrinking, Γ_p is co-shrinking. The hypothesis neutral$_{\Gamma_0}(p)$ gives neutral$_{\Gamma_d}(p)$ (which is a weaker predicate), and by the occurrences spreading on neutral terms (Lemma 5.6) we obtain that $M \rightarrow A$ is co-shrinking and so M is shrinking. Therefore, M is not empty, that is, $I \neq \emptyset$ and each B_i is shrinking.

By i.h. (Point 2) (repeatedly) applied to u, we obtain $|u|_{t_0} \leq \#(A_i) + \#(B_i)$ and $b'_i \leq \#^N(\Delta_i) + \#^P(B_i)$ for every $i \in I$, and so $|u|_{t_0} \leq \#(\Gamma_u) + \#(M) + \sum_{i \in I} b'_i \leq \sum_{i \in I} (\#^N(\Delta_i) + \#^P(B_i)) = \sum_{i \in I} \#^N(\Delta_i) + \#^P(M).

By i.h. (Point 1) applied to p, we obtain $\#(M \rightarrow A) + |p|_{t_0} \leq \#(\Gamma_p)$ and $\#^N(M \rightarrow A) + b_p \leq \#^N(\Gamma_p)$.

Then:

$$#(A) + |t|_{t_0} \leq #(A) + |p|_{t_0} + |u|_{t_0} + 1 \quad \leq_{i.h. \ on \ u} #(A) + |p|_{t_0} + \#(\Gamma_u) + \#(M) + 1 \quad = \quad \#(\Gamma_u) + |p|_{t_0} + \#(M \rightarrow A) \quad \leq_{i.h. \ on \ p} \#(\Gamma_u) + \#(\Gamma_p) \quad = \quad \#(\Gamma_p \uplus \Gamma_u) = \#(\Gamma)$$

and

$$\#^N(A) + b = \#^N(A) + b_p + \sum_{i \in I} b'_i \quad \leq_{i.h. \ on \ u} \#^N(A) + b_p + \sum_{i \in I} \#^N(\Delta_i) + \#^P(M) \quad = \quad \#^N(\Gamma_u) + \#^N(M \rightarrow A) + b_p \quad \leq_{i.h. \ on \ p} \#^N(\Gamma_u) + \#^N(\Gamma_p) \quad = \quad \#^N(\Gamma_p \uplus \Gamma_u) = \#^N(\Gamma)$$

(2) Cases of normal$_{\Gamma_0}(t)$:

(a) neutral$_{\Gamma_0}(t)$. By i.h., $#(A) + |t|_{t_0} \leq \#(\Gamma)$ and $\#^N(A) + b \leq \#^N(\Gamma)$, from which it trivially follows $|t|_{t_0} \leq \#(\Gamma) + \#(A)$ and $b \leq \#^N(\Gamma) \leq \#^N(\Gamma) + \#^P(A)$.

(b) Abstraction, i.e. $t = \lambda y.p$ and normal$_{\Gamma_0}(p)$. Since Φ is traditional, its last rule is necessarily fun$_b$. Then let $y : M$ the declaration of y in the premiss of fun$_b$ (remark that M is possibly $[]$). Then Φ has the following form:

$$\Phi_p \vdash_{t_0} y : M; \Gamma \vdash_{(b_p, 0)} p : B$$

$$\Gamma \vdash_{(b_p + 1, 0)} \lambda y.p : M \rightarrow B$$

with $b = b_p + 1$ and $A = M \rightarrow B$ shrinking, that implies B shrinking and M co-shrinking, that is, $\Gamma, y : M$ is co-shrinking (because Γ is co-shrinking by hypothesis). We can then apply the i.h. and obtain:

$$|\lambda y.p|_{t_0} \leq_{i.h.} \#(y : M; \Gamma) + \#(B) + 1 \quad = \quad \#(\Gamma) + \#(M) + \#(B) + 1 \quad = \quad \#(\Gamma) + \#(M \rightarrow B)$$

and

$$b_p + 1 \leq_{i.h.} \#^N(y : M; \Gamma) + \#^P(B) + 1 \quad = \quad \#^N(\Gamma) + \#^N(M) + \#^P(B) + 1 \quad = \quad \#^N(\Gamma) + \#^P(M \rightarrow B)$$

\[\square\]

Proposition 5.9 (Shrinking Subject Reduction). Let $\Phi \vdash_{t_0} \Gamma \vdash_{(b, r)} t : A$. If $t \vdash_{t_0} p$ then $b \geq 1$ and there exists Ψ such that $\Psi \vdash_{t_0} \Gamma \vdash_{(b', r)} p : A$ with $b' \leq b$ and $|\Psi| \leq |\Phi|$. Moreover, Φ traditional implies Ψ traditional, and if Φ is shrinking (resp. unitary shrinking) then $b' < b$ (resp. $b' = b - 1$) and $|\Psi| < |\Phi|$.
Proof. The first part (without the shrinking/unitary shrinking hypothesis) is an easy induction on $t \rightarrow_{t_0} p$. The moreover part is also by induction on $t \rightarrow_{t_0} p$, but it requires a strengthened statement, along the same lines of the proof for the tight case:

1. If $t \rightarrow_{t_0} p$, $\Phi \vdash_{t_0} \Gamma \triangleright_{(b,r)} t : A$, Γ is co-shrinking, and $(A$ is shrinking or $\neg \text{abs}_{t_0}(t))$, then there exists a typing $\Psi \vdash_{t_0} \Gamma \triangleright_{(b',r')} p : A$ with $b' < b$ and $|\Psi| < |\Phi|$.

2. If $t \rightarrow_{t_0} p$, $\Phi \vdash_{t_0} \Gamma \triangleright_{(b,r)} t : A$, Γ is unitary co-shrinking, and A is unitary shrinking or $\neg \text{abs}_{t_0}(t)$, then there exists a typing $\Psi \vdash_{t_0} \Gamma \triangleright_{(b',r')} p : A$ with $b' = b - 1$ and $|\Psi| < |\Phi|$.

The cases of evaluation at top level, under abstraction, and in the left subterm of an application follows exactly the schema of the tight case: at top level the tight/shrinking hypothesis does not play any role, the abstraction case immediately follows from the $i.h.$, and the left application case follows from the reinforced hypothesis that the left subterm is not an abstraction. We treat the case of evaluation in the right subterm of an application, that is the delicate one, where the shrinking predicate plays a crucial role.

The rule is:

$$\text{neutral}_{t_0}(u) \quad q \rightarrow_{t_0} m$$

$$t = uq \rightarrow_{t_0} um = p$$

There are two cases for the last rule of the derivation Φ:

- app_b rule:

$$\frac{\Phi_u \vdash_{t_0} \Gamma_u \triangleright_{(b_u,r_u)} u : [B_i]_{i \in I} \rightarrow A \quad \triangleright_{(i \in I)} \Gamma_q \triangleright_{(b_i+r_i)} q : [B_i]_{i \in I}}{\Gamma = \Gamma_u \triangleright_{(i \in I)} \Gamma_q \triangleright_{[b_u+r_u,b_i+r_i]} uq : A}$$

The $i.h.$ applied to each Φ_q_i and $q \rightarrow_{t_0} m$ gives Φ_{m_i} such that $\Phi_{m_i} \vdash_{t_0} \Gamma_q \triangleright_{(b_i+r_i)} m : B_i$ with $b'_i \leq b_i$ and $|\Phi_{m_i}| \leq |\Phi_{q_i}|$. Then the derivation Ψ given by:

$$\frac{\Phi_u \vdash_{t_0} \Gamma_u \triangleright_{(b_u,r_u)} u : [B_i]_{i \in I} \rightarrow A \quad \triangleright_{(i \in I)} \Gamma_q \triangleright_{(b_i+r_i)} m : [B_i]_{i \in I}}{\Gamma = \Gamma_u \triangleright_{(i \in I)} \Gamma_q \triangleright_{[b_u+r_u,b_i+r_i]} um : A}$$

verifies the statement. Let $M := [B_i]_{i \in I}$.

Shrinking: we have to show two things, that the multi-set M is non empty and that, in order to apply the $i.h.$, the derivations Φ_{m_i} in the right premiss of the rule are all shrinking. Since Φ is shrinking, Γ is co-shrinking, and so are Γ_u and all the Γ_q^i. The hypothesis $\text{neutral}_{t_0}(u)$ gives $\text{neutral}_{t_0,hd}(u)$ (which is a weaker predicate). Then, $\text{neutral}_{t_0,hd}(u)$ and Γ_u co-shrinking allow to apply the occurrences spreading on neutral terms (Lemma 5.6), obtaining $M \rightarrow A$ is co-shrinking, and so M is shrinking. Then $I \neq \emptyset$ and every B_i is shrinking and so every premiss Φ_{m_i} is shrinking. Then by $i.h.$ $b'_i < b_i$ and $|\Phi_{m_i}| < |\Phi_{q_i}|$ for every $i \in I$, and so $b_i = b_u + i \in I b'_i + 1 < b_u + i \in I b_i + 1 = b$, and $|\Psi| = |\Phi_u| + i \in I |\Phi_{m_i}| + 1 < i_h |\Phi_u| + i \in I |\Phi_{q_i}| + 1 = |\Phi|$, as required.

Unitary shrinking: Since Γ is unitary co-shrinking, then Γ_u is unitary co-shrinking. This, together with $\text{neutral}_{t_0}(u)$ allows to apply Lemma 5.6, then $M \rightarrow A$ is unitary co-shrinking and so M is unitary shrinking. Therefore, M is a singleton and B_i is unitary shrinking. Moreover, Γ_q^i is also unitary co-shrinking so that Φ_q_i is unitary shrinking.
Then by i.h. \(b' = b_1 - 1 \) and \(|\Phi_m| < |\Phi_q| \), and so \(b' = b_u + b' + 1 = b_u + b_1 - 1 = b_1 - 1 \), and \(|\Psi| = |\Phi_u| + |\Phi_m| + 1 < \text{i.h.} |\Phi_u| + |\Phi_q| + 1 = |\Phi| \), as required.

- \(\text{app}_{io}^{\Gamma} \) rule:
 \[
 \frac{\Phi_u \triangleright_{io} \Gamma_u \vdash (b \cdot r) u \, : \, \text{neutral} \quad \Phi_q \triangleright_{io} \Gamma_q \vdash (b' \cdot r') q \, : \, \text{tight}}{\Gamma = \Gamma_u \uplus \Gamma_q \vdash (b + b' + b_u + r_u \cdot r + 1) u q \, : \, \text{neutral}}\]

with \(b = b_u + b_q \) and \(r = r_u + r_q + 1 \). The i.h. applied to \(\Phi_q \) and \(q \triangleright_{io} m \) gives \(\Phi_m \) such that \(\Phi_m \triangleright_{io} \Gamma_q \vdash (b_m \cdot r_q) m \, : \, \text{tight} \) with \(b_m \leq b_q \) and so \(|\Phi_m| \leq |\Phi_q| \). Then the derivation \(\Psi \) given by:

\[
\frac{\Phi_u \triangleright_{io} \Gamma_u \vdash (b \cdot r) u \, : \, \text{neutral} \quad \Phi_m \triangleright_{io} \Gamma_q \vdash (b_m \cdot r_q) m \, : \, \text{tight}}{\Gamma = \Gamma_u \uplus \Gamma_q \vdash (b + b_m + b_u + r_u \cdot r + 1) u q \, : \, \text{neutral}}\]

verifies the statement.

Shrinking: if \(\Phi \) is shrinking then \(\Gamma_q \) is co-shrinking, and so is \(\Phi_q \) (because tight types are shrinking). By i.h. then \(b_m < b_q \) and \(|\Phi_m| < |\Phi_q| \), and so \(b' = b_u + b_m < b_u + b_q = b \), and \(|\Psi| = |\Phi_u| + |\Phi_m| + 1 < |\Phi_u| + |\Phi_q| + 1 = |\Phi| \), as required.

Unitary shrinking: if \(\Phi \) is unitary shrinking then \(\Gamma_q \) is unitary co-shrinking, and so is \(\Phi_q \) (because tight types are unitary shrinking). By i.h. then \(b_m = b_q - 1 \) and \(|\Phi_m| < |\Phi_q| \), and so \(b' = b_u + b_m = b_u + b_q - 1 = b - 1 \), and \(|\Psi| = |\Phi_u| + |\Phi_m| + 1 < |\Phi_u| + |\Phi_q| + 1 = |\Phi| \), as required.

\[\square\]

THEOREM 5.10 (Shrinking correctness). Let \(\Phi \triangleright_{io} \Gamma \vdash (b, t) t : A \) be a shrinking derivation. Then there exists \(p \) such that normal_{io}(p) and \(k \leq b \) such that

1. Steps: \(t \rightarrow_{io} k \) steps, i.e. \(t \rightarrow_{io} k \) \(p \);
2. Size bound: \(|p|_{io} + k \leq |\Phi| \).

Moreover, if \(\Phi \) is traditional then \(|p|_{io} \leq \#(\Gamma) + \#(A) \) and \(|p|_{\lambda} \leq \#N(\Gamma) + \#P(A) \), and if \(\Phi \) is also unitary shrinking then \(|p|_{\lambda} = b - k \).

Proof. By induction on \(|\Phi| \). If \(t \) is a \(\rightarrow_{io} \) normal form—that covers the base case \(|\Phi| = 1 \), for which \(t \) is necessarily a variable—then we take \(p := t \) and \(k := 0 \). The first statement trivially holds. The second statement holds by Proposition 5.7. The moreover part: if \(\Phi \) is traditional \(|p|_{io} \leq \#(\Gamma) + \#(A) \) holds by Proposition 5.8.2 and \(|p|_{\lambda} \leq \#N(\Gamma) + \#P(A) \) is obtained by composing \(|p|_{\lambda} \leq b \), given by Proposition 5.7.1, and \(b \leq \#N(\Gamma) + \#P(A) \), given by Proposition 5.8.2, and if \(\Phi \) is unitary shrinking then \(|p|_{\lambda} = b \) is given by Proposition 5.7.2.

If instead \(t \rightarrow_{io} u \), then by shrinking subject reduction (Proposition 5.9) there is a shrinking derivation \(\Psi \triangleright_{io} \Gamma \vdash (b', t') u : A \) such that \(b' < b \) and \(|\Psi| < |\Phi| \). By i.h., there exists a \(\rightarrow_{io} \) normal form \(p \) and a natural number \(k' \leq b' \) satisfying the statement with respect to \(u \), so in particular \(|p|_{io} + k' \leq |\Psi|_{io} \). Let \(k := k' + 1 \). Then:

1. Steps: \(t \rightarrow_{io} k \) \(p \) because \(t \rightarrow_{io} k \) \(p \). Moreover, \(k = b' + 1 \leq \text{i.h.} b' + 1 \leq b \).
2. Size bound: \(|p|_{io} + k = |p|_{io} + k' + 1 \leq \text{i.h.} |\Psi| + 1 \leq |\Phi| \).

The moreover part mainly follows from the i.h.: only the relationship \(|p|_{\lambda} = b - k \) is not immediate, but if \(\Phi \) is unitary shrinking then \(|p|_{\lambda} = \text{i.h.} b' - k' \) and \(b = b' + 1 \) by shrinking subject reduction and, since \(k = k' + 1 \), then \(|p|_{\lambda} = b - k \) holds.

\[\square\]

C.2 Shrinking Completeness

PROPOSITION 5.11 (Neutral and normal terms have minimal traditional shrinking typings).
(1) If neutral₁₀(t) then for every unitary co-shrinking type A there exists a traditional derivation \(\Phi \vdash \Gamma \vdash (b,0) t : A \) such that \(\Gamma \) is unitary co-shrinking, \(#(A) + |t|₁₀ = #(\Gamma) \), and \(#^N(A) + b = #^N(\Gamma) \).

(2) If normal₁₀(t) then there exists a traditional unitary shrinking derivation \(\Phi \vdash \Gamma \vdash (b,0) t : A \) such that \(|t|₁₀ = #(\Gamma) + #(A) \) and \(b = #^N(\Gamma) + #^P(A) \).

Proof. By mutual induction on neutral₁₀(t) and normal₁₀(t).

(1) Cases of neutral₁₀(t):
- **Variable**, i.e. \(t = x \). Then
 \[
 \frac{x : [A] \vdash x : A}{ax}
 \]
 whose type context \(x : [A] \) is unitary shrinking because \(A \) is unitary co-shrinking by hypothesis. We have \(#(A) + |x|₁₀ = #(A) + 0 = #(x : [A]) \) and \(#^N(A) + b = #^N([A]) + 0 = #^N(x : [A]) \).
- **Application**, i.e. \(t = pu \) with neutral₁₀(p) and normal₁₀(u). By i.h. (point 2) applied to \(u \), there exists a traditional unitary shrinking typing \(\Phi_u \vdash \Gamma_u \vdash (b_u,0) u : B \) with \(|u|₁₀ = #(\Gamma_u) + #(B) \) and \(b_u = #^N(\Gamma_u) + #^P(B) \).

Now, consider the type \([B] \rightarrow A\), that is unitary co-shrinking, because \(A \) is unitary co-shrinking and \(B \) is unitary shrinking. By i.h. (point 1) applied to \(p \) and \([B] \rightarrow A\) there exists a traditional typing \(\Phi_p \vdash \Gamma_p \vdash (b_p,0) p : [B] \rightarrow A \) such that \(\Gamma_p \) is unitary co-shrinking and satisfying \(#([B] \rightarrow A) + |p|₁₀ = #(\Gamma_p) \) and \(#^N([B] \rightarrow A) + b_p = #^N(\Gamma_p) \).

Then the derivation \(\Phi \) built as follows:

\[
\frac{\Phi_u \vdash \Gamma_u \vdash (b_u,0) u : B}{\Phi_p \vdash \Gamma_p \vdash (b_p,0) p : [B] \rightarrow A \quad \text{many}}\]

\[\Gamma_p \uplus \Gamma_u \vdash (b_{pu}+b_{u},0) pu : A\]

It is traditional and such that its type context is unitary co-shrinking. Moreover,

\[
\begin{align*}
#(A) + |t|₁₀ &= #(A) + |p|₁₀ + |u|₁₀ + 1 \\
=_{\text{i.h. on } u} & #(A) + |p|₁₀ + #(\Gamma_u) + #(B) + 1 \\
& = #(\Gamma_u) + #([B] \rightarrow A) + |p|₁₀ \\
=_{\text{i.h. on } p} & #(\Gamma_u) + #(\Gamma_p) \\
& = #(\Gamma_p \uplus \Gamma_u)
\end{align*}
\]

and

\[
\begin{align*}
#^N(A) + b_p + b_u &= #^N(A) + b_p + #^N(\Gamma_u) + #^P(B) \\
= & #^N(\Gamma_u) + #^N([B] \rightarrow A) + b_p \\
=_{\text{i.h. on } p} & #^N(\Gamma_u) + #^N(\Gamma_p) \\
& = #^N(\Gamma_p \uplus \Gamma_u)
\end{align*}
\]

(2) Cases of normal₁₀(t):
- **neural₁₀(t).** By i.h. (point 1), for every unitary co-shrinking type \(A \) there exists a traditional typing \(\Phi \vdash \Gamma \vdash (b,0) t : A \) such that \(\Gamma \) is unitary co-shrinking. It is then enough to pick \(A := X \), that is both unitary shrinking and unitary co-shrinking, so that \(\Phi \) is unitary shrinking, \(#(A) = 0 \), and the statement trivially holds, because then \(|t|₁₀ = #(A) + |t|₁₀ =_{\text{i.h.}} #(\Gamma) = #(\Gamma) + #(A) \). Moreover, \(#^P(A) = #^N(A) = 0 \), so that by i.h. \(#^N(A) + b = #^N(\Gamma) \), which is equivalent to \(b = #^N(\Gamma) + #^P(A) \), as required.
- **Abstraction**, i.e. \(t = \lambda y.p \) and normal₁₀(p). By i.h. (point 2), there exists a unitary shrinking traditional typing \(\Phi_p \vdash \Gamma_p \vdash (b_p,0) p : B \) with \(|p|₁₀ = #(\Gamma_p) + #(B) \).
Then let $y : M$ (M possibly []) the declaration of y in Γ_p and set Γ be Γ_p without $y : M$. Then let Φ be the derivation

$$
\Phi_p \vdash_{lo} y : M; \Gamma \vdash (b_p,0) p:B
$$

$$
\Gamma \vdash (b_{p+1},0) \lambda y.p:M \rightarrow B
$$

which is traditional and unitary shrinking because Φ_p is. We have

$$
|\lambda y.p|_{lo} = |p|_{lo} + 1
$$

$$
=_{i.h.} #(y : M; \Gamma) + #(B) + 1
$$

$$
= #(\Gamma) + #(M) + #(B) + 1
$$

$$
= #(\Gamma) + #(M \rightarrow B)
$$

and

$$
b_p + 1 =_{i.h.} \#^N(y : M; \Gamma) + \#^P(B) + 1
$$

$$
= \#^N(\Gamma) + \#^N(M) + \#^P(B) + 1
$$

$$
= \#^N(\Gamma) + \#^P(M \rightarrow B)
$$

Proposition 5.12 (Shrinking subject expansion). If $t \rightarrow_{lo} p$ and $\Phi \vdash_{lo} \Gamma \vdash (b_p,r_p) p:A$ then there exists Ψ such that $\Psi \vdash_{lo} \Gamma \vdash (b',r') t:A$ with $b' \geq b$. Moreover, if Φ is shrinking (resp. unitary shrinking) then $b' \geq b + 1$ (resp. $b' = b + 1$) and $|\Psi| > |\Phi|$, and if Φ is traditional then Ψ is traditional.

Proof. The first part (without the shrinking hypothesis) is an easy induction on $t \rightarrow_{lo} p$. The part about shrinking/unitary shrinking typings is also by induction on $t \rightarrow_{lo} p$, but it requires a strengthened statement, along the same lines of the proof for the tight case and of subject reduction:

(1) If $t \rightarrow_{lo} p$, $\Phi \vdash_{lo} \Gamma \vdash (b,r) p : A$, Γ is co-shrinking and either A is shrinking or $\neg \text{abs}_{lo}(t)$, then there exists a typing $\Psi \vdash_{lo} \Gamma \vdash (b+1,r) t : A$ such that $b' \geq b + 1$ and $|\Psi| > |\Phi|$.

(2) If $t \rightarrow_{lo} p$, $\Phi \vdash_{lo} \Gamma \vdash (b,r) p : A$, Γ is unitary co-shrinking, and either A is unitary shrinking or $\neg \text{abs}_{lo}(t)$, then there exists a typing $\Psi \vdash_{lo} \Gamma \vdash (b+1,r) t : A$ such that $b' = b + 1$ and $|\Psi| > |\Phi|$.

The cases of evaluation at top level, under abstraction, and in the left subterm of an application follows exactly the schema of the tight case: at top level the tight / shrinking hypothesis does not play any role, the abstraction case immediately follows from the $i.h.$, and the left application case follows from the reinforced hypothesis that the left subterm is not an abstraction. We treat the case of evaluation in the right subterm of an application, that is the delicate one, where shrinkness plays a crucial role.

The rule is:

$$
\text{neutral}_{lo}(u) \quad q \rightarrow_{lo} m
$$

$$
t = uq \rightarrow_{lo} um = p
$$

There are two cases for the last rule of the derivation Φ:

- **app$_b$ rule:**

$$
\Phi_u \vdash_{lo} \Pi \vdash (b_u.r_u) u : [B_i]_{i \in I} \rightarrow A \quad (\Phi_{m_i} \vdash_{lo} \Delta_i \vdash (b_i.r_i) m : B_i)_{i \in I}
$$

$$
\Gamma = \Pi \vdash (b_u + \varepsilon r_u, b_i + \varepsilon r_i, b_i + \varepsilon r_i) um : A
$$

many

$$
\text{app}_b
$$

The $i.h.$ applied to each Φ_{m_i} and $q \rightarrow_{lo} m$ gives Φ_{q_i} such that $\Phi_{q_i} \vdash_{lo} \Delta_i \vdash (b_i.r_i) q : B_i$ with $b'_i \geq b_i$ and $|\Phi_{q_i}| \geq |\Phi_{m_i}|$. Then the derivation Ψ given by:

with indices

D.1 Tight Correctness

APPENDIX: MAXIMAL EVALUATION

normal

Neutrality

Proof. Let \(\lo \) verifies the statement. The statement \(|\Psi| > |\Phi|\) is a straightforward consequence of the i.h. Shrinking/Unitary shrinking: exactly the same reasoning used for shrinking/unitary shrinking subject reduction proves that \(\Phi_u \) is shrinking/unitary shrinking, \(I \) is non-empty, and the \(B_i \) are all shrinking/unitary shrinking. The i.h. then provides \(b'_i \geq b_i + 1 \) (resp. \(b'_i = b_i + 1 \)) for every \(i \in I \), from which the property follows.

• \(\text{app}^{lo}_1 \) rule:

\[
\frac{\Phi_u \triangleright_{io} \Gamma_u \vdash (b_u, r_u) \; u : [B_i]_{i \in I} \quad \Phi_m \triangleright_{io} \Gamma_m \vdash (b_m, r_m) \; m : \text{tightly shrinking}}{
\Gamma = \Pi + \iota \Delta_i \triangleright (b_u + \iota c_i, r_u + \iota c_i) \; uq : A}
\]

with \(b = b_u + b_m \) and \(r = r_u + r_m + 1 \). The i.h. applied to \(\Phi_m \) and \(q \triangleright_{io} m \) gives \(\Psi_q \) such that \(\Psi_q \triangleright_{io} \Gamma_q \vdash (b_m, r_m) \; m : \text{tightly shrinking} \) with \(b_q \geq b_m \) and so \(|\Psi_q| \geq |\Phi_m|\). Then the derivation \(\Psi \) given by:

\[
\frac{\Phi_u \triangleright_{io} \Gamma_u \vdash (b_u, r_u) \; u : \text{neutral}}{
\frac{\Phi_m \triangleright_{io} \Gamma_m \vdash (b_m, r_m) \; m : \text{tight}}{
\Gamma = \Gamma_u \uplus \Gamma_q \vdash (b_u + b_q, r_u + r_m + 1) \; uq : \text{neutral}}}
\]

verifies the statement. The statement \(|\Psi| > |\Phi|\) is a straightforward consequence of the i.h. Shrinking/Unitary shrinking: if \(\Phi \) is shrinking/unitary shrinking then \(\Gamma \) is co-shrinking/unitary co-shrinking, and \(\Phi_m \) is shrinking/unitary shrinking (because tight types are shrinking and unitary shrinking). By i.h. \(b_q \geq b_m + 1 \) (resp. \(b_q = b_m + 1 \)), and so \(b'_q = b_u + b_q \geq b_u + b_m + 1 = b + 1 \) (resp. \(b'_q = b_u + b_q = b_u + b_m + 1 = b + 1 \)), as required.

\[\square\]

THEOREM 5.13 (Shrinking completeness). Let \(t \triangleright_{io}^k p \) with \(p \) such that \(\text{neutral}_{io} (p) \). Then there exists a traditional unitary shrinking typing \(\Phi \triangleright_{io} \Gamma \vdash (b, 0) \; t : A \) such that \(k = b - \#^N (\Gamma) - \#^P (A) \) and \(|p|_{io} = \#(\Gamma) + \#(A)\).

Proof. By induction on \(k \). If \(k = 0 \) the statement is given by the existence of traditional unitary shrinking typings for \(\triangleright_{io} \) normal terms (Proposition 5.11), for which \(k = 0 \) and \(b = \#^N (\Gamma) + \#^P (A) \). Let \(k > 0 \) and \(t \triangleright_{io} u \triangleright_{io}^{k-1} p \). By i.h., there exists a traditional unitary shrinking typing derivation \(\Psi \triangleright_{io} \Gamma \vdash (b', 0) \; u : A \) with \(k - 1 = b' - \#^N (\Gamma) - \#^P (A) \), and \(|p|_{io} = \#(\Gamma) + \#(A)\). By shrinking subject expansion (Proposition 5.12) there exists a traditional typing derivation \(\Phi \) of \(t \) with the same types in the ending judgement of \(\Psi \)—then \(\Phi \) is unitary shrinking and \(|p|_{io} = \#(\Gamma) + \#(A) \) still holds—and with indices \((b' + 1, 0) \). Then \(k = k - 1 + 1 = i.h. \) \(b' - \#^N (\Gamma) - \#^P (A) + 1 = b - \#^N (\Gamma) - \#^P (A) \).

\[\square\]

D APPENDIX: MAXIMAL EVALUATION

D.1 Tight Correctness

PROPOSITION 7.4 (Properties of typings for normal forms). Given \(\Phi \triangleright_{max} \Gamma \vdash (b, r) \; t : A \) with \(\text{normal}_{max} (t) \),

1. Size bound: \(|t| \leq |\Phi|\)
2. Tight indices: if \(\Phi \) is tight then \(b = 0 \) and \(r = |t| \).
3. Neutrality: if \(A = \text{neutral} \) then \(\text{neutral}_{max} (t) \).
Proof. By induction on \(t \). Note that \(\text{neural}_{\text{max}} \) implies \(\text{normal}_{\text{max}} \) and so we can apply the i.h. when \(\text{neural}_{\text{max}} \) holds on some subterm of \(t \). If \(\text{normal}_{\text{max}}(t) \) because \(\text{neural}_{\text{max}}(t) \) there are two cases:

- Variable, i.e. \(t = x \). Then \(\Phi \) has the following form and evidently verifies all the points of the statement:
 \[
 x : [A] \vdash \Phi(0,0) x : A
 \]

- Application, i.e. \(t = pu \), \(\text{neural}_{\text{max}}(p) \) and \(\text{normal}_{\text{max}}(u) \). Cases of the last rule of \(\Phi \):
 - \(\text{app}_b \) rule:
 \[
 \frac{\Phi_p \vdash_{\text{max}} \Gamma_p \kappa_{(b_p,r_p)} p : M \rightarrow A \quad \Phi_u \vdash_{\text{max}} \Gamma_u \kappa_{(b_u,r_u)} u : M}{\Gamma_p \uplus \Gamma_u \kappa_{(b_p+b_u+1,r_p+r_u+1)} pu : A} \quad \text{app}_b
 \]
 with \(b = b_p + b_u + 1, r = r_p + r_u \), and \(\Gamma = \Gamma_p \uplus \Gamma_u \).
 (1) Size bound: \(\Phi_u \) end with rule (many \(\gamma_0 \)) or (none), so in both cases there are \(n \geq 1 \) subderivations (\(\Phi^l_{\gamma_0} \)) typing \(u \) such that \(|u|_{\text{max}} \leq \mu_{\text{h}} \Phi_{\text{u}}^l_{\text{max}} \leq |\Phi_{\text{u}}|_{\text{max}} \). The i.h. gives \(|p|_{\text{max}} \leq |\Phi_p|_{\text{max}} \). We conclude \(|t|_{\text{max}} = |p|_{\text{max}} + |u|_{\text{max}} + 1 \leq |\Phi_p|_{\text{max}} + |\Phi_u|_{\text{max}} + 1 = |\Phi|_{\text{max}} \).
 (2) Tight indices: Lemma 7.3 shows this case to be impossible, as \(\text{normal}_{\text{max}}(pu) \) means \(\text{neural}_{\text{max}}(pu) \), which implies \(\text{neutral}_{\text{hd}}(pu) \).
 (3) Neutrality: \(\text{neural}_{\text{max}}(t) \) holds by hypothesis.
 - \(\text{app}_l^0 \) rule:
 \[
 \frac{\Phi_p \vdash_{\text{lo}} \Gamma_p \kappa_{(b_p,r_p)} p : \text{neutral} \quad \Phi_u \vdash_{\text{lo}} \Gamma_u \kappa_{(b_u,r_u)} u : \text{tight}}{\Gamma_p \uplus \Gamma_u \kappa_{(b_p+b_u+1,r_p+r_u)} pu : \text{neutral}} \quad \text{app}_l^0
 \]
 with \(b = b_p + b_u, r = r_p + r_u + 1 \), and \(\Gamma = \Gamma_p \uplus \Gamma_u \).
 (1) Size bound: by i.h. \(|p|_{\text{lo}} \leq |\Phi_p|_{\text{lo}} \) and \(|u|_{\text{max}} \leq |\Phi_u|_{\text{max}} \). Then \(|t|_{\text{max}} = |p|_{\text{max}} + |u|_{\text{max}} + 1 \leq |\Phi_p|_{\text{max}} + |\Phi_u|_{\text{max}} + 1 = |\Phi|_{\text{max}} \).
 (2) Tight indices: if \(\Phi \) is tight, then \(\Phi_p \) and \(\Phi_u \) are tight and \(r_p = |p|_{\text{max}} \) and \(b_p = 0 \), and \(r_u = |u|_{\text{max}} \) and \(b_u = 0 \). Then, \(r = r_p + r_u + 1 = i.h. \ |p|_{\text{max}} + |u|_{\text{max}} + 1 = |pu|_{\text{max}} = |t|_{\text{max}} \) and \(b = b_p + b_u = 0 + 0 = 0 \).
 (3) Neutrality: \(\text{neutral}_{\text{lo}}(t) \) holds by hypothesis.

Now, there is only one case left for \(\text{normal}_{\text{max}}(t) \):

- Abstraction, i.e. \(t = \lambda x.p \) and \(\text{normal}_{\text{max}}(t) \) because \(\text{normal}_{\text{max}}(p) \). Cases of the last rule of \(\Phi \):
 - \(\text{fun}_b \) rule:
 \[
 \frac{\Phi_p \vdash \Gamma ; x : M \kappa_{(b_p,r_p)} p : A}{\Gamma \kappa_{(b_p+1)} \lambda x.p : M \rightarrow A} \quad \text{fun}_b
 \]
 with \(b = b_p + 1 \).
 (1) Size bound: Then, \(|t|_{\text{max}} = |p|_{\text{max}} + 1 \leq \mu_{\text{h}} |\Phi_p|_{\text{max}} + 1 = |\Phi|_{\text{max}} \).
 (2) Tight indices: \(\Phi \) is not tight, so the statement trivially holds.
 (3) Neutrality: \(A \neq \text{neutral} \), so the statement trivially holds.
 - \(\text{fun}_r \) rule:
 \[
 \frac{\Phi_p \vdash \Gamma ; x : \text{Tight} \kappa_{(b_p,r_p)} p : \text{tight}}{\Gamma \kappa_{(b_p+1, r_p+1)} \lambda x.p : \text{abs}} \quad \text{fun}_r
 \]

with \(r = r_p + 1 \).

1. **Size bound:** Then, \(|t|_{\text{max}} = |p|_{\text{max}} + 1 \leq \text{i.h.} |\Phi_p|_{\text{max}} + 1 = |\Phi|_{\text{max}} \).

2. **Tight indices:** if \(\Phi \) is tight, then \(\Phi_p \) is tight and by i.h. \(r_p = |p|_{\text{max}} \) and \(b = 0 \). Then, \(r = r_p + 1 = \text{i.h.} |p|_{\text{max}} + 1 = |t|_{\text{max}} \).

3. **Neutrality:** \(A \neq \text{neutral} \), so the statement trivially holds.

\[
\text{Proposition 7.7 (Quantitative tight subject reduction for max).} \text{ If } \Phi \Rightarrow_{\text{max}} \Gamma \vdash_{(b, r)} t : A \text{ is max-tight and } t \Rightarrow_{\text{max}} p, \text{ then there exist } \Gamma' \subseteq \Gamma \text{ and an max-tight typing } \Psi \text{ such that } \Psi \Rightarrow_{\text{max}} \\
\Gamma' \vdash_{(b-1, r-e)} p : A \text{ and } |\Phi| > |\Psi|.
\]

\textbf{Proof.} We prove, by induction on \(t \Rightarrow_{\text{max}} p \), the stronger statement:

Assume \(t \Rightarrow_{\text{max}} p \), \(\Phi \Rightarrow_{\text{max}} \Gamma \vdash_{(b, r)} t : A \) is garbage-tight, tight(\(\Gamma \)), and either tight(\(A \)) or \(\neg \text{abs}_{\text{max}}(t) \). Then there exist \(\Gamma' \) and a garbage-tight typing \(\Psi \Rightarrow_{\text{max}} \Gamma' \vdash_{(b-1, r-e)} p : A \) such that tight(\(\Gamma' \)).

- **Non-erasing top-level step:**

\[
\begin{align*}
x \in \text{fv}(u) \\
(\lambda x.u)q^0_{\Rightarrow_{\text{max}} u\{x\rightarrow q\}}
\end{align*}
\]

Assume \(\Phi \Rightarrow_{\text{max}} \Gamma \vdash_{(b, r)} (\lambda x.u)q : A \) is garbage-tight and tight(\(\Gamma \)). The derivation \(\Phi \) must end with rule appb, the derivation of its premiss for \(\lambda x.u \) must end with funb. Hence, there are two garbage-tight derivations \(\Phi_u \Rightarrow_{\text{max}} \Gamma_u ; x : M \vdash_{(b_u+r_u)} u : A \) and \(\Phi_p \Rightarrow_{\text{max}} \Gamma_p \vdash_{(b_p+r_p)} p : M \), with \((b, r) = (b_u + b_q + 1, r_u + r_q) \) and \(\Gamma = \Gamma_u \uplus \Gamma_p \). Moreover, by hypothesis \(x \in \text{fv}(u) \), and so \(M \neq [\] \) by relevance (Lemma 7.2). Then, the substitution lemma (Lemma 7.6) gives a garbage-tight derivation \(\Psi \Rightarrow_{\text{max}} \Gamma \vdash_{(b_u+b_q,r_u+r_q)} (\lambda x.u)q\{x\rightarrow q\} : A \) such that \(|\Psi| = |\Phi_u| + |\Phi_q| - |M| < |\Phi_u| + |\Phi_q| + 2 = |\Phi| \).

- **Erasing top-level step:**

\[
\begin{align*}
x \notin \text{fv}(u) \quad \text{normal}_{\text{max}}(q) \\
(\lambda x.u)q^{|q|_{\Rightarrow_{\text{max}} u}}_{\Rightarrow_{\text{max}} u}
\end{align*}
\]

Assume \(\Phi \Rightarrow_{\text{max}} \Gamma \vdash_{(b, r)} (\lambda x.u)q : A \) is garbage-tight and tight(\(\Gamma \)). The derivation \(\Phi \) must end with rule appb, and the derivation of its premiss for \(\lambda x.u \) must end with funb. Moreover, since \(x \notin \text{fv}(u) \), then by relevance (Lemma 7.2) the derivation of its premiss \(q \) must end with rule none:

\[
\begin{align*}
\Phi_u \Rightarrow_{\text{max}} \Gamma_u \vdash_{(b_u+r_u)} u : A \\
\Gamma_u \vdash_{(b_u+1, r_u)} (\lambda x.u)u : [\] \rightarrow A \\
\Phi_q \Rightarrow_{\text{max}} \Gamma_q \vdash_{(b_q+r_q)} q : A_q \\
\Gamma_q \vdash_{(b_q+r_q)} q : [\] \quad \text{appb} \\
\Gamma_u \uplus \Gamma_q \vdash_{(b_u+b_q+1, r_u+r_q)} (\lambda x.u)q : A
\end{align*}
\]

with \((b, r) = (b_u + b_q + 1, r_u + r_q) \) and \(\Gamma = \Gamma_u \uplus \Gamma_p \). Since \(\Phi \) is garbage-tight, then \(\Gamma_q \) is tight and \(A_q \) must be tight, and since normal_{\text{max}}(q), we can apply the tight indices property of normal forms (Proposition 7.4) and obtain \((b_q, r_q) = (0, |q|_{\text{max}}) \), so that \((b_u, r_u) = (b - 1, r - |q|_{\text{max}}) \). Since tight(\(\Gamma_u \uplus \Gamma_q \)) we have tight(\(\Gamma_u \)), so \(\Phi_u \) is the desired garbage-tight derivation. Moreover, \(|\Phi_u| < |\Phi_u| + |\Phi_q| + 2 = |\Phi| \).
We conclude the derivation

\[\Phi_p \vdash_{\text{max}} \Gamma', x: \text{Tight} \vdash (b, r) \lambda x. p : A \]

Then tight(\(\Gamma'\)) and thus \(\Psi\) is garbage-tight. We conclude \(|\Phi| = |\Phi_t| + 1 > |\Phi_p| + 1 = |\Psi|\) thanks to the i.h. \(|\Phi_t| > |\Phi_p|\).

- Rule

\[\frac{t \xrightarrow{\text{e}}_{\text{max}} p}{\lambda x. t \xrightarrow{\text{max}} \lambda x. p} \]

Assume \(\Phi \vdash_{\text{max}} \Gamma \vdash (b, r) \lambda x. t : A\) is garbage-tight and tight(\(\Gamma\)). Since \(\text{abs}_{\text{max}}(\lambda x. t)\) we must have hypothesis tight(\(A\)), then \(\Phi\) must necessarily finish with rule fun_\(r\) and there is a sub-derivation \(\Phi_i \vdash_{\text{max}} \Gamma, x : \text{Tight} \vdash (b, r-1) \lambda x. t : A\). As \(\Phi_i\) is garbage-tight and tight(\(\Gamma; x : \text{Tight}\)) we can apply the i.h. and get \(\Phi_p \vdash_{\text{max}} \Gamma', x : \text{Tight} \vdash (b-1, r-1) t : \text{tight}\). Since \(x : \text{Tight}\) means \(x : \text{Tight}\) or \(x : []\) and \(\Gamma' \subseteq \Gamma\), \(\Phi_p\) is garbage-tight and tight(\(\Gamma'; x : \text{Tight}\)). Then we construct the derivation \(\Psi\):

\[\Phi_p \vdash_{\text{max}} \Gamma'^{x: \text{Tight}} \vdash (b-1, r-1) \lambda x. p : A \]

Thanks to the \(\text{fun}_{r}\).

- Rule

\[\frac{\neg \text{abs}_{\text{max}}(t) \quad t \xrightarrow{\text{e}}_{\text{max}} p}{tu \xrightarrow{\text{max}} pu} \]

Assume \(\Phi \vdash_{\text{max}} \Gamma \vdash (b, r) tu : A\) is garbage-tight and tight(\(\Gamma\)). The derivation \(\Phi\) must end with rule app_\(b\) or app_\(l^0\), and therefore there are two garbage-tight derivations \(\Phi_i \vdash_{\text{max}} \Gamma_i \vdash (b, r_i) t : A_i\) and \(\Phi_u \vdash_{\text{max}} \Gamma_u \vdash (b_u, r_u) u : A_u\), for some types \(A_i\) and \(A_u\), with \(\Gamma = \Gamma_i \uplus \Gamma_u\). Since tight(\(\Gamma\)) we have tight(\(\Gamma_i\)) and tight(\(\Gamma_u\)). Since \(\neg \text{abs}_{\text{max}}(t)\), we can apply the i.h. and get the garbage-tight derivations \(\Phi_p \vdash_{\text{max}} \Gamma_p \vdash (b-1, r-1, r-e) t : A_i\) and tight(\(\Gamma_p\)). Then the same rule app_\(b\) or app_\(l^0\) can be applied to get the garbage-tight derivations \(\Psi \vdash_{\text{max}} \Gamma_p \uplus \Gamma_u \vdash (b-1, r-1, r-e) pu : A\), with tight(\(\Gamma_p \uplus \Gamma_u\)). We conclude \(|\Phi| = |\Phi_i| + |\Phi_u| + 1 > |\Phi_p| + |\Phi_u| + 1 = |\Psi|\) thanks to the i.h. \(|\Phi_t| > |\Phi_p|\).

- Rule

\[\frac{\text{neutral}_{\text{max}}(u) \quad t \xrightarrow{\text{e}}_{\text{max}} p}{ut \xrightarrow{\text{max}} up} \]

Assume \(\Phi \vdash_{\text{max}} \Gamma \vdash (b, r) ut : A\) is garbage-tight and tight(\(\Gamma\)). The derivation \(\Phi\) must end with rule app_\(l^0\), since Lemma 7.3 (which applies as neutral_{\text{max}}(u) implies neutral_{\text{hd}}(ut)) rules out rule app_\(b\). Hence, there are two garbage-tight derivations \(\Phi_u \vdash_{\text{max}} \Gamma_u \vdash (b_u, r_u) u : \text{neutral}\) and \(\Phi_i \vdash_{\text{max}} \Gamma_i \vdash (b, r_i) t : \text{tight}\), with \(\Gamma = \Gamma_i \uplus \Gamma_u\), tight(\(\Gamma_i\)) and tight(\(\Gamma_u\)). Furthermore, \(A = \text{neutral}\). Therefore we can apply the i.h. to get the tight derivation \(\Phi_p \vdash_{\text{max}} \Gamma_p \vdash (b-1, r-1, r-e) t : \text{tight}\).

Then app_\(l^0\) can be applied to get the tight derivation \(\Psi \vdash_{\text{max}} \Gamma_u \uplus \Gamma_p \vdash (b-1, r-1, r-e) pu : \text{neutral}\). We conclude \(|\Phi| = |\Phi_u| + |\Phi_t| + 1 > |\Phi_u| + |\Phi_p| + 1 = |\Psi|\) thanks to the i.h. \(|\Phi_t| > |\Phi_p|\).

- Rule

\[\frac{x \notin \text{fv}(u) \quad t \xrightarrow{\text{e}}_{\text{max}} p}{(\lambda x. u)t \xrightarrow{\text{max}} (\lambda x. u)p} \]

Assume \(\Phi \vdash_{\text{max}} \Gamma \vdash (b, r) (\lambda x. u)t : A\) is garbage-tight and tight(\(\Gamma\)). The derivation \(\Phi\) must end with rule app_\(b\), therefore there are garbage-tight derivations \(\Phi_u \vdash_{\text{max}} \Gamma_u \vdash (b_u, r_u) \lambda x. u : [\cdot] \rightarrow A\) and \(\Phi_i \vdash_{\text{max}} \Gamma_i \vdash (b, r_i) t : \text{tight}, \Gamma = \Gamma_u \uplus \Gamma_i\) and \((b, r) = (b_i + b_u, 1, r_i + r_u)\). We can apply the i.h. to get the tight derivation \(\Phi_p \vdash_{\text{max}} \Gamma_p \vdash (b-1, r-1, r-e) t : \text{tight}\). Then app_\(b\) can be applied
to get the garbage-tight derivation \(\Psi \Rightarrow_{\text{max}} \Gamma_u \vartriangleright \Gamma \rho \vdash_{(b-1, r-e)}(\lambda x. u) p : A \), with tight(\(\Gamma_u \vartriangleright \Gamma \rho \)).

We conclude |\(\Phi \)| = |\(\Phi_u \)| + |\(\Phi_I \)| + 1 > |\(\Phi_u \)| + |\(\Phi_I \)| + 1 = |\(\Psi \)| thanks to the i.h. |\(\Phi_I \)| > |\(\Phi_I \)|.

\[\Box\]

Theorem 7.8 (Tight correctness for max-evaluation). Let \(\Phi \Rightarrow_{\text{max}} \Gamma \vdash_{(b, r)} t : A \) be a max-tight derivation. Then there is an integer \(e \) and a term \(p \) such that normal_{\text{max}}(p), \(t \Rightarrow_{\text{max}} e \) p and |\(p \)|_{\text{max}} + e = r. Moreover, if \(A = \text{neutral} \) then neutral_{\text{max}}(\(p \)).

Proof. By induction on |\(\Phi \)|. If \(t \) is a max normal form—that covers the base case |\(\Phi \)| = 1, for which \(t \) is necessarily a variable—then by taking \(p := t, k := 0 \) and \(e := 0 \) the statement follows from the tightness property of tight typings of normal forms (Proposition 7.4.2)—the moreover part follows from the neutrality property (Proposition 7.4.3). Otherwise, \(t \Rightarrow_{\text{max}} e' u \) and by quantitative subject reduction (Proposition 7.7) there is a derivation \(\Psi \Rightarrow_{\text{max}} \Gamma \Rightarrow_{(b-1, r-e)} u : A \) such that \(\Gamma' \vartriangleright \Gamma \) and |\(\Psi \)| < |\(\Phi \)|. By i.h., there exists \(p \) such that normal_{\text{max}}(\(p \)) and \(u \Rightarrow_{\text{max}} e'' \) p and |\(p \)|_{\text{max}} + e'' = r - e'.

Just note that \(t \Rightarrow_{\text{max}} e' + e'' \) p. We conclude by taking \(e = e' + e'' \) because |\(p \)|_{\text{max}} + e' + e'' = r as required.

\[\Box\]

D.2 Tight Completeness

Proposition 7.11 (Quantitative tight subject expansion for max). If \(\Phi \Rightarrow_{\text{max}} \Gamma \vdash_{(b, r)} p : A \) is max-tight and \(t \Rightarrow_{\text{max}} e \) p, then there exist \(\Gamma' \vartriangleright \Gamma \) and a max-tight typing \(\Psi \) such that \(\Psi \Rightarrow_{\text{max}} \Gamma' \vdash_{(b+1, r+e)} t : A \) and |\(\Phi \)| < |\(\Psi \)|.

Proof. We prove, by induction on \(t \Rightarrow_{\text{max}} e \) p, the stronger statement:

Assume \(t \Rightarrow_{\text{max}} e \) p, \(\Phi \Rightarrow_{\text{max}} \Gamma \vdash_{(b, r)} p : A \) is garbage-tight, \(t \) tight(\(\Gamma \)), and either tight(\(A \)) or \(\neg \text{abs}_{\text{max}}(t) \). Then there exist \(\Gamma' \vartriangleright \Gamma \) and a garbage-tight typing \(\Psi \Rightarrow_{\text{max}} \Gamma' \vdash_{(b+1, r+e)} t : A \) such that tight(\(\Gamma' \)) and |\(\Phi \)| < |\(\Psi \)|. In what follows we treat all the cases, by omitting the details about the decreasinness of size derivations, which are the same appearing in previous subject expansion properties of this paper.

- **Rule**

\[
\frac{x \in \text{fv}(u)}{(\lambda x. u) q \Rightarrow_{\text{max}} u \{x \mapsto q\}}
\]

Assume \(\Phi \Rightarrow_{\text{max}} \Gamma \vdash_{(b, r)} u \{x \mapsto q\} : A \) is garbage-tight and tight(\(\Gamma \)). By applying the anti substitution (Lemma 7.10) we obtain the premisses of the following derivation \(\Phi' \):

\[
\begin{align*}
\Phi_u \Rightarrow_{\text{max}} \Gamma_u \vdash_{(b, r)} u \{x \mapsto q\} : M \\
\Gamma_u \vdash_{(b+1, r+e)} \lambda x. u : A \\
\Phi_q \Rightarrow_{\text{max}} \Gamma_q \vdash_{(b+1, r+e)} q : M \\
\Gamma_u \vartriangleright \Gamma_q \vdash_{(b_u + b_q + 1, r_u + r_q)}(\lambda x. u) q : A
\end{align*}
\]

with \((b, r) = (b_u + b_q, r_u + r_q) \) and \(\Gamma = \Gamma_u \vartriangleright \Gamma_q \). Moreover, \(\Phi_u \) and \(\Phi_q \) are all garbage-tight, so \(\Phi' \) is garbage-tight.

- **Rule**

\[
\frac{x \notin \text{fv}(u) \quad \text{normal}_{\text{max}}(q)}{(\lambda x. u) q \Rightarrow_{\text{max}} u \{x \mapsto q\}}
\]
Assume $\Phi \trianglerighteq_{max} \Gamma \vdash^{(b,r)} u : A$ is garbage-tight and tight(Γ). By applying the existence of tight derivations for normal forms (Proposition 7.9), we obtain the max-tight derivation Φ_q used in the construction of derivation Φ' below:

$\vdash_{\text{max}} \Gamma \vdash^{(b,r)} u : A \qquad \Phi_q \trianglerighteq_{max} \Gamma_q \vdash^{(q)\mid_{\text{max}}} q : \text{tight}$

$\frac{\Phi_q \trianglerighteq_{max} \Gamma_q \vdash^{(q)\mid_{\text{max}}} q : []}{\Gamma \trianglerighteq_{\text{max}} \Gamma_q \vdash^{(b,r+|q| \mid_{\text{max}})} (\lambda x . u) q : A}$

Moreover, tight($\Gamma \cup \Gamma_q$) and Φ' is garbage-tight.

- Rule

\[
\frac{t \xrightarrow{e_{\text{max}}} p}{\lambda x . t \xrightarrow{e_{\text{max}}} \lambda x . p}
\]

Assume $\Phi \trianglerighteq_{max} \Gamma \vdash^{(b,r)} \lambda x . p : A$ is garbage-tight and tight(Γ). Since $\text{abs}_{\text{max}}(\lambda x . t)$ holds, then we must have tight(A), and then Φ must finish with rule fun$_r$ which must have a subderivation of the form $\Phi_p \trianglerighteq_{max} \Gamma, x : \text{Tight} \vdash^{(b,r-1)} p : \text{tight}$. The derivation Φ_p is garbage-tight and tight($\Gamma, x : \text{Tight}$) holds, then we can apply the i.h. and get $\Phi_t \trianglerighteq_{max} \Gamma', x : \text{Tight} \vdash^{(b,r+1-e)} t : \text{tight}$, where $\Gamma' \equiv \Gamma, \Phi_t$ is garbage-tight and tight($\Gamma', x : \text{Tight}$). We construct the following derivation Φ':

\[
\frac{\Phi_t \trianglerighteq_{max} \Gamma', x : \text{Tight} \vdash^{(b,r+1-e)} t : \text{tight}}{\Gamma' \vdash^{(b,r+1-e)} \lambda x . t : A \text{ fun}_r}
\]

Then Φ' is garbage-tight and tight(Γ').

- Rule

\[
\frac{-\text{abs}_{\text{max}}(t) \quad t \xrightarrow{e_{\text{max}}} p}{tu \xrightarrow{e_{\text{max}}} pu}
\]

Assume $\Phi \trianglerighteq_{max} \Gamma \vdash^{(b,r)} pu : A$ is garbage-tight and tight(Γ). The derivation Φ must end with rule app$_b$ or app$_r^0$, and therefore there are two garbage-tight derivations $\Phi_p \trianglerighteq_{max} \Gamma_p \vdash^{(b,r-p)} p : A_p$ and $\Phi_u \trianglerighteq_{max} \Gamma_u \vdash^{(b_u, r_u)} u : A_u$, for some types A_p and A_u, with $\Gamma = \Gamma_p \cup \Gamma_u$. Since tight($\Gamma$) we have tight($\Gamma_p$) and tight($\Gamma_u$). Since $-\text{abs}_{\text{max}}(t)$, we can apply the i.h. and get the garbage-tight derivation $\Phi_t \trianglerighteq_{max} \Gamma_t \vdash^{(b+1,r+e)} t : A_p$, with tight($\Gamma_t$). Then the same rule app$_b$ or app$_r^0$ can be applied to get the garbage-tight derivation $\Phi' \trianglerighteq_{max} \Gamma_t \cup \Gamma_u \vdash^{(b+1,r+e)} tu : A$, with tight($\Gamma_t \cup \Gamma_u$).

- Rule

\[
\frac{\text{neutral}_{\text{max}}(u) \quad t \xrightarrow{e_{\text{max}}} p}{ut \xrightarrow{e_{\text{max}}} up}
\]

Assume $\Phi \trianglerighteq_{max} \Gamma \vdash^{(b,r)} up : A$ is garbage-tight and tight(Γ). The derivation Φ must end with rule app$_b^0$, since Lemma 7.3 (which applies as neutral$_{\text{max}}(u)$ implies neutral$_{hd}(up)$) rules out rule app$_b$. Hence, there are two garbage-tight derivations $\Phi_u \trianglerighteq_{max} \Gamma_u \vdash^{(b_u, r_u)} u : \text{neutral}$ and $\Phi_p \trianglerighteq_{max} \Gamma_p \vdash^{(b,p,r)} p : \text{tight}$, with $\Gamma = \Gamma_u \cup \Gamma_p$, tight($\Gamma_u$) and tight($\Gamma_p$). Furthermore, $A = \text{neutral}$. Therefore we can apply the i.h. to get the tight derivation $\Phi_t \trianglerighteq_{max} \Gamma_t \vdash^{(b+1,r+e)} t : \text{tight}$. Then app$_r^0$ can be applied to get the tight derivation $\Phi' \trianglerighteq_{max} \Gamma_t \cup \Gamma_u \vdash^{(b+1,r+e)} ut : \text{neutral}$.
we refine the general statement as follows:

\[lhd > k \]

Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner

that \(\Gamma \) of tight typings for

normal

abs

and if \(\Phi \rightarrow \Psi \)

We show simultaneously the three statements by induction on terms.

The determinism of \(\Gamma \rightarrow_{\text{lhd}} \) is straightforward. We prove here the characterisation of \(\text{lhd}\)-normal terms and \(\text{lhd}\)-neutral terms.

we then refine the general statement as follows:

(1) If \(t \rightarrow_{\text{lhd}} \) -normal and has a free head variable \(x \) and is not a (potentially) substituted abstraction, then \(\text{neutral}^x_{\text{lhd}}(t) \).

(2) If \(t \rightarrow_{\text{lhd}} \) -normal and has a free head variable \(x \) and is a (potentially) substituted abstraction, then \(\text{normal}^x_{\text{lhd}}(t) \).

(3) If \(t \rightarrow_{\text{lhd}} \) -normal has a bound head variable, then \(\text{normal}^x_{\text{lhd}}(t) \).

We show simultaneously the three statements by induction on terms.

• If \(t \) is a variable, then it corresponds to case (1) and we conclude by rule 1hnvar.

• If \(t = \lambda y.p \), then \(p \) is also \(\rightarrow_{\text{lhd}} \) -normal. There are two cases: case (2) or (3).

If \(\lambda y.p \) corresponds to case (2), then \(y \neq x \) and \(p \) corresponds to case (1) or (2). In the first case the \(\text{i.h.} \) (1) gives that \(\text{neutral}^x_{\text{lhd}}(p) \) and thus we conclude by rules 1hnno and then 1hnolamx.

In the second case the \(\text{i.h.} \) (2) gives that \(\text{normal}^x_{\text{lhd}}(p) \) and we conclude with rule 1hnolamx. If \(\lambda y.p \) corresponds to case (3), then either \(p \) corresponds to case (3), or \(p \) corresponds to cases (1) or (2) with \(y = x \). In the first case we get that \(\text{normal}^x_{\text{lhd}}(p) \) by the \(\text{i.h.} \) (3) and thus \(\text{neutral}^x_{\text{lhd}}((\lambda x.p)) \) by rule 1hnolamx. In the second case we get that \(\text{neutral}^x_{\text{lhd}}(p) \) by the \(\text{i.h.} \) (1) (resp. \(\text{normal}^x_{\text{lhd}}(p) \) by the \(\text{i.h.} \) (2)). We conclude with rules 1hnno and then 1hnolamx (resp. 1hnolamx).
• If \(t = p u \), then \(p \) is also \(\to_{l h d} \)-normal, otherwise rule \(l h d _i \) would apply, and \(p \) is not a (potentially) substituted abstraction, otherwise rule \(l h d _a \) would apply. The term \(p u \) necessarily corresponds to case (1) for some variable \(x \) and the same for \(p \). We thus obtain that \(\text{neutral}^x_{lhda}(p) \) by the i.h. (1) and we conclude by rule \(l h n a p p \).

• If \(t = p[y\backslash u] \), \(p \) is also \(\to_{l h d} \)-normal, otherwise rule \(l h d _s \) would apply, and \(p \) has no free head variable \(y \), otherwise rule \(l h d _a \) would apply. Then \(p[y\backslash u] \) corresponds to one of cases (1)-(2)-(3). If \(p \) corresponds to (1), then \(\text{neutral}^x_{lhda}(p) \) by the i.h. (1) and we conclude with rule \(l h n s u b x \). If \(p \) corresponds to (2), then \(\text{normal}^x_{lhda}(p) \) by the i.h. (2) and we conclude with rule \(l h n o s u b x \). If \(p \) corresponds to (3), then \(\text{normal}^x_{lhda}(p) \) by the i.h. (3) and we conclude with rule \(l h n o s u b \).

Now, given \(t \) in \(\to_{l h d} \)-normal: if case (1) holds we conclude \(\text{neutral}^x_{lhda}(t) \) with the previous statement (1), then rules \(l h n o \) and \(l h n o x \); if case (2) holds we conclude \(\text{normal}^x_{lhda}(t) \) with the previous statement (2), then rule \(l h n o x \); if case (3) holds we conclude \(\text{normal}^x_{lhda}(t) \) with the previous statement (3), then rule \(l h n o \);

\(\Leftarrow \) By induction on \(\text{normal}^x_{lhda}(t) \). We remark that two cases are possible: either \(\text{normal}^x_{lhda}(t) \) for some variable \(x \) or \(\text{normal}^*_{lhda}(t) \). We then refine the statement as follows:

(1) If \(\text{neutral}^x_{lhda}(t) \), then \(t \) is \(\to_{l h d} \)-normal and \(t \) has a head free variable \(x \) and \(t \) is not a (potentially) substituted abstraction.

(2) If \(\text{normal}^x_{lhda}(t) \), then \(t \) is \(\to_{l h d} \)-normal and \(t \) has a head free variable \(x \).

(3) If \(\text{normal}^*_{lhda}(t) \), then \(t \) is \(\to_{l h d} \)-normal and \(t \) has a head bound variable. We reason by induction on the definition.

• If \(\text{neutral}^x_{lhda}(t) \) by rule \(l h n v a r \), then property (1) trivially holds.

• If \(\text{neutral}^x_{lhda}(pu) \) because \(\text{neutral}^x_{lhda}(p) \) by rule \(l h n a p p \), then by the i.h. (1) \(p \) is \(\to_{l h d} \)-normal –so rule \(l h d _m \) does not apply– and \(p \) has a head free variable \(x \) and is not a (potentially) substituted abstraction –so rule \(l h d _e @ \) does not apply. Then \(pu \) is \(\to_{l h d} \)-normal, it has a head free variable \(x \) and is not a (potentially) substituted abstraction.

• If \(\text{neutral}^x_{lhda}(p[y\backslash u]) \) because \(\text{neutral}^x_{lhda}(p) \) and \(y \neq x \) by rule \(l h n s u b x \), then by the i.h. (1) \(p \) is \(\to_{l h d} \)-normal –so rule \(l h d _e \) does not apply– and \(p \) has a head free variable \(x \) and is not a (potentially) substituted abstraction –so rule \(l h d _e \) does not apply. Then \(p[y\backslash u] \) is \(\to_{l h d} \)-normal, it has a head free variable \(x \) and is not a (potentially) substituted abstraction.

• If \(\text{normal}^x_{lhda}(t) \) because \(\text{neutral}^x_{lhda}(t) \) by rule \(l h n n o \), then by the i.h. (1) \(t \) is \(\to_{l h d} \)-normal and has a head free variable \(x \). We are then done for this case.

• If \(\text{normal}^x_{lhda}(\lambda y.p) \) because \(\text{normal}^x_{lhda}(t) \) and \(y \neq x \) by rule \(l h n o l a m x \), then by the i.h. (2) \(p \) is \(\to_{l h d} \)-normal –so that rule \(l h d _j \) does not apply– and \(p \) has a head free variable \(x \). We conclude \(\lambda y.p \) is \(\to_{l h d} \)-normal and has a head free variable \(x \).

• If \(\text{normal}^x_{lhda}(p[y\backslash u]) \) because \(\text{normal}^x_{lhda}(p) \) and \(y \neq x \) by rule \(l h n o s u b x \), then by the i.h. (2) \(p \) is \(\to_{l h d} \)-normal –so that rule \(l h d _s \) does not apply– and \(p \) has a head free variable \(x \) –so that rule \(l h d _e \) does not apply-. We conclude \(p[y\backslash u] \) is \(\to_{l h d} \)-normal and has a head free variable \(x \).

• If \(\text{normal}^*_{lhda}(\lambda x.p) \) because \(\text{normal}^x_{lhda}(p) \) by rule \(l h n o l a m x \), then by the i.h. (2) \(p \) is \(\to_{l h d} \)-normal –so that rule \(l h d _j \) does not apply-. We conclude \(\lambda x.p \) is \(\to_{l h d} \)-normal and has a bound head variable.

• If \(\text{normal}^*_{lhda}(\lambda y.p) \) because \(\text{normal}^*_{lhda}(p) \) by rule \(l h n o l a m \), then by the i.h. (3) \(p \) is \(\to_{l h d} \)-normal –so that rule \(l h d _j \) does not apply– and \(p \) has a bound head variable. We conclude \(\lambda x.p \) is \(\to_{l h d} \)-normal and has a bound head variable.
E.1 Tight Correctness

Lemma E.1 (Multi-set decomposition for \textsc{lhd}). Let $M = \cup_{k \in K} M_k$. Then $\Phi \vdash_{\textsc{lhd}} \Gamma \vdash^{(b,e,r)}_{\textsc{lhd}} t : M$ if and only if there exist $(\Phi_k)_{k \in K}$, $(\Gamma_k)_{k \in K}$, $(b_k)_{k \in K}$, $(e_k)_{k \in K}$ and $(r_k)_{k \in K}$ such that $\Phi_k \vdash_{\textsc{lhd}} \Gamma_k \vdash^{(b_k,e_k,r_k)}_{\textsc{lhd}} t : M_k$, where $\Gamma = \cup_{k \in K} \Gamma_k$, $b = +_{k \in K} b_k$, $e = +_{k \in K} e_k$ and $r = +_{k \in K} r_k$. Moreover, $|\Phi|_{\textsc{lhd}} = +_{k \in K} |\Phi_k|_{\textsc{lhd}}$.

Proof. By induction on the size of K. □

Lemma 8.3 (Tight spreading on neutral terms, plus typing contexts). Let $\Phi \vdash_{\textsc{lhd}} \Gamma \vdash^{(b,e,r)}_{\textsc{lhd}} t : A$ be a derivation.

1. If normal$^x_{\textsc{lhd}}(t)$ then $x \in \text{dom}(\Gamma)$. Moreover, if tight$(\Gamma(x))$ then tight(A) and $\text{dom}(\Gamma) = \{x\}$.
2. If normal$^x_{\textsc{lhd}}(t)$ then $x \in \text{dom}(\Gamma)$. Moreover, if tight$(\Gamma(x))$ then $\text{dom}(\Gamma) = \{x\}$.
3. If normal$^x_{\textsc{lhd}}(t)$ and tight(A) then $A = \text{abs}$ and Γ is empty.

In all the cases, if tight(Γ), then the last rule of Φ is not \textsc{app}b.

Proof.

(1) By induction on normal$^x_{\textsc{lhd}}(t)$. Cases:

- **Variable**, i.e. $t = x$. Then Φ is $x : [A] \vdash (0,0,1)x : A$ and so $\text{dom}(\Gamma) = \{x\}$. If $\Gamma(x) = \text{Tight}$ then it must be $A = \text{Tight}$.

- **Application**, i.e. $t = pu$. The last rule of Φ can only be \textsc{app}b or \textsc{app}hd. In both cases the left subterm p is typed by a sub-derivation $\Phi' \vdash_{\textsc{lhd}} \Gamma_p \vdash^{(b',e',r')}_{\textsc{lhd}} p : B$ such that all assignments in Γ_p appear in Γ. Since normal$^x_{\textsc{lhd}}(t)$ implies normal$^x_{\textsc{lhd}}(p)$, we can apply the \textit{i.h.} and obtain that $x \in \text{dom}(\Gamma_p) \subseteq \text{dom}(\Gamma)$. If moreover, $\Gamma(x) = \text{Tight}$ then $\Gamma_p(x) = \text{Tight}$ and by \textit{i.h.} $B = \text{Tight}$ and $\text{dom}(\Gamma_p) = \{x\}$. This forces $B = \text{Tight}$ and the last rule of Φ to be \textsc{app}b. Then $A = \text{Tight}$ and $\Gamma = \Gamma_p$, that implies $\text{dom}(\Gamma) = \{x\}$.

- **Explicit substitution**, i.e. $t = p[y\vdash u]$ and $y \neq x$. The last rule of Φ is \textsc{ES} and the left subterm p is typed by a sub-derivation $\Phi' \vdash_{\textsc{lhd}} \Gamma_p \vdash^{(b',e',r')}_{\textsc{lhd}} p : A$ such that all types in Γ_p appear in Γ. Since normal$^x_{\textsc{lhd}}(t)$ implies normal$^x_{\textsc{lhd}}(p)$, we can apply the \textit{i.h.} and obtain that $x \in \text{dom}(\Gamma_p) \subseteq \text{dom}(\Gamma)$. If moreover, $\Gamma(x) = \text{Tight}$ then $\Gamma_p(y : M)(x) = \text{Tight}$ and by \textit{i.h.} $A = \text{Tight}$ and $\text{dom}(\Gamma_p) = \{x\}$. This forces $M = []$ and the \textsc{ES} rule to have no right premises. Then $\Gamma = \Gamma_p$, that implies $\text{dom}(\Gamma) = \{x\}$.

(2) By induction on normal$^x_{\textsc{lhd}}(t)$. If normal$^x_{\textsc{lhd}}(t)$ because normal$^x_{\textsc{lhd}}(t)$ then it follows from the previous point. The two other cases are:

- **Abstraction**, i.e. $t = \lambda y.p$ with normal$^x_{\textsc{lhd}}(p)$ and $y \neq x$. The last rule of Φ can only be \textsc{fun}b or \textsc{fun}r. In both cases the subterm p is typed by a sub-derivation $\Phi' \vdash_{\textsc{lhd}} \Gamma_p \vdash^{(b',e',r')}_{\textsc{lhd}} p : B$. By \textit{i.h.}, $x \in \text{dom}(\Gamma(y : M))$ and so $x \in \text{dom}(\Gamma)$, because $y \neq x$. If moreover, $\Gamma(x) = \text{Tight}$ then by \textit{i.h.} $\text{dom}(\Gamma(y : M)) = \{x\}$, that is, $M = []$. Then $\text{dom}(\Gamma) = \{x\}$.

- **Explicit substitution**, i.e. $t = p[y\vdash u]$ with normal$^x_{\textsc{lhd}}(p)$ and $y \neq x$. The last rule of Φ is \textsc{ES} and the left subterm p is typed by a sub-derivation $\Phi' \vdash_{\textsc{lhd}} \Gamma_p \vdash^{(b',e',r')}_{\textsc{lhd}} p : A$ such that all types in Γ_p appear in Γ. By \textit{i.h.}, $x \in \text{dom}(\Gamma_p) \subseteq \text{dom}(\Gamma)$. If moreover, $\Gamma(x) = \text{Tight}$ then...
by \textit{i.h.} \(\text{dom}(\Gamma_p; y : M) = \{x\}\), that is, \(M = \[
\). Therefore, the ES rule has no right premiss. Then \(\Gamma = \Gamma_p\), that implies \(\text{dom}(\Gamma) = \{x\}\).

(3) By induction on \(\normal^{\#}_{\text{lhd}}(t)\). Cases:

\begin{itemize}
 \item \textit{Abstraction on the head variable}, \textit{i.e.} \(t = \lambda x.p\) with \(\normal^{\#}_{\text{lhd}}(p)\). If \(A = \text{tight}\) then the last rule of \(\Phi\) can only be \(\text{fun}_r\) and \(A = \text{abs}\):

\[
\dfrac{
\Gamma; x : \text{Tight} \Theta^{(b, e, r)} p : \text{tight} \\
}{}
\Gamma \Theta^{(b, e, r, 1)} \lambda x. p : \text{abs}
\]

By the previous point, \(\text{dom}(\Gamma; x : \text{Tight}) = \{x\}\), that is, \(\Gamma\) is empty.

\begin{itemize}
 \item \textit{Abstraction on a non-head variable}, \textit{i.e.} \(t = \lambda x.p\) with \(\normal^{\#}_{\text{lhd}}(p)\). If \(A = \text{tight}\) then the last rule of \(\Phi\) can only be \(\text{fun}_r\) and \(A = \text{abs}\):

\[
\dfrac{
\Gamma; x : \text{Tight} \Theta^{(b, e, r)} p : \text{tight} \\
}{}
\Gamma \Theta^{(b, e, r, 1)} \lambda x. p : \text{abs}
\]

By \textit{i.h.}, \(\Gamma\) is empty.

\begin{itemize}
 \item \textit{Explicit substitution}, \textit{i.e.} \(t = p[y\mid u]\) with \(\normal^{\#}_{\text{lhd}}(p)\). The last rule of \(\Phi\) is ES and the left subterm \(p\) is typed by a sub-derivation \(\Phi' \triangleright_{\text{lhd}} \Gamma_p; y : M \Theta^{(b', e', r')} p : \text{tight}\) such that all types in \(\Gamma_p\) appear in \(\Gamma\). By \textit{i.h.}, the typing context \(\Gamma_p; y : M\) is empty, that forces \(M = \[
\). Therefore, the ES rule has no right premiss. Then \(\Gamma = \Gamma_p\), \textit{i.e.} \(\Gamma\) is empty.
\end{itemize}
\end{itemize}

\begin{proposition}[Properties of \textit{lhd} tight typings for normal forms] Let \(t\) be such that \(\normal^{\#}_{\text{lhd}}(t)\), and \(\Phi \triangleright_{\text{lhd}} \Gamma \Theta^{(b, e, r)} t : A\) be a typing derivation.

(1) Size bound: \(|t|_{\text{lhd}} \leq |\Phi|\).

(2) Tightness: if \(\Phi\) is tight then \(b = e = 0\) and \(r = |t|_{\text{lhd}}\).

(3) Neutrality: if \(A = \text{neutral}\) then \(\text{neutral}^{\#}_{\text{lhd}}(t)\).
\end{proposition}

\textbf{Proof.} By induction on \(\Phi\). Cases of \(t\):

\begin{itemize}
 \item \textit{Variable}, \textit{i.e.} \(t = x\). Then \(\Phi\) has the following form and evidently verifies all the points of the statement:

\[
\dfrac{
\text{x : [A]} \Theta^{(0, 0, 1)} x : A \\
}{}
\]

\end{itemize}

The derivation verifies \(r = 1 = |x|_{\text{lhd}} = |\Phi|\), \(b = e = 0\), as required.

\begin{itemize}
 \item \textit{Abstraction}, \textit{i.e.} \(t = \lambda x.p\) with \(\normal^{\#}_{\text{lhd}}(p)\). Cases of the last rule of \(\Phi\):

\begin{itemize}
 \item \(\text{fun}_b\) rule:

\[
\dfrac{
\Psi \triangleright_{\text{lhd}} \Gamma; x : M \Theta^{(b', e', r)} p : A \\
}{}
\Gamma \Theta^{(b' + 1, e, r)} \lambda x. p : M \rightarrow A
\]

\begin{itemize}
 \item with \(b = b' + 1\).
\end{itemize}

(1) Size bound: by \textit{i.h.}, \(|p|_{\text{lhd}} \leq |\Psi|\). Then, \(|t|_{\text{lhd}} = |p|_{\text{lhd}} + 1 \leq \text{i.h.} |\Psi| + 1 = |\Phi|\).

(2) Tight bound: \(\Phi\) is not tight, so the statement trivially holds.

\item \(\text{fun}_r\) rule:

\[
\dfrac{
\Psi \triangleright_{\text{lhd}} \Gamma; x : \text{Tight} \Theta^{(b, e, r)} p : \text{tight} \\
}{}
\Gamma \Theta^{(b, e, r + 1)} \lambda x. p : \text{abs}
\]

\begin{itemize}
 \item with \(r = r' + 1\).
\end{itemize}

(1) Size bound: by \textit{i.h.}, \(|p|_{\text{lhd}} \leq |\Psi|\). Then, \(|t|_{\text{lhd}} = |p|_{\text{lhd}} + 1 \leq \text{i.h.} |\Psi| + 1 = |\Phi|\).
\end{itemize}
Lemma 8.5 (Linear substitution and typings for lhd). Let $\Phi \triangleright lhd \ x : M; \Gamma \triangleright (b', e', r') H \langle x \rangle : A$. Then there exists $B \in M$ such that for all $\Phi_t \triangleright lhd \ \Gamma_t \triangleright (b_t, e_t, r_t) t : B$ there exists a derivation $\Psi \triangleright lhd \ x : M \setminus \{B\}; \Gamma \triangleright \Gamma_t \triangleright (b + b_t, e + e_t, r + r_t - 1) H \langle t \rangle : A$. Moreover, $|\Psi| = |\Phi| + |\Phi_t| - 1$.

\[
\begin{align*}
\Psi \triangleright lhd \
\Delta \vdash (b', e', r') p : M \rightarrow A \quad & \Theta \triangleright \Pi \triangleright (b'', e'', r'') u : M \\
\Delta \uplus \Pi \triangleright (b + b'' + 1, e + e'' + r + r'') \ pu : A & \quad \text{app}_b
\end{align*}
\]

with $b = b' + b'' + 1, e = e' + e'', r = r' + r''$, and $\Gamma = \Delta \uplus \Pi$.

(1) Size bound: by $i.h.$, $|p|_{lhd} \leq |\Psi|$. Then $|t|_{lhd} = |p|_{lhd} + 1 \leq |i.h. \ |\Psi| + 1 = |\Phi|$.

(2) Tight bound: if Φ is tight and t is normal, this case is impossible by Lemma 8.3.

\[
\begin{align*}
\Psi \triangleright lhd \
\Delta; x : M \vdash (b', e', r') p : A \quad & \Pi \triangleright (b'', e'', r'') u : M \\
\Delta \uplus \Pi \triangleright (b + b'' + 1, e + e'' + |M|, r' + r'' - |M|) & p[x\setminus u] : A \quad \text{ES}
\end{align*}
\]

with $b = b' + b''$, $e = e' + e''$, $r = r' + r''$, and $\Gamma = \Delta \uplus \Pi$.

(1) Size bound: by $i.h.$, $|p|_{lhd} \leq |\Psi|$. Then $|t|_{lhd} = |p|_{lhd} + 1 \leq |i.h. \ |\Psi| < |\Phi|$.

(2) Tight bound: There are two cases:

- $\text{normal}^y_{lhd}(p)$ for some $y \neq x$. By Lemma 8.3.2 $y \in \text{dom}(\Delta)$. All assignments in Δ are tight because Φ is tight, and so applying Lemma 8.3.2 again we obtain that $\text{dom}(\Delta) = \{y\}$, that is, that $M = \{\}$. Two consequences: first, the ES has no right premiss, that is, it rather has the following shape:

\[
\begin{align*}
\Psi \triangleright lhd \
\Delta; x : M \vdash (b', e', r') p : A & \quad \Pi \triangleright (b'', e'', r'') u : M \\
\Delta \uplus \Pi \triangleright (b + b'' + 1, e + e'' + |M|, r' + r'' - |M|) & p[x\setminus u] : A \quad \text{ES}
\end{align*}
\]

second, Ψ is tight, and so by $i.h. \ b = e = 0$ and $r = |p|_{lhd}$. The statement follows from the fact that $|p|_{lhd} = |p[x\setminus u]|_{lhd}$.

- $\text{normal}^p_{lhd}(p)$. If Φ is tight then A is tight and by Lemma 8.3.3 the context $\Delta; x : M$ is empty, that is, $M = \{\}$. Two consequences: first, the ES has no right premiss, that is, it rather has the following shape:

\[
\begin{align*}
\Psi \triangleright lhd \
\Delta; x : M \vdash (b', e', r') p : A & \quad \Pi \triangleright (b'', e'', r'') u : M \\
\Delta \uplus \Pi \triangleright (b + b'' + 1, e + e'' + |M|, r' + r'' - |M|) & p[x\setminus u] : A \quad \text{ES}
\end{align*}
\]

second, Ψ is tight, and so by $i.h. \ b = e = 0$ and $r = |p|_{lhd}$. The statement follows from the fact that $|p|_{lhd} = |p[x\setminus u]|_{lhd}$.

\[
\square
\]
Tight Typings and Split Bounds, Fully Developed

Proof. By induction on H. Cases:

- Empty context, i.e. $H = \langle \rangle$. The typing derivation Φ is simply
 \[\frac{}{x : [A] \vdash^{(0,0,1)} x : A} \text{ax} \]
 and Γ is empty. Then $M = [A]$. The statement then holds with respect to $\Psi := \Phi_\Gamma$, because $b = 0$, $e = 0$, and $r = 1$. The moreover statement is straightforward since $|\Phi| = 1$.

- Abstraction, i.e. $H = \lambda y. H'$. Two sub-cases, depending on the last rule of Φ:
 (1) The last rule is fun_b, and so Φ has the form:
 \[\frac{x : M; y : N; \Gamma \vdash^{(b_r, e, r)} H' \langle x \rangle : A}{x : M; \Gamma \vdash^{(b_r+1, e, r)} \lambda y. H' \langle x \rangle : N \rightarrow A} \text{fun}_b \]
 where $b = b_\Gamma + 1$. By i.h., there exists a splitting $M = [B] \cup O$ such that for every derivation $\Psi \triangleright_{\text{td}} \Delta \vdash^{(b_r', e+\alpha, r'+r-1)} H' \langle t \rangle : A$
 Note that $y \notin \text{dom}(\Delta)$: we are working up to α-equivalence, and so $y \notin \text{fv}(t)$, and the system is relevant, and so $y \notin \text{fv}(t)$ implies $y \notin \text{dom}(\Delta)$. By applying the fun_b rule we obtain:
 \[\frac{x : O; y : N; \Gamma \cup \Delta \vdash^{(b_r+b_r', e+e'+r+r'-1)} H' \langle t \rangle : A}{x : O; \Gamma \vdash^{(b_r+b_r', e+e'+r+r'-1)} \lambda y. H' \langle t \rangle : N \rightarrow A} \text{fun}_b \]
 that satisfies the statement (because $b = b_\Gamma + 1$).
 (2) The last rule is fun_r, and so Φ has the form:
 \[\frac{x : M; y : \text{Tight}; \Gamma \vdash^{(b_r, e, r)} H' \langle x \rangle : \text{tight}}{x : M; \Gamma \vdash^{(b_r, e, r+1)} \lambda y. H' \langle x \rangle : \text{abs}} \text{fun}_r \]
 where $r = r_\Gamma + 1$. By i.h., there exists a splitting $M = [B] \cup O$ such that for every derivation $\Psi \triangleright_{\text{td}} \Delta \vdash^{(b_r', e+\alpha, r'+r-1)} H' \langle t \rangle : \text{tight}$
 Note that $y \notin \text{dom}(\Delta)$, for the same reasons as in the previous sub-case. By applying an fun_r rule we obtain:
 \[\frac{x : O; y : \text{Tight}; \Gamma \cup \Delta \vdash^{(b_r+b_r', e+e'+r+r'-1)} H' \langle t \rangle : \text{tight}}{x : O; \Gamma \cup \Delta \vdash^{(b_r+b_r', e+e'+r+r'-1)} \lambda y. H' \langle t \rangle : \text{abs}} \text{fun}_r \]
 that satisfies the statement (because $r = r_\Gamma + 1$).

In both cases the moreover statement is straightforward by the i.h.

- Left on an application, i.e. $H = H'p$. Two sub-cases, depending on the last rule of Φ:
 (1) The last rule is app_b, and so Φ has the form:
 \[\frac{x : M_\Pi; \Pi \vdash^{(b_\Pi, e_\Pi, r_\Pi)} H' \langle x \rangle : N \rightarrow A}{x : (M_\Pi \cup M_\Sigma); (\Pi \cup \Sigma) \vdash^{(b_\Pi+b_\Sigma, e_\Pi+e_\Sigma, r_\Pi+r_\Sigma)} H' \langle x \rangle : p : A} \text{app}_b \]
 where $\Gamma = \Pi \cup \Sigma, \Pi(x) = \Sigma(x) = [_], M_\Pi \cup M_\Sigma = M, b = b_\Pi + b_\Sigma, e = e_\Pi + e_\Sigma, \text{and } r = r_\Pi + r_\Sigma$. By i.h., there exists a splitting $M_\Pi = [B] \cup O$ such that for every derivation $\Psi \triangleright_{\text{td}} \Delta \vdash^{(b_r', e+\alpha, r'+r-1)} H' \langle t \rangle : N \rightarrow A$
 \[\frac{x : O; \Pi \cup \Delta \vdash^{(b_\Pi+b_r', e_\Pi+e_\alpha, r_\Pi+r'+r-1)} H' \langle t \rangle : N \rightarrow A} \text{app}_b \]
By applying an app_b rule we obtain:

$$x : O; \Pi \triangleright \Delta \vdash (b_1 + b'_1 + e_1 + e'_1, r_1 + r'_1 - 1) H'(\langle t \rangle); N \rightarrow A \quad x : M; \Sigma \vdash (b_2, e_2, r_2) p : N \quad \text{app}_b$$

$$x : (O \cup M); (\Pi \cup \Delta \cup \Sigma) \vdash (b_1 + b_2 + b_3, e_1 + e_2 + e_3, r_1 + r_2 - 1) H'(\langle t \rangle); p : A$$

Now, by defining $N := O \cup M$, we obtain $M = M_\Pi \triangleright M_\Sigma = [B] \cup O \cup M = [B] \cup N$. Therefore by applying the equalities on the type context the last obtained judgement is in fact:

$$x : N; (\Gamma \cup \Delta) \vdash (b_1 + b'_1 + e_1 + e'_1, r_1 + r'_1 - 1) H'(\langle t \rangle); p : A$$

and by applying those on the indices we obtain:

$$x : N; (\Gamma \cup \Delta) \vdash (b_2 + b'_2, e_2 + e'_2, r_2 + r'_2 - 1) H'(\langle t \rangle); p : A$$

as required.

(2) The last rule of Φ is app_r^{hd}, and so Φ has the form:

$$x : M; \Pi \triangleright \Delta \vdash (b_1, e_1, n_1) H'(\langle x \rangle); \text{neutral} \quad x : M; \Sigma \vdash (b_2, e_2, r_2) p : \text{tight} \quad \text{app}_r^{hd}$$

$$x : (M \cup M); (\Pi \cup \Delta \cup \Sigma) \vdash (b_1 + b_2 + b_3, e_1 + e_2 + e_3, r_1 + r_2 + r_3) H'(\langle x \rangle); p : \text{neutral}$$

where $\Gamma = \Pi \cup \Sigma$, $\Pi(x) = \Sigma(x) = [\]$, $M \cup M = M$, $b = b_1 + b_2$, $e = e_1 + e_2$, and $r = r_1 + r_2 + 1$.

By i.h., there exists a splitting $M_\Pi = [B] \cup O$ such that for every derivation $\Psi \triangleright lhd \Delta \triangleright (b', e', r') t : B$ there exists a derivation

$$\Phi_{H'(\langle t \rangle)} \triangleright lhd \quad x : O; \Pi \triangleright \Delta \vdash (b_1 + b'_1 + e_1 + e'_1, r_1 + r'_1 - 1) H'(\langle t \rangle); \text{neutral}$$

By applying an app_r^{hd} rule we obtain:

$$x : O; \Pi \triangleright \Delta \vdash (b_1 + b'_1 + e_1 + e'_1, r_1 + r'_1 - 1) H'(\langle t \rangle); \text{neutral} \quad x : M; \Sigma \vdash (b_2, e_2, r_2) p : \text{tight} \quad \text{app}_r^{hd}$$

$$x : (O \cup M); (\Pi \cup \Delta \cup \Sigma) \vdash (b_1 + b_2 + b_3, e_1 + e_2 + e_3, r_1 + r_2 + r_3) H'(\langle t \rangle); p : \text{neutral}$$

Now, by defining $N := O \cup M$, we obtain $M = M_\Pi \triangleright M_\Sigma = [B] \cup O \cup M = [B] \cup N$. Therefore by applying the equalities on the type context the last obtained judgement is in fact:

$$x : N; (\Gamma \cup \Delta) \vdash (b_2 + b'_2, e_2 + e'_2, r_2 + r'_2 - 1) H'(\langle t \rangle); p : \text{neutral}$$

and by applying those on the indices we obtain:

$$x : N; (\Gamma \cup \Delta) \vdash (b_2 + b'_2, e_2 + e'_2, r_2 + r'_2 - 1) H'(\langle t \rangle); p : \text{neutral}$$

as required.

In both cases the moreover statement is straightforward by the i.h.

- **Left of a substitution, i.e. $H = H'[y \backslash p]$.** Note that $x \neq y$, because the hypothesis $H(\langle x \rangle)$ implies that H does not capture x.

The last rule of Φ can only be ES, and so Φ has the form:

$$x : M; \Pi \triangleright \Delta \vdash (b_1, e_1, n_1) H'(\langle x \rangle); A \quad x : M; \Sigma \vdash (b_2, e_2, r_2) p : M' \quad \text{ES}$$

$$x : (M \cup M); (\Pi \cup \Delta \cup \Sigma) \vdash (b_1 + b_2 + b_3, e_1 + e_2 + e_3 + [M], r_1 + r_2 + [M], r_1 + r_2 - |M|) H'(\langle x \rangle)[y \backslash p]; A$$

where $\Gamma = \Pi \cup \Sigma$, $\Pi(x) = \Sigma(x) = [\]$, $M \cup M = M$, $b = b_1 + b_2$, $e = e_1 + e_2 + [M]$, and $r = r_1 + r_2 - |M|$. By i.h., there exists a splitting $M_\Pi = [B] \cup O$ such that for every derivation $\Psi \triangleright lhd \Delta \triangleright (b', e', r') t : B$ there exists a derivation

$$\Phi_{H'(\langle t \rangle)} \triangleright lhd \quad x : O; y : M; \Pi \triangleright \Delta \vdash (b_1 + b'_1 + e_1 + e'_1, r_1 + r'_1 - 1) H'(\langle t \rangle); A$$
Note that $y \notin \text{dom}(\Delta)$; we are working up to α-equivalence, and so $y \notin \mathfrak{f}(\rho)$, and the system is relevant, and so $y \notin \mathfrak{f}(\rho)$ implies $y \notin \text{dom}(\Delta)$. By applying a ES rule we obtain

$$\frac{x : O \triangleright y : M' ; \Pi \triangleright A \mathcal{L}^{(b_1 + b_2, e_1 + e_2, r_1 + r_2 - 1)} H' \langle \langle y \rangle \rangle \cap A}{x : O \cup M_S ; \Pi \cup \Delta \triangleright \Sigma \mathcal{L}^{(b_1 + b_2 + e_1 + e_2 + \mathcal{L}^{(b_3 + r_1 + r_2 - 1, \mathcal{L}^{(b_3 + r_1 + r_2 - 1, -1)}})} H' \langle \langle y \rangle \rangle \cap [y \setminus \rho] : A} \quad \text{ES}$$

Now, by defining $N := O \cup M_S$, we obtain $M = M_1 \cup M_2 = [B] \cup O \cup M_S = [B] \cup N$. Therefore by applying the equalities on the type context the last obtained judgement is in fact:

$$x : N, \triangleright m : x \mathcal{L}^{(b_1 + b_2 + e_1 + e_2 + \mathcal{L}^{(b_3 + r_1 + r_2 - 1, \mathcal{L}^{(b_3 + r_1 + r_2 - 1, -1)}})} H' \langle \langle y \rangle \rangle \cap [y \setminus \rho] : A$$

and by applying those on the indices we obtain:

$$x : N, \triangleright m : x \mathcal{L}^{(b_1 + b_2, e_1 + e_2, r_1 + r_2 - 1)} H' \langle \langle y \rangle \rangle \cap [y \setminus \rho] : A$$

as required.

The moreover statement is straightforward by the $i.h.$

\[\square \]

Proposition 8.6 (Quantitative Subject Reduction for $\mathfrak{f}(\rho)$). If $\Phi \triangleright \Sigma \mathcal{L}^{(b, e, r)} t : A$ then

1. If $t \rightarrow_m u$ then $b \geq 1$ and there is a typing Φ' such that $\Phi' \triangleright \Sigma \mathcal{L}^{(b - 1, e, r)} u : A$ and $|\Phi'| = |\Phi| - 1$.

2. If $t \rightarrow_e u$ then $e \geq 1$ and there is a typing Φ' such that $\Phi' \triangleright \Sigma \mathcal{L}^{(b, e - 1, r)} u : A$ and $|\Phi'| = |\Phi| - 1$.

Proof. By induction on the reduction relation $\rightarrow_{\mathfrak{f}(\rho)}$.

- \(t = L(\lambda \chi. v) s \rightarrow_m L(v[x \setminus \chi]) = t' \), then we proceed by induction on L. Let $L = \langle \chi \rangle$. By construction the derivation Φ is of the form:

$$\Phi_{\Phi} \triangleright x : M; \Pi \mathcal{L}^{(b, \chi, e, r)} u : \sigma \quad \Pi \mathcal{L}^{(b, \chi, e, r)} s : M \rightarrow \sigma \quad \Phi_s \triangleright \Sigma \mathcal{L}^{(b, \chi, e, r)} s : M$$

where $b = b_0 + b_1 + 1, e = e_0 + e_1 + \mathcal{L}^{(b_0, e_0, r_0, r_1)} \mathcal{L}^{(b_0, e_0, r_1)} v[x \setminus \sigma] : \sigma$.

We let $b' = b_0 + b_1, e' = e_0 + e_1 + \mathcal{L}^{(b_0, e_0, r_0, r_1)} \mathcal{L}^{(b_0, e_0, r_0, r_0)} v[x \setminus \sigma] : \sigma$.

For $L = L'[\chi \setminus \sigma]$, the statement follows from the $i.h.$

- \(t = H(\langle x \rangle[x \setminus v]) \rightarrow_{\mathfrak{f}(\rho)} H(\langle x \rangle[x \setminus v]) = u \), then Φ is of the form

$$\Phi_{H(\langle x \rangle)} \triangleright x : M; \Pi \mathcal{L}^{(b, \chi, e, r)} H \langle \langle x \rangle \rangle : A \quad \Phi_{\Phi} \triangleright \Sigma \mathcal{L}^{(b, \chi, e, r)} u : M$$

where $b = b_H + b_0, e = e_H + e_0 + \mathcal{L}^{(b_H, e_H, r_H)} \mathcal{L}^{(b_H, e_H, r_H)} v[x \setminus \sigma] : \sigma$.

It is not difficult to see that $|\Phi'| = |\Phi| - 1$ and thus $e \geq 1$ as required.

Let $M = [B] \cup N$ be the splitting of M given by the linear substitution lemma (Lemma 8.5) applied to $\Phi_{H(\langle x \rangle)}$. By the multi-sets decomposition lemma (Lemma E.1) applied to Φ_{Φ} with respect to such a decomposition, there exist two derivations:

$$\Phi_{B} \triangleright \Sigma \mathcal{L}^{(b, \chi, e, r)} u : B \quad \Phi_{N} \triangleright \Sigma \mathcal{L}^{(b, \chi, e, r)} u : N$$

such that $\Delta_{\Phi} = \Delta_{B} \cup \Delta_{N}, b_0 = b_H + b_0, e_0 = e_H + e_0, r_0 = r_H + r_0, \text{ and } |\Phi_{\Phi}| = |\Phi_{B}| + |\Phi_{N}|$.

By the linear substitution Lemma 8.5, there exist a derivation
\[\Phi_{H⟨⟨v⟩⟩} \triangleright_{lh} x : N; \Pi ∪ \Delta_B \vdash^{(B,E,R)} H⟨⟨v⟩⟩ : A \]
where \(B = b_H + b_B, E = e_H + e_B, R = r_H + r_B - 1 \) and \(|\Phi_{H⟨⟨v⟩⟩}| = |\Phi_{H⟨⟨x⟩⟩}| + |\Phi_B| - 1 \). We construct the following derivation \(\Phi' \):

\[
\begin{align*}
x : N; \Pi ∪ \Delta_B & \vdash^{(B,E,R)} H⟨⟨v⟩⟩ : A \\
\Delta_N & \vdash^{(b_N,e_N,r_N)} v : N
\end{align*}
\]

that verifies the statement because
- \(b + b_N = b_H + b_B + b_N = b_H + b_N = b \),
- \(E + e_N + |N| = e_H + e_B + e_N + |N| = e_H + e_B + e_N + |N| = e_H + e_B + |M| - 1 = e - 1 \),
- \(R + r_N - |N| = r_H + r_B - 1 + r_N - |N| = r_H + r_B - |M| = r \),
- \(|\Phi'| = |\Phi_{H⟨⟨v⟩⟩}| + |\Phi_N| + 1 = |\Phi_{H⟨⟨x⟩⟩}| + |\Phi_B| - 1 + |\Phi_N| + 1 = |\Phi_{H⟨⟨x⟩⟩}| + |\Phi_v| = |\Phi| - 1 \).

- All the other cases follow from the \(i.h. \).

\[\square \]

Theorem 8.7 (Tight correctness for \(lh \)). Let \(\Phi \triangleright_{lh} Γ \vdash^{(b,e,r)} t : A \) be a tight derivation. Then there exists \(p \) such that \(t \triangleright_{lh} p \), normal\(_{lh}(p) \) and \(|p|_{lh} = r \). Moreover, if \(A = neutral \) then normal\(_{lh}(p)\).

Proof. By induction on \(|\Phi| \). If \(t \) is a \(\triangleright_{lh} \) normal form—that covers the base case \(|\Phi| = 1 \), for which \(t \) is necessarily a variable—then by taking \(p := t \) and \(k := 0 \) the statement follows from the tightness property of tight typings of normal forms (Proposition 8.4.2)—the moreover part follows from the neutrality property (Proposition 8.4.3). Otherwise, two cases:

1. **Multiplicative steps:** \(t \triangleright_{m} u \) and by quantitative subject reduction (Proposition 8.6) there is a derivation \(\Psi \triangleright_{lh} Γ \vdash^{(b^{-1},e,r)} u : A \) such that \(|\Psi| = |\Phi| - 1 \). By \(i.h. \), there exists \(p \) such that normal\(_{lh}(p) \) and \(u \triangleright_{lh} p \) and \(|p|_{lh} = r \). Just note that \(t \triangleright_{m} u \triangleright_{lh} p \), that is, \(t \triangleright_{lh} p \).

2. **Exponential steps:** \(t \triangleright_{e} u \) and by quantitative subject reduction (Proposition 8.6) there is a derivation \(\Psi \triangleright_{lh} Γ \vdash^{(b^{-1},e^{-1},r)} u : A \) such that \(|\Psi| = |\Phi| - 1 \). By \(i.h. \), there exists \(p \) such that normal\(_{lh}(p) \) and \(u \triangleright_{lh} p \) and \(|p|_{lh} = r \). Just note that \(t \triangleright_{e} u \triangleright_{lh} p \), that is, \(t \triangleright_{lh} p \).

\[\square \]

E.2 Tight Completeness

Proposition 8.8 (Linear head normal forms are tightly typable for \(lh \)). Let \(t \) be such that normal\(_{lh}(t)\). Then there exists a tight typing \(\Phi \triangleright_{lh} Γ \vdash^{(0,0,0)} t : A \). Moreover, if neutral\(_{lh}(t)\) then \(A = neutral \), and if abs\(_{lh}(t)\) then \(A = abs \).

Proof. In the proof, for the sake of simplicity, we let the indices on the judgements generic, and not as precise as in the statement, because once one knows that there is a tight derivation then the indices are forced by Proposition 8.4.

1. **By induction on neutral\(_{lh}(t)\):**
 - **Variable, i.e.** \(t = x \). Then the derivation
 \[
 x : [neutral] \vdash^{(0,0,1)} x : neutral \]
 is tight and types \(x \) with neutral.
• **Application, i.e.** \(t = pu \) and \(\text{neutral}_{\text{t}hd}(t) \) because \(\text{neutral}_{\text{t}hd}(p) \). By i.h., there is a tight derivation \(\Psi \vdash_{\text{t}hd} \Gamma \Gamma^{[b, e, r]}p : \text{neutral} \). Then the following is a tight derivation \(\Phi \) typing \(t = pu \) with neutral:

\[
\begin{align*}
\Psi \vdash_{\text{t}hd} \Gamma & \quad \Gamma^{[b, e, r]}p : \text{neutral} \\
\Gamma & \quad \text{app}^{hd}_r \\
\end{align*}
\]

• **Explicit substitution, i.e.** \(t = p[y \setminus u] \) and \(\text{neutral}_{\text{t}hd}(t) \) because \(\text{neutral}^x_{\text{t}hd}(p) \) and \(x \neq y \). By i.h., there is a tight derivation \(\Psi \vdash_{\text{t}hd} \Gamma \Gamma^{[b, e, r]}p : \text{neutral} \). By Lemma 8.3.1, \(\text{dom}(\Gamma) = \{ y \} \), that is, in \(\Gamma \) the variable \(x \) is implicitly typed with \([\]\). Then the following tight derivation \(\Phi \) types \(t = p[x \setminus u] \) with neutral:

\[
\begin{align*}
\Gamma & \quad x : [] \Gamma^{[b, e, r]}t : \text{neutral} \\
\Gamma & \quad \text{ES} \\
\end{align*}
\]

(2) First, by induction on \(\text{normal}^x_{\text{t}hd}(t) \):

• \(\text{normal}^x_{\text{t}hd}(t) \) because \(\text{normal}^x_{\text{t}hd}(t) \). Then it follows from the previous point.

• **Abstraction, i.e.** \(t = \lambda y.p \) and \(\text{normal}^x_{\text{t}hd}(t) \) because \(\text{normal}^x_{\text{t}hd}(p) \) and \(x \neq y \). By i.h. there is a tight derivation \(\Psi \vdash_{\text{t}hd} \Delta \Gamma^{[b, e, r]}p : \text{tight} \). Since the derivation \(\Psi \) is tight, the typing context \(\Delta \) has the shape \(\Gamma; y : \text{Tight} \) (potentially, \(y : [] \)). Then the following is a tight derivation for \(\lambda y.p \) with abs:

\[
\begin{align*}
\Psi \vdash_{\text{t}hd} \Gamma & \quad \Gamma^{[b, e, r]}t : \text{tight} \\
\Gamma & \quad \text{fun}_r \\
\end{align*}
\]

• **Explicit substitution, i.e.** \(t = p[y \setminus u] \) and \(\text{normal}^x_{\text{t}hd}(t) \) because \(\text{normal}^x_{\text{t}hd}(p) \) and \(x \neq y \). It is essentially like in the neutral case. By i.h., there is a tight derivation \(\Psi \vdash_{\text{t}hd} \Delta \Gamma^{[b, e, r]}p : \text{tight} \). By Lemma 8.3.1, \(\text{dom}(\Delta) = \{ x \} \), that is, in \(\Delta \) the variable \(y \) is implicitly typed with \([\]\). Then using the notation \(\Delta = \Gamma; y : [] \) the following tight derivation \(\Phi \) types \(t = p[y \setminus u] \):

\[
\begin{align*}
\Gamma & \quad y : [] \Gamma^{[b, e, r]}t : \text{tight} \\
\Gamma & \quad \text{ES} \\
\end{align*}
\]

The part about predicates follows from the i.h.

Now, by induction on \(\text{normal}^y_{\text{t}hd}(t) \):

• **Abstraction on the head variable, i.e.** \(t = \lambda x.p \) and \(\text{normal}^x_{\text{t}hd}(t) \) because \(\text{normal}^x_{\text{t}hd}(p) \). By i.h. there is a tight derivation \(\Psi \vdash_{\text{t}hd} \Delta \Gamma^{[b, e, r]}p : \text{tight} \). Since the derivation \(\Psi \) is tight, the typing context \(\Delta \) has the shape \(\Gamma; y : \text{Tight} \) (potentially, \(y : [] \)). Then the following is a tight derivation for \(\lambda y.p \) with abs:

\[
\begin{align*}
\Psi \vdash_{\text{t}hd} \Gamma & \quad \Gamma^{[b, e, r]}t : \text{tight} \\
\Gamma & \quad \text{fun}_r \\
\end{align*}
\]

• **Abstraction on a non-head variable, i.e.** \(t = \lambda x.p \) and \(\text{normal}^x_{\text{t}hd}(t) \) because \(\text{normal}^y_{\text{t}hd}(p) \). It is exactly as in the previous sub-case. By i.h. there is a tight derivation \(\Psi \vdash_{\text{t}hd} \Delta \Gamma^{[b, e, r]}p : \text{tight} \). Since the derivation \(\Psi \) is tight, the typing context \(\Delta \) has the shape \(\Gamma; y : \text{Tight} \) (potentially, \(y : [] \)). Then the following is a tight derivation for \(\lambda y.p \) with abs:

\[
\begin{align*}
\Psi \vdash_{\text{t}hd} \Gamma & \quad \Gamma^{[b, e, r]}t : \text{tight} \\
\Gamma & \quad \text{fun}_r \\
\end{align*}
\]
Explicit substitution, i.e. $t = p[y/u]$ and normal $\lambda_{\text{ldh}}(t)$ because normal $\lambda_{\text{ldh}}(p)$. By i.h., there is a tight derivation $\Psi_{\text{ldh}} \Delta \kappa^{(b,e,r)} t : \text{tight}$. By Lemma 8.9, Δ is empty, that is, the variable y is implicitly typed with $[\cdot]$. Then the following tight derivation Φ types $t = p[x/u]$: $\begin{array}{l}
y : [\cdot] \kappa^{(b,e,r)} p : \text{tight} \\
\kappa^{(b,e,r)} p[y/u] : \text{tight} \end{array}$

The part about predicates follows from the i.h.

□

Lemma 8.9 (Linear anti-substitution and typings for lhd). Let $\Phi_{\text{ldh}} \Gamma \kappa^{(b,e,r)} H \langle \langle u \rangle \rangle : A$, where $x \not\in u$. Then there exists

- a type B
- a typing derivation $\Phi_u \Gamma_{\text{ldh}} \Gamma_u \kappa^{(b_u,e_u,r_u)} u : B$
- a typing derivation $\Phi_H \langle \langle x \rangle \rangle_{\text{ldh}} \Gamma' \Uparrow x : [B] \kappa^{(b',e',r')} H \langle \langle x \rangle \rangle : A$

such that

- Typing contexts: $\Gamma = \Gamma' \cup \Gamma_u$
- Indices: $(b, e, r) = (b + b_u, e + e_u, r + r_u - 1)$.
- Sizes: $|\Phi| = |\Phi_u| + |\Phi_H \langle \langle x \rangle \rangle| - 1$.

Proof. By induction on H.
- If $H = \langle \cdot \rangle$, then we let $\Gamma' = \emptyset$ and $\sigma = \tau$. We have $(b', e', r') = (0, 0, 1)$ so that $(b, e, r) = (b_u, e_u, r_u)$. All the equalities are verified.
- In all the other cases the property is straightforward by the i.h.

□

Proposition 8.10 (Quantitative subject expansion for lhd). If $\Phi' \Gamma_{\text{ldh}} \Gamma \kappa^{(b,e,r)} t' : A$ then

1. If $t \rightarrow_{\text{m}} t'$ then there is a derivation $\Phi_{\text{ldh}} \Gamma \kappa^{(b+1,e,r)} t : \tau$ and $|\Phi'| = |\Phi| + 1$.
2. If $t \rightarrow_{\text{e}} t'$ then there is a derivation $\Phi_{\text{ldh}} \Gamma \kappa^{(b,e+1,r)} t : A$ and $|\Phi'| = |\Phi| + 1$.

Proof. The proof is by induction on $t \rightarrow_{\text{ldh}} t'$.
- If $t = L \langle \langle \lambda x . p \rangle \rangle u \rightarrow L \langle \langle p[x/u] \rangle \rangle = t'$, then we proceed by induction on L. Let $L = \langle \cdot \rangle$, then by construction $\Gamma = \Delta \cup \Pi$ and we have the following derivation: $\begin{array}{l}
x : M ; \Delta \kappa^{(b,p,\delta_p,\rho_p)} p : \tau \\
\Delta \cup \Pi \kappa^{(b',e',r')} u : M \\
\Delta \kappa^{(b+p+\delta_p+\rho_p+\|M\|,r_p+r'\rightarrow|M|)} p[x/u] : \tau \\
\end{array}$

where $b = b_p + b'$, $e = e_p + e'$ + $\|M\|$ and $r = r_p + r' - |M|$. We then construct the following derivation $\begin{array}{c}
x : M ; \Delta \kappa^{(b+p+1,\delta_p,\rho_p+\|M\|,r_p+r'-\|M\|)} \lambda x . p : M \\
\Delta \kappa^{(b',e'+r')} u : M \\
\Delta \cup \Pi \kappa^{(b+p+\delta_p+\rho_p+\|M\|,r_p+r'\rightarrow|M|)} \lambda x . p) u : \tau \\
\end{array}$

For $L = L'[y/u]$, the statement follows from the i.h.
- If $t = H \langle \langle x \rangle \rangle [x/u] \rightarrow H \langle \langle u \rangle \rangle [x/u] = t'$, then by construction $\Gamma = \Delta \cup \Pi$ and the type derivation of t' has the following form:

\[x: M; \Delta \vdash (b_H, e_H, r_H) \mathcal{H}(u) : \tau \quad \Pi \vdash (b_u, e_u, r_u) u : M \]

\[
\Delta \cup \Pi \vdash (b, e, r) \mathcal{H}(u)[x/u] : \tau
\]

where \((b, e, r) = (b_H + b_u, e_H + e_u + |M|, r_H + r_u - |M|)\).

By Lemma 8.9\(\Phi_{lhd} \Gamma_0 + x: [\sigma_i] \vdash (b', e', r') \mathcal{H}(x) : \tau \) and \(\Phi_{lhd} \Delta_1 \vdash (b, e, r) u : \sigma_1\), where \(b_H = b' + b_1\), \(e_H = e' + e_1\) and \(r_H = r' + r_1 - 1\). Note that \(x \notin \text{fv}(u)\). We let \(I = K \cup \{1\}\) where \(M = [\sigma_i]_{i \in K}\).

We have necessarily \(\Gamma_0 = \Gamma'_0; x: [\sigma_i]_{i \in K}\).

We remark that \(u\) has necessarily been typed with a (many) rule so that there are derivations \(\Pi_k \vdash (b, e, r) u : \sigma_k\) \((k \in K)\), such that \(\Pi = \omega_{k \in K} \Pi_k\), and \(M = +k_{\in K} \sigma_k\) and \(b_u = +k_{\in K} b_k, e_u = +k_{\in K} e_k, r_u = +k_{\in K} r_k\). By applying rule (many) again we obtain \(\Pi + \Delta_1 \vdash (b_u, e_u, r_u) u : M + [\sigma_1]\).

We can now construct the following derivation

\[
\frac{\Gamma_0': x: [\sigma_i]_{i \in I} \vdash (b', e', r') \mathcal{H}(x) : \tau \quad \Pi \cup \Delta_1 \vdash (b_u + b_1, e_u + e_1, r_u + r_1) u : [\sigma_i]_{i \in I}}{\Gamma_0': \Pi \cup \Delta_1 \vdash (b' + b_u + b_1, e' + e_u + e_1 + |I|, r' + r_u + r_1 - |I|) \mathcal{H}(x)[x/u] : \tau}
\]

We conclude since \(b' + b_u + b_1 = b_H + b_u = b, e' + e_u + e_1 + |I| = e_H + e_u + |I| = e_H + e_u + |M| + 1 = e + 1, r' + r_u + r_1 - |I| = r_H + r_u - |M| = r\).

- All the inductive cases are straightforward.

\[\square\]

Theorem 8.11 (Tight completeness for \(lhd\)). Let \(t \rightarrow_{lhd}^k p\), where \(\text{normal}_{lhd}(p)\). Then there exists a tight type derivation \(\Phi_{lhd} \Gamma \vdash (k_1, k_2, |p|_{lhd}) t : A\), where \(k = k_1 + k_2\). Moreover, if \(\text{neutral}_{lhd}(p)\), then \(A = \text{neutral}\), and if \(\text{abs}_{lhd}(p)\) then \(A = \text{abs}\).

Proof. By induction on \(t \rightarrow_{lhd}^k p\). If \(k = 0\) then \(t = p\). Proposition 8.8 gives the existence of a tight typing \(\Psi_{lhd} \vdash (b, e, r) t\). Proposition 8.4 then gives \(r = |t|_{lhd} = |p|_{lhd}\) and \(b = e = 0\). The property then holds for \(k_1 = k_2 = 0\).

Let \(0 < k = k' + 1\) and \(t \rightarrow_{lhd} u \rightarrow_{lhd} k' p\). By i.h. there exists a tight typing derivation \(\Psi_{lhd} \vdash (k'_1, k'_2, |p|_{lhd}) u\), where \(k' = k'_1 + k'_2\). By quantitative subject expansion Proposition 8.10 there exists a typing derivation \(\Phi_{lhd} \vdash (k_1, k_2, |p|_{lhd}) t\) with the same types in the ending judgement of \(\Phi\) and \(\Psi\) tight—i.h. and with indices \((k'_1 + 1, k'_2, |p|_{lhd})\) or \((k'_1, k'_2 + 1, |p|_{lhd})\).

In the first case we let \(k_1 = k'_1 + 1\) and \(k_2 = k'_2\), so that \(k = 1 + k' = i.h.\) \(1 + k'_1 + k'_2 = k_1 + k_2\) as required. Moreover, \(\Phi_{lhd} \vdash (k_1, k_2, |p|_{lhd}) t\). In the second case we let \(k_1 = k'_1\) and \(k_2 = k'_2 + 1\), so that \(k = 1 + k' = i.h.\) \(1 + k'_1 + k'_2 = k_1 + k_2\) as required. Moreover, \(\Phi_{lhd} \vdash (k_1, k_2, |p|_{lhd}) t\). \(\square\)