TD de Logique et Circuits n° 12 (Correction)

Formules et preuves

Terminologie et notations

- $-p, q, p_1, p',$ etc.: lettres propositionnelles
- $-A, B, A_1, A'$, etc.: formules du calcul propositionnel
- $-\Gamma$, Δ , Π , Γ_1 , Γ' , etc.: multi-ensembles de formules. L'union de Γ et Δ est notée Γ , Δ , et le multi-ensemble qui ne contient qu'une occurrence d'une unique formule A est noté A.
- $-\Gamma \triangleright \Delta$: séquent
- $-\Gamma,A \triangleright \Delta,A$: axiome (= séquent où une même formule figure à gauche et à droite)
- Un séquent est *prouvable* s'il existe un arbre de preuve dont la racine est ce séquent et dont toutes les feuilles sont des axiomes. Une formule A est prouvable si le séquent $\triangleright A$ l'est.
- Règles d'inférence:

$$\begin{array}{ll} \frac{\Gamma \triangleright A, \Delta}{\Gamma, \neg A \triangleright \Delta} \ (\neg \mathbf{g}) & \frac{\Gamma, A \triangleright \Delta}{\Gamma \triangleright \neg A, \Delta} \ (\neg \mathbf{d}) \\ \\ \frac{\Gamma \triangleright A, \Delta \quad \Gamma, B \triangleright \Delta}{\Gamma, A \rightarrow B \triangleright \Delta} \ (\rightarrow \mathbf{g}) & \frac{\Gamma, A \triangleright B, \Delta}{\Gamma \triangleright A \rightarrow B, \Delta} \ (\rightarrow \mathbf{d}) \\ \\ \frac{\Gamma, A \triangleright \Delta \quad \Gamma, B \triangleright \Delta}{\Gamma, A \lor B \triangleright \Delta} \ (\lor \mathbf{g}) & \frac{\Gamma \triangleright A, B, \Delta}{\Gamma \triangleright A \lor B, \Delta} \ (\lor \mathbf{d}) \\ \\ \frac{\Gamma, A, B \triangleright \Delta}{\Gamma, A \land B \triangleright \Delta} \ (\land \mathbf{g}) & \frac{\Gamma \triangleright A, \Delta \quad \Gamma \triangleright B, \Delta}{\Gamma \triangleright A \land B, \Delta} \ (\land \mathbf{d}) \end{array}$$

Exercice 1 (Prouvabilité) Prouver les formules:

$$-p \to (q \to p)$$

$$-(p \to (q \to r)) \to ((p \to q) \to (p \to r))$$

$$-(p \to q) \to ((p \to \neg q) \to \neg p)$$

$$-(p \land q) \lor (p \to \neg q)$$

Montrer que la formule suivante n'est pas prouvable:

$$-(p \lor q) \land (p \to \neg q)$$

Correction : Pour les formules prouvables, on exhibe la preuve... On insistera sur le fait que dans le système \mathcal{G} , la construction de preuve est quasi-mécanique, modulo l'ordre d'application des règles. En pratique, on aura toujours intérêt à privilégier l'application des règles à une prémisse (\land g, \lor d et \rightarrow d) à l'application des règles à deux prémisses (\land d, \lor g et \rightarrow g) afin de retarder le branchement de la preuve. Pour montrer que la dernière formule n'est *pas* prouvable, on utilise la contraposée du théorème de correction (prouvable \Rightarrow vrai) en exhibant une interprétation qui falsifie la formule. Ici: $p = q = \mathbf{F}$.

Exercice 2 (Preuves et tables de vérité) Soient des lettres propositionnelles p_1, \ldots, p_n, q , où $n \ge 0$ est un entier positif fixé. Construire un arbre de preuve de la formule:

$$[(\cdots (p_1 \wedge p_2) \cdots \wedge p_n) \to q] \to [p_1 \to (p_2 \to \cdots (p_n \to q) \cdots)]$$

Quelle est, en fonction de n, la hauteur de l'arbre de preuve ainsi construit? Si on devait calculer la table de vérité de la formule ci-dessus, quel serait le nombre de lignes?

Correction : L'arbre se construit en trois temps (du bas vers le haut): n+1 applications de \rightarrow d, puis 1 application de \rightarrow g, et enfin n-1 applications de \wedge d, ce qui donne

$$\frac{p_1, \dots, p_n \, \triangleright \, q, \, p_1 \quad p_1, \dots, p_n \, \triangleright \, q, \, p_2}{p_1, \dots, p_n \, \triangleright \, q, \, p_1 \wedge p_2}$$

$$\vdots$$

$$\frac{p_1, \dots, p_n \, \triangleright \, q, \, (p_1 \wedge p_2) \dots \wedge p_{n-1} \quad p_1, \dots, p_n \, \triangleright \, q, \, p_n}{p_1, \dots, p_n \, \triangleright \, q, \, (p_1 \wedge p_2) \dots \wedge p_n}$$

$$\frac{q, \, p_1, \dots, p_n \, \triangleright \, q \quad p_1, \dots, p_n \, \triangleright \, q, \dots (p_1 \wedge p_2) \dots \wedge p_n}{(\dots (p_1 \wedge p_2) \dots \wedge p_n) \rightarrow q, \, p_1, \dots, p_n \, \triangleright \, q}$$

$$\vdots$$

$$\frac{(\dots (p_1 \wedge p_2) \dots \wedge p_n) \rightarrow q \, \triangleright \, p_1 \rightarrow (p_2 \rightarrow \dots (p_n \rightarrow q) \dots)}{\triangleright \, [(\dots (p_1 \wedge p_2) \dots \wedge p_n) \rightarrow q] \, \rightarrow \, [p_1 \rightarrow (p_2 \rightarrow \dots (p_n \rightarrow q) \dots)]}$$

soit 2n+1 inférences (ou 2n+2 lignes de preuve). La table de vérité de la même formule comporterait 2^{n+1} lignes!

Exercice 3 (Simplification de l'axiome) On cherche à montrer qu'il est possible de restreindre la notion d'axiome au seul cas atomique (en n'autorisant dans les feuilles des arbres de preuve que des axiomes de la forme $\Gamma, p \triangleright p, \Delta$, où p est une lettre propositionnelle) sans pour autant réduire la classe des séquents prouvables. Pour cela on procède en deux temps:

- 1. Montrer que tout séquent de la forme $\Gamma, A \vdash A, \Delta$ admet un arbre de preuve dans lequel les feuilles sont des axiomes portant sur une formule atomique.
- 2. En déduire que tout séquent prouvable admet un arbre de preuve qui n'a pour feuilles que des axiomes portant sur des formules atomiques.

Correction: L'intérêt de l'exercice est de combiner deux types d'induction:

- 1. Par induction sur la formule A;
- 2. Par récurrence sur la hauteur de la preuve.

Exercice 4 (Affaiblissement) Montrer que pour tous Γ , Γ' , Δ , et Δ' , si le séquent $\Gamma \triangleright \Delta$ est prouvable, alors le séquent $\Gamma, \Gamma' \triangleright \Delta, \Delta'$ est dérivable également.

Indication: On pourra raisonner par récurrence sur la hauteur des arbres de preuve.

Correction: Tout est dit dans l'indication!

Exercice 5 (Formes normales conjonctive et disjonctive)

- Un *littéral* est soit une lettre propositionnelle, soit la négation d'une lettre propositionnelle.
- Une clause disjonctive est une disjonction de littéraux.
- Une forme normale conjonctive est une conjonction de clauses disjonctives.

Symétriquement, on définit:

- Une clause conjonctive est une conjonction de littéraux.
- Une forme normale disjonctive est une disjonction de clauses conjonctives.

(la notion de littéral est la même). Exemple de forme normale conjonctive: $(p \lor \neg q \lor r) \land (q \lor r)$. Prouver que pour toute formule A, il existe une forme normale conjonctive A^{\wedge} et une forme normale disjonctive A^{\vee} telle que les trois formules A, A^{\wedge} et A^{\vee} sont équivalentes.

Correction: Avant de commencer l'induction, on remarque que la négation d'une f.n.c. est équivalente a une f.n.d. et vice-versa, par de Morgan.

Si A est un atome, $A = A^{\wedge} = A^{\vee}$.

Si $A = \neg B$, on construit A^{\wedge}, A^{\vee} á partir de B^{\vee}, B^{\wedge} et de la rémarque ci-dessus.

Si $A = A_1 \lor A_2, \ A^{\lor} = A_1^{\lor} \lor A_2^{\lor}.$

 A^{\wedge} se construit á partir de A_1^{\wedge} et A_2^{\wedge} , par distributivité:

soit $A_1^{\wedge} = d_1 \wedge ... \wedge d_k A_2^{\wedge} = d_1^{\prime} \wedge ... \wedge d_n^{\prime}$.

 $(A_1 \lor A_2)^{\wedge} = \bigwedge_{i=1..k,j=1..n} d_i \lor d'_j$ Si $A = A_1 \land A_2$, pareil.

Si $A = A_1 \rightarrow A_2$ on considère la formule équivalente $\neg A_1 \lor A_2$.

Soit $A_0 = p \to q$ et, pour tout $n \le 0$, $A_{n+1} = A_n \to q$. Montrer que le séquent $\triangleright A_n, p$ est prouvable si et seulement si n est pair.

Correction:

On vérifie que $\triangleright A_0, p$ est prouvable. Par ailleurs, on voit que si

 $\triangleright A_n, p, q$ est prouvable, alors $\triangleright A_{n+2}, p$ est prouvable. On applique l'exo, precedente et on a fini pour le "si".

Pour le "seulement si", remarquer que l'arbre de $\triangleright A_1, p$ a une feuille $\triangleright p, q, p$, donc il n'est pas prouvable, et l'arbre de $\triangleright A_{n+2}$, p a un noued $\triangleright A_n$, p, q, donc pour n=2k+1, l'arbre de $\triangleright A_n$, p a une feuille $\triangleright p$, q^{k+1} , p, donc $\triangleright A_n, p$ n'est pas prouvable.

Exercice 7 Écrire en Caml les fonctions qui calculent des formes normales conjonctive et disjonctive (définies à l'exercice 5) pour chaque formule donnée.