A small language

Expressions

\[a ::= n \mid X \mid a + a \]

Environments are functions from variables to integers, they are denoted by \(\sigma \).

We want to evaluate an expression \(a \) w.r.t. an environment \(\sigma \).

Defining an Operational Semantics

- Granularity
- Order of evaluation

Big-step Semantics

Each rule completely evaluates an expression w.r.t. an environment to a value.

\[
\begin{align*}
\langle n, \sigma \rangle &\Downarrow n \\
\langle X, \sigma \rangle &\Downarrow \sigma(X)
\end{align*}
\]

\[
\begin{align*}
\langle a_1, \sigma \rangle &\Downarrow n_1 \\
\langle a_2, \sigma \rangle &\Downarrow n_2
\Rightarrow \\
\langle a_1 + a_2, \sigma \rangle &\Downarrow n
\end{align*}
\]

where \(n \) is the sum of \(n_1 \) and \(n_2 \)
Properties

- Abstract
- Allows to avoid details.
- No specification of evaluation order (e.g. \((1 + 3) + (5 - 3)\)).
- No specification of control of errors.
- No specification of interleaving.

Small-step Semantics

Describes evaluation as a sequence of state changes of an abstract machine. Evaluation terminates when the state cannot be reduced further.

\[
\langle X, \sigma \rangle \leadsto \langle \sigma(X), \sigma \rangle \quad n \text{ is the sum of } n_1 \text{ and } n_2
\]

\[
\langle a_1, \sigma \rangle \leadsto \langle a'_1, \sigma' \rangle \quad \langle n_1 + n_2, \sigma \rangle \leadsto \langle n, \sigma \rangle
\]

\[
\langle a_1 + a_2, \sigma \rangle \leadsto \langle a'_1 + a_2, \sigma' \rangle \quad \langle a_2, \sigma \rangle \leadsto \langle a'_2, \sigma' \rangle
\]

\[
\langle a, \sigma \rangle \leadsto \langle \sigma', \sigma \rangle
\]

Properties

- Less abstract
- Specification of order of evaluation
- Control of errors: \(\frac{n_2 \neq 0}{n_1/n_2 \leadsto n}\), where \(n\) is \(n_1\) divided by \(n_2\).
- Interleaving: \(\langle c_1, \sigma \rangle \leadsto \langle c'_1, \sigma' \rangle \quad \langle c_1 \| c_2, \sigma \rangle \leadsto \langle c'_1 \| c_2, \sigma' \rangle\)

From Small-step to Multi-step Semantics

Notation: \(t \leadsto^* t'\)

- \(t \leadsto^* t\) for every \(t\)
- \(t \leadsto t'\) implies \(t \leadsto^* t'\)
- \(t \leadsto^* t'\) and \(t' \leadsto^* t''\) implies \(t \leadsto^* t''\)
Normal Forms

- A normal form is a term that cannot be evaluated any further.
- A normal form is a state where the abstract machine is halted (result of the evaluation).
- The meaning of a term t in a small-step semantics is a term t' such that $t \leadsto^* t'$ and t' is a normal form.

Big-step versus Small-step Semantics

- In small-step semantics evaluation stops at errors. In big-step semantics errors occur deeply inside derivation trees.
- The order of evaluation is explicit in small-step semantics but implicit in big-step semantics.
- Big-step semantics is more abstract, but less precise.
- Small-step semantics allows to make difference between non-termination and "getting stuck".

Properties of the Small-step Semantics

- $t \Downarrow v$ iff $t \leadsto^* v$
- The relation \leadsto is deterministic.

A functional language

Expressions/programs are closed terms.
Values are closed terms of the form $\lambda x.M$.

Reduction Strategies are deterministic subrelations of \rightarrow_β.

We study two different reduction strategies: call-by-name and call-by-value.

$M \Downarrow_v V$: big-step semantics for call-by-value
$M \Downarrow_n V$: big-step semantics for call-by-name
$M \leadsto_v N$: small-step semantics for call-by-value
$M \leadsto_n N$: small-step semantics for call-by-name
Call-by-value lambda-calculus (big-step semantics)

\[\lambda x. M \Downarrow_v \lambda x. M \]

\[M \Downarrow_v \lambda x. L \quad N \Downarrow_v V_2 \quad L\{x/V_2\} \Downarrow_v V_1 \]

\[M N \Downarrow_v V_1 \]

Call-by-value lambda calculus (small-step semantics)

\[(\lambda x. M) V \rightsquigarrow_v M\{x/V\} \]

\[M \rightsquigarrow_v M' \]

\[N \rightsquigarrow_v N' \]

\[M N \rightsquigarrow_v M' N \]

\[V N \rightsquigarrow_v V N' \]

Examples

Let \(\Delta = \lambda x.xx \). Then,
- \((\lambda x.x) (I I) \rightsquigarrow_v (\lambda x.x x) I \rightsquigarrow_v I I \rightsquigarrow_v I\).
- \((\lambda x.I) (\Delta \Delta) \rightsquigarrow_v (\lambda x.I) (\Delta \Delta) \rightsquigarrow_v \ldots\)
- \(\Delta \Delta \rightsquigarrow_v \Delta \Delta \rightsquigarrow_v \Delta \Delta \ldots\)

Call-by-name lambda-calculus (big-step semantics)

\[\lambda x. M \Downarrow_n \lambda x. M \]

\[M \Downarrow_n \lambda x. L \quad L\{x/N\} \Downarrow_n V \]

\[M N \Downarrow_n V \]
Call-by-name lambda calculus (small-step semantics)

\[(\lambda x. M) N \leadsto_n M \{ x/N \} \]

\[M \leadsto_n M' \]

\[M N \leadsto_n M' N \]

Examples

- \((\lambda x. x) (I I) \leadsto_n (I I) (I I) \leadsto_n I I (I I) \leadsto_n I I \leadsto_n I.\)
- \((\lambda x. I) (\Delta \Delta) \leadsto_n I.\)
- \(\Delta \Delta \leadsto_n \Delta \Delta \leadsto_n \Delta \Delta \Delta \ldots.\)

Deterministic properties

- If \(M \downarrow_v N \) and \(M \downarrow_v N' \), then \(V = V' \).
- If \(M \downarrow_n P \) and \(M \downarrow_n P' \), then \(P = P' \).
- If \(M \leadsto_v N \) and \(M \leadsto_v N' \), then \(N = N' \).
- If \(M \leadsto_n N \) and \(M \leadsto_n N' \), then \(N = N' \).
Relating big and small-steps semantics (i)

Lemma: If \(M \downarrow^* V \), then \(M \sim^*_v V \).

Proof. By induction on \(M \downarrow^* V \).
- If \(M = \lambda x.K \downarrow^* \lambda x.K = V \), then \(M \sim^*_v V \) trivially holds.
- If \(M = M_1 M_2 \downarrow^* V \) comes from \(M_1 \downarrow^* \lambda x.K, M_2 \downarrow^* W \) and \(K \{x/W\} \downarrow^* V \), then \(M_1 \sim^*_v \lambda x.K, M_2 \sim^*_v W \) and \(K \{x/W\} \sim^*_v V \) hold by the inductive hypothesis so that we construct the following small-steps reduction sequence:

\[
M = M_1 M_2 \sim^*_v (\lambda x.K) M_2 \sim^*_v (\lambda x.K) W \sim^*_v K \{x/W\} \sim^*_v V
\]

Taking \(n_1 = k_1 + 1 \), \(n_2 = k_2 \) and \(n_3 = k_3 \) we conclude

\[
M = TU \sim^*_v (\lambda x.K) U \sim^*_v (\lambda x.K) W \sim^*_v K \{x/W\} \sim^*_v N
\]

2. \(M = (\lambda x.K) U \sim^*_v (\lambda x.K) U' \sim^*_v U' \sim^* \sim^* N \), where \(U \sim^* U' \).

Since \((\lambda x.K) U' \) is not a value we can apply the i.h. Thus

\[
(\lambda x.K) U' \sim^*_v (\lambda x.K) U' \sim^*_v (\lambda x.K) W \sim^*_v K \{x/W\} \sim^*_v N
\]

Taking \(n_1 = 0 \), \(n_2 = k_2 + 1 \) and \(n_3 = k_3 \) we conclude

\[
M = (\lambda x.K) U \sim^*_v (\lambda x.K) U \sim^*_v (\lambda x.K) W \sim^*_v K \{x/W\} \sim^*_v N
\]

3. \(M = (\lambda x.K) W \sim^*_v K \{x/W\} \sim^*_v N \).

We conclude with \(T = \lambda x.K, U = W, n_1 = n_2 = 0 \) and \(n_3 = n - 1 \).

Relating big and small-steps semantics (ii)

Lemma: If \(M \sim^*_v N \) in \(n \) steps, \(M \) is not a value and \(N \) is a value, then \(M \) is an application \(TU \) and \(\exists n_1, n_2, n_3 < n \) such that

\[
M \sim^*_v (\lambda x.K) U \sim^*_v (\lambda x.K) W \sim^*_v K \{x/W\} \sim^*_v N
\]

Proof. Suppose \(M \sim^*_v N \) in \(n \) steps. We reason by induction on \(n \).
- If \(n = 0 \), then \(M = N \) and thus \(M \) is a value. The property holds because the hypothesis is false.
- If \(n > 0 \), then there are three cases.

1. \(M = TU \sim^*_v T' U \sim^*_v N \), where \(T \sim^*_v T' \).

Since \(T' U \) is not a value we can apply the i.h. Thus

\[
T' U \sim^*_v (\lambda x.K) U \sim^*_v (\lambda x.K) W \sim^*_v K \{x/W\} \sim^*_v N
\]

Relating big and small-steps semantics (iii)

Lemma: If \(M \sim^*_v N \) and \(N \) is a value, then \(M \downarrow^* N \).

Proof. Suppose \(M \sim^*_v N \) in \(n \) steps. We reason by induction on \(n \).
- If \(n = 0 \), then \(M = N \). But \(N = \lambda x.K \) since \(N \) is a value so that \(M = \lambda x.K \downarrow^* \lambda x.K = N \).
- If \(n > 0 \), then \(M \) is not a value, so that by previous Lemma

\[
M = TU \sim^*_v (\lambda x.K) U \sim^*_v (\lambda x.K) W \sim^*_v K \{x/W\} \sim^*_v N
\]

for \(n_1, n_2, n_3 < n \). By the i.h. \(T \downarrow^* \lambda x.K \) and \(U \downarrow^* W \) and \(K \{x/W\} \downarrow^* N \), so that we conclude \(M \downarrow^* N \).
Relating big and small-steps semantics (iv)

- If $M \Downarrow_n P$, then $M \prec_n^* P$.
- If $M \prec_n^* N$ and N is a value, then $M \Downarrow_n N$.

Progress properties

Let M be a closed term which is not still a value. Then,

- There exist N such that $M \prec_v N$.
- There exist N such that $M \prec_n N$.

Standardisation

A standard reduction sequence never reduces right redexes before left redexes.

The following reduction sequences are not standard

$$(\lambda x. II)(II) \rightarrow (\lambda x. II)I \rightarrow II \rightarrow I$$

$$(\lambda x. II)(II) \rightarrow (\lambda x.II) \rightarrow I$$

The following reduction sequence is standard

$$(\lambda x.II)(II) \rightarrow II \rightarrow I$$

The Standardisation Theorem

Theorem: If $t \rightarrow_\beta^* t'$, then there is a standard reduction sequence from t to t'.

Subtle point:

$$(\lambda x.(II))(II) \rightarrow (\lambda x.I)(II) \rightarrow (\lambda x.I)I$$

is standard (there is no violation of the left-to-right order)

$$(\lambda x.(II))(II) \rightarrow (\lambda x.I)(II) \rightarrow (\lambda x.I)I \rightarrow I$$

is not standard (there is violation of the left-to-right order).
Perpetual Strategies

Given any reduction step \(t \rightarrow_\beta t' \):
- If \(t \in SN_\beta \), then \(t' \in SN_\beta \)
- If \(t \notin SN_\beta \), then \(t' \) is not necessarily in \(SN_\beta \)

A reduction strategy \(\rightsquigarrow \) for the \(\lambda \)-calculus is perpetual iff \(t \rightsquigarrow t' \) and \(t \notin SN_\beta \) implies \(t' \notin SN_\beta \) (equiv. \(t' \in SN_\beta \) implies \(t \in SN_\beta \)).

Call-by-name is not perpetual: \((\lambda x. I)(\Delta \Delta) \rightsquigarrow_n I \) and \((\lambda x. I)(\Delta \Delta) \notin SN_\beta \) but \(I \in SN_\beta \).

A Perpetual Strategy for the \(\lambda \)-calculus

\[
\begin{align*}
 t_i \rightsquigarrow t'_i & \& t_1 \ldots t_{i-1} \in NF_\beta \\
 xt_1 \ldots t_i \ldots t_n \rightsquigarrow xt_1 \ldots t'_i \ldots t_n & \\
 \lambda x. u \rightsquigarrow \lambda x. u' & \\
 u \rightsquigarrow u' \text{ and } x \notinfv (t) & \\
 u \in NF_\beta \text{ or } x \infv (t) & \\
 (\lambda x. t) u t_1 \ldots t_n \rightsquigarrow (\lambda x. t) u' t_1 \ldots t_n & \\
 (\lambda x. t) u t_1 \ldots t_n \rightsquigarrow t \{ x/u \} t_1 .
\end{align*}
\]

Example: \((\lambda x. I)(\Delta \Delta) \rightsquigarrow (\lambda x. I)(\Delta \Delta) \).

Perpetuality Theorem

The reduction strategy of the previous slide is perpetual, i.e. if \(t \rightsquigarrow t' \) and \(t \notin SN_\beta \), then \(t' \notin SN_\beta \).