Typed Lambda Calculus
Motivations

- Partial specification of programs
- Avoid meaningless programs ($1 + true$)
- Avoid memory violation
- Avoid programs with undefined semantics
Contents

- Monomorphic Types
 - Church-style
 - Curry-style
 - Type Inference
- Polymorphic Types
 - Church-style
 - Curry-style
 - Type Inference
Simply Typed Lambda Calculus
Curry-Howard Isomorphism

Logical system ⇔ **Language**
- Propositions ⇔ Types
- Proofs ⇔ Programs
- Proof normalisation ⇔ Program Evaluation
Curry’58, Howard’68
Adding (simply) types to λ-calculus

Grammar for types:

$$A, B ::= b \quad \text{(base types)} \quad | \quad A \rightarrow B \quad \text{(functional types)}$$

Example:

$$\text{int} \rightarrow \text{bool} \quad \text{bool} \rightarrow (\text{bool} \rightarrow \text{int}) \quad (\text{bool} \rightarrow \text{bool}) \rightarrow \text{int}$$

Remark

- \rightarrow is right-associative, e.g. $A_1 \rightarrow A_2 \rightarrow A_3$ abbreviates $A_1 \rightarrow (A_2 \rightarrow A_3)$.
- Every type A can be written as $A_1 \rightarrow \ldots \rightarrow A_n \rightarrow b$, where A_1, \ldots, A_n ($n \geq 0$) are arbitrary types and b is a base type.
- The standard order between types is given by $A < A \rightarrow B$ and $B < A \rightarrow B$.
 Thus base types are minimal with respect this order.
- In a typed framework substitutions are always well-typed, i.e, $t\{x\backslash u\}$ means that x and u have the same type.
Typing Environment

- A **typing environment** \(\Gamma \) is a **finite** function from variables to types, usually written \(x_1 : A_1, \ldots, x_n : A_n \).
- Thus for example, \(x : A, y : B \) and \(y : B, x : A \) are two different notations for the same typing environment.
- The **domain** of \(\Gamma = x_1 : A_1, \ldots, x_n : A_n \), written \(\text{dom}(\Gamma) \), is the set \(\{x_1, \ldots, x_n\} \).
- We write \(\Gamma, x : A \) for the typing environment extending \(\Gamma \) with the pair \(x : A \). It is only defined iff \(x \notin \text{dom}(\Gamma) \).
Typed Lambda Calculus in Church-Style

\[
\begin{array}{c}
\Gamma, x : A \vdash x : A \\
\hline
(ax)
\end{array}
\]

\[
\begin{array}{c}
\Gamma, x : A \vdash t : B \\
\hline
\Gamma \vdash \lambda x : A.t : A \rightarrow B \\
(\rightarrow i)
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash t : A \rightarrow B \\
\hline
\Gamma \vdash u : A \\
\hline
\Gamma \vdash t \ u : B \\
(\rightarrow e)
\end{array}
\]

We can also add constants: each constant \(c\) has an associated type \(TC(c) : A\).

\[
\begin{array}{c}
\Gamma \vdash c : TC(c) \\
\end{array}
\]

We can also add the let constructor:

\[
\begin{array}{c}
\Gamma \vdash t : A \\
\hline
\Gamma, x : A \vdash u : B \\
\hline
\Gamma \vdash \text{let } x : A = t \text{ in } u : B
\end{array}
\]

We denote by \(\Gamma \vdash_C t : A\) the derivability/typing relation. We say that \(t\) is typable in Church-Style iff there is \(\Gamma\) and \(A\) such that \(\Gamma \vdash_C t : A\).
Examples

Example of typable term in an empty environment:

\[
\begin{align*}
& y : A \to A \vdash y : A \to A \\
& \vdash \lambda y : A \to A. y : (A \to A) \to (A \to A) \\
& x : A \vdash x : A \\
& \vdash \lambda x : A. x : A \to A \\
& \vdash (\lambda y : A \to A. y)(\lambda x : A. x) : A \to A
\end{align*}
\]

Example of typable term in a non-empty environment:

\[
\begin{align*}
& c_1 : int \to int \vdash c_1 : int \to int \\
& c_1 : int \to int \vdash c_1 : int \to int \\
& c_1 : int \to int \vdash c_1 : int \to int \vdash 3 : int \\
& c_1 : int \to int \vdash c_1 : int \to int \\
& c_1 int \to int \vdash c_1 3 : int \\
& c_1 : int \to int \vdash c_1 (c_1 3) : int
\end{align*}
\]

Example of non-typable term: \(\lambda x.xx \).
Typed Properties

[Unicity]: If $\Gamma \vdash_C t : A$ and $\Gamma \vdash_C t : B$, then $A \equiv B$.

Proof.
By induction on t. □

[Weakening and Strengthening]: Let $\Gamma = \{x : B \mid x \in \text{fv}(t)\}$ and $\Gamma \subseteq \Delta_1 \subseteq \Delta_2$. Then $\Delta_1 \vdash_C t : A$ iff $\Delta_2 \vdash_C t : A$.

Proof.
By induction on t. □

[Subject Reduction] If $\Gamma \vdash_C t : A$ and $t \rightarrow_\beta t'$, then $\Gamma \vdash_C t' : A$.

Proof.
By induction on $\Gamma \vdash_C t : A$ (blackboard). □
Typing Algorithm

\[
\begin{align*}
\text{Type(}\Gamma, c) & = \text{TC}(c) \\
\text{Type(}\Gamma, x) & = A \quad \text{if } x : A \in \Gamma \\
\text{Type(}\Gamma, \lambda x: A. t) & = A \rightarrow B \quad \text{if } \text{Type(}(\Gamma, x : A), t) = B \\
\text{Type(}\Gamma, t \ u) & = B \quad \text{if } \text{Type(}\Gamma, t) = A \rightarrow B \text{ and } \text{Type(}\Gamma, u) = A \\
\text{Type(}\Gamma, \text{let } x: A = t \text{ in } u) & = B \quad \text{if } \text{Type(}\Gamma, t) = A \text{ and } \text{Type(}(\Gamma, x : A), u) = B \\
\text{Type(}\Gamma, t) & = \text{error} \quad \text{otherwise}
\end{align*}
\]
Properties of the Typing Algorithm

[Termination]
For every term t and every environment Γ, the call $\text{Type}(\Gamma, t)$ terminates.

[Soundness]
If $\text{Type}(\Gamma, t) = A$, then $\Gamma \vdash_C t : A$.

[Completeness]
If $\Gamma \vdash_C t : A$, then $\text{Type}(\Gamma, t) = A$.

Said differently:
If $\text{Type}(\Gamma, t) = \text{erreur}$, then t is not typable in Γ.
Typed Lambda Calculus in Curry-Style

\[
\frac{\Gamma, x : A \vdash x : A}{(ax)}
\]

\[
\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x.t : A \rightarrow B} \quad (\rightarrow i)
\]

\[
\frac{\Gamma \vdash t : A \rightarrow B}{\Gamma \vdash \lambda x.t : A \rightarrow B}
\]

\[
\frac{\Gamma \vdash u : A}{\Gamma \vdash \lambda u.t : A \rightarrow B} \quad (\rightarrow e)
\]

We can also add constants: each constant \(c \) has an associated type \(TC(c) : A \).

\[
\frac{\Gamma \vdash c : TC(c)}{}
\]

We can also add lets:

\[
\frac{\Gamma \vdash t : A \quad \Gamma, x : A \vdash u : B}{\Gamma \vdash \text{let } x = t \text{ in } u : B}
\]

We denote by \(\Gamma \vdash_{\lambda} t : A \) the derivability/typing relation. We say that \(t \) is typable in Curry-Style iff there is \(\Gamma \) and \(A \) such that \(\Gamma \vdash_{\lambda} t : A \).
Properties

Unicity does not hold anymore:

\[\Gamma \vdash \lambda x. x : \text{int} \rightarrow \text{int} \quad \Gamma \vdash \lambda x. x : \text{bool} \rightarrow \text{bool} \]

The identity function behaves in the same way for \text{int} and \text{bool}:

Polymorphism
Difficulties for a Typing Algorithm

\[\text{Type}(\Gamma, \lambda x.t) = A \rightarrow B \quad \text{if there exists } A \text{ s.t. } \text{Type}((\Gamma, x : A), T) = B \]

\[\text{Type}(\Gamma, \text{let } x = t \text{ in } u) = B \quad \text{if there exists } A \text{ s.t. } \text{Type}(\Gamma, t) = A \text{ and } \text{Type}((\Gamma, x : A), u) = B \]
The type inference problem for a term t: $\exists \Gamma \exists A$ such that $\Gamma \vdash_{\lambda} t : A$?
Towards a Monomorphic Type Inference Algorithm

General Technical Tools:

- We consider a table of types for constants, called TC. E.g. $TC(3) = \text{int}$ and $TC(c_1) = \text{int} \rightarrow \text{int}$.
- Let t be a term. For each sub-term u of t we introduce a type variable α_u.
- We associate to every term t a set of equations $SE(t) = \{\alpha_1 \doteq u_1, \ldots, \alpha_m \doteq u_m\}$.
- The solution to the type inference problem for the term t will be given by the most general unifier (mgu) of the corresponding set of equations.

<table>
<thead>
<tr>
<th>t</th>
<th>$SE(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>${\alpha_t \doteq \alpha_x}$</td>
</tr>
<tr>
<td>c</td>
<td>${\alpha_t \doteq TC(c)}$</td>
</tr>
<tr>
<td>uv</td>
<td>${\alpha_u \doteq \alpha_v \rightarrow \alpha_t} \cup SE(u) \cup SE(v)$</td>
</tr>
<tr>
<td>$\lambda x. u$</td>
<td>${\alpha_t \doteq \alpha_x \rightarrow \alpha_u} \cup SE(u)$</td>
</tr>
<tr>
<td>let $x = u$ in v</td>
<td>${\alpha_t \doteq \alpha_v; \alpha_x \doteq \alpha_u} \cup SE(u) \cup SE(v)$</td>
</tr>
</tbody>
</table>
Examples

- \(t_0 := \lambda f. \lambda g. f g \)
 \[SE(t_0) = \{ \alpha \vdash \alpha f \to \alpha \lambda g.f g, \alpha \lambda g.f g \vdash \alpha g \to \alpha f g, \alpha f \vdash \alpha g \to \alpha f g, \alpha f \vdash \alpha f, \alpha g \vdash \alpha g \} \]
 - The mgu of \(SE(t_0) \) is the substitution \(\sigma_{t_0} \) such that \(\sigma_{t_0}(\alpha_{t_0}) = (\alpha g \to \alpha f g) \to (\alpha g \to \alpha f g) \).
 - \(t_0 \) is typable with instances of \(\sigma_{t_0}(\alpha_{t_0}) \) which are types of the form \((A \to B) \to (A \to B)\), for any arbitrary types \(A\) and \(B\).

- \(t_1 := \text{let } f = \lambda x. x \text{ in } f(f z) \)
 \[SE(t_1) = \{ \alpha \vdash \alpha f(f z), \alpha f \vdash \alpha \lambda x.x, \alpha \lambda x.x \vdash \alpha x \to \alpha x, \alpha x \vdash \alpha x, \alpha f \vdash \alpha f z \to \alpha f(f z), \alpha f \vdash \alpha f, \alpha f \vdash \alpha z \to \alpha f z, \alpha z \vdash \alpha z \} \]
 - The mgu of \(SE(t_1) \) is the substitution \(\sigma_{t_1} \) such that \(\sigma_{t_1}(\alpha_{t_1}) = \alpha f(f z) \).
 - \(t_1 \) is typable with instances of \(\sigma_{t_1}(\alpha_{t_1}) \) which are arbitrary types \(A\).
Properties of the Type Inference Algorithm

Theorem (Soundness) If σ is a solution of $S E(t)$, then t is (Curry) typable. Moreover, $\Delta \vdash_\lambda t : \sigma'(\alpha_t)$, where $\Delta = \{ x : \sigma'(\alpha_x) \mid x \in \text{fv}(t) \}$ and σ' is an instance of σ.

Theorem (Completeness) If t is (Curry) typable, then $S E(t)$ admits a solution.

Theorem (Principality) If t is (Curry) typable, i.e. $\Delta \vdash_\lambda t : A$, then A is an instance of the principal type (i.e. $A = \sigma'(\sigma(\alpha_t))$), where σ is the mgu of system $S E(t)$ and σ' is a substitution.
Polymorphic Lambda Calculus
Motivations

- General behaviour of an operator, i.e. without looking at the particular nature (or type) of its parameters.
- More clear and concise programs.
- Reutilisation of operators.
Different Forms of Polymorphism

- Ad-hoc polymorphism (overloaded constructors), originally described by Strachey.
- Subtyping polymorphism, introduced by Wegner and Cardelli: $\Gamma \vdash t : A \rightarrow B$, $\Gamma \vdash u : A'$ et $A' \leq A$ alors $tu : B$.
- Parametric polymorphism, introduced by Reynolds and Girard.
Parametric Polymorphism

Motivation:
Many identity functions:
\[Id_{\text{int}} : \text{int} \to \text{int}, \quad Id_{\text{bool}} : \text{bool} \to \text{bool}, \quad Id_{\text{int} \to \text{int}} : (\text{int} \to \text{int}) \to (\text{int} \to \text{int}), \ldots \]
Many functions to add an element to a list:
\[A_{\text{int}} : \text{int} \to \text{list}(\text{int}) \to \text{list}(\text{int}), \quad A_{\text{bool}} : \text{bool} \to \text{list}(\text{bool}) \to \text{list}(\text{bool}), \ldots \]
Idea:
\[Id : \forall \alpha. \alpha \to \alpha \]
and thus:
\[Id_{\text{int}} = Id[\text{int}] \]
\[Id_{\text{bool}} = Id[\text{bool}] \]
\[Id_{\text{int} \to \text{int}} = Id[\text{int} \to \text{int}] \]
Remark The key idea is the instantiation relation between the general type \(\alpha \), and the particular used types \text{int}, \text{bool}, \text{int} \to \text{int}. \]
Girard-Reynolds Polymorphism

Types: \(A ::= b \mid \alpha \mid A \to A \mid \forall \alpha. A \)

Notation: \(\forall \alpha.\forall \beta. A = \forall (\alpha, \beta). A \).

Expressions:

\[
\begin{align*}
t ::= & \ x \mid c \mid t \ t \mid \\
& \lambda x : A. t \mid \text{let } x : A = t \text{ in } t \mid \\
& t[A] \mid \Lambda \alpha t
\end{align*}
\]

Reduction Rules:

\[
\begin{align*}
(\lambda x : A. t) u & \rightarrow t\{x\backslash u\} \\
\text{let } x : A = u \text{ in } t & \rightarrow t\{x\backslash u\} \\
(\Lambda \alpha t)[A] & \rightarrow t\{\alpha\backslash A\}
\end{align*}
\]

Reduction Rules:

Let \(Id = \Lambda \alpha \lambda x : \alpha. x \)

\[
\begin{align*}
Id[\text{int}] & \rightarrow \lambda x : \text{int}. x \\
(Id[\text{int}]) 3 & \rightarrow (\lambda x : \text{int}. x) 3 \rightarrow 3
\end{align*}
\]
Type Free Variables

By induction on types:

\[
\begin{align*}
\text{tfv}(b) &= \emptyset \\
\text{tfv}(\alpha) &= \{\alpha\} \\
\text{tfv}(\forall\alpha.A) &= \text{tfv}(A) \setminus \{\alpha\} \\
\text{tfv}(A \rightarrow B) &= \text{tfv}(A) \cup \text{tfv}(B)
\end{align*}
\]

A type \(A \) is closed iff \(\text{tfv}(A) = \emptyset \).

Example: \(\text{tfv}(\beta \rightarrow (\forall\alpha.\alpha \rightarrow \gamma)) = \{\beta, \gamma\} \) and \(\forall\alpha.\forall\beta.(\alpha \rightarrow \beta) \) is closed.
Polymorphic Lambda Calculus in Church-Style (Girard)

The same rules used for monomorphic Church-style plus:

\[
\frac{\Gamma \vdash t : A \quad \alpha \notin \text{tfv}(\Gamma)}{\Gamma \vdash \Lambda \alpha t : \forall \alpha . A}
\]

\[
\frac{\Gamma \vdash t : \forall \alpha . A}{\Gamma \vdash t[B] : A{\alpha \backslash B}}
\]

where \(\text{tfv}(\Gamma) := \bigcup_{x \in \Gamma} \text{tfv}(\Gamma(x)) \) is the set of type free variables of \(\Gamma \).

We denote by \(\Gamma \vdash_G t : A \) the derivability/typing relation.

Example:

\[
\frac{x : \alpha \vdash x : \alpha}{\vdash \lambda x : \alpha . x : \alpha \to \alpha}
\]

\[
\vdash \Lambda \alpha \lambda x : \alpha . x : \forall \alpha . (\alpha \to \alpha)
\]

\[
\vdash (\Lambda \alpha \lambda x : \alpha . x)[\text{int}] : \text{int} \to \text{int} \quad \vdash 3 : \text{int}
\]

\[
\vdash ((\Lambda \alpha \lambda x : \alpha . x)[\text{int}]) 3 : \text{int}
\]
Theorem

(Schubert) The inference problem in Girard system is \textit{undecidable}.

\textbf{Idea to become decidable:} to restrict the grammar of types.
Type matrix : \(M ::= b \mid \alpha \mid M \rightarrow M \)

ML Type : \(S ::= \forall \alpha_1 \ldots \forall \alpha_n. M \)

A type matrix is a particular case of type.

Type for constants :

\[
\begin{align*}
TC(+) & : \quad \text{int} \rightarrow \text{int} \rightarrow \text{int} \\
TC(\text{fst}) & : \quad \forall \alpha \forall \beta. (\alpha \rightarrow \beta) \rightarrow \alpha \\
TC(\text{snd}) & : \quad \forall \alpha \forall \beta. (\alpha \rightarrow \beta) \rightarrow \beta \\
TC(\text{ifthenelse}) & : \quad \forall \alpha. (\text{bool} \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha \\
TC(\text{fix}) & : \quad \forall \alpha. (\alpha \rightarrow \alpha) \rightarrow \alpha
\end{align*}
\]
Definition

An ML type \(A \) is an instance of an ML type \(\forall \alpha_1 \ldots \forall \alpha_n. B \), written \(A \leq \forall \alpha_1 \ldots \forall \alpha_n. B \) iff there exist \(C_1, \ldots, C_n \) s.t. \(A = B[\alpha_1, \ldots, \alpha_n \setminus C_1, \ldots, C_n] \). In particular, for \(n = 0 \), we have \(A \leq B \) iff \(A \equiv B \).

Example:

\[
\begin{align*}
int \to int & \leq \forall \alpha. \alpha \to \alpha \\
bool \to int & \leq \forall \alpha. \forall \beta. \alpha \to \beta \\
bool \to int & \not\leq \forall \alpha. \alpha \to \alpha \\
\forall \beta. \text{int} \to \beta & \leq \forall \alpha. \forall \beta. \alpha \to \beta \\
\forall \beta. (\beta \to \beta) \to \forall \beta. (\beta \to \beta) & \not\leq \forall \alpha. \alpha \to \alpha
\end{align*}
\]
Type Generalization

Definition

The Gen operator is given by $\text{Gen}(A, \Gamma) = \forall \alpha_1 \ldots \forall \alpha_n. A$, where each variable α_i is free in A but not in Γ, i.e. forall $i = 1 \ldots n$, we have $\alpha_i \in \text{tfv}(A) \setminus \text{tfv}(\Gamma)$.

Example: Let $A = \alpha \rightarrow \beta$ and $\Gamma = x : \beta, y : \forall \alpha. \alpha$. Then $\text{Gen}(A, \Gamma) = \forall \alpha. \alpha \rightarrow \beta$.
We denote by $\Gamma \vdash_{ML} t : A$ the derivability/typing relation.
Example

Let $A = \forall \alpha. \alpha \to \alpha$

\[
\begin{align*}
 & y : \alpha \vdash y : \alpha \\
 \implies & \vdash \lambda y. y : \alpha \to \alpha \\
\end{align*}
\]

\[
\begin{align*}
 & \text{int} \to \text{int} \leq A \\
 \implies & f : A \vdash f : \text{int} \to \text{int} \\
 \implies & \vdash f : \forall \alpha. \alpha \to \alpha \\
\end{align*}
\]

\[
\begin{align*}
 & f : A \vdash 1 : \text{int} \\
 \implies & \vdash \text{let } f = \lambda y. y \text{ in } f \ 1 : \text{int} \\
\end{align*}
\]
Properties

[Substitution] :
If $\Gamma, x : \forall \alpha_1 . . . \forall \alpha_n. B \vdash_{ML} t : A$ and $\Gamma \vdash_{ML} u : B$, then $\Gamma \vdash_{ML} t\{x\{u\} : A$.

[Subject Reduction] :
If $\Gamma \vdash_{ML} t : A$ and $t \rightarrow t'$, then $\Gamma \vdash_{ML} t' : A$.
Let $t := \text{let } x = \lambda y. y \text{ in } x$. Let consider the set of equations:

$$\{ \alpha_t \doteq \alpha_x, \alpha_x \doteq \text{Gen}(\alpha_{\lambda y.y}, \emptyset), \alpha_{\lambda y.y} \doteq \alpha_y \rightarrow \alpha_y \}$$

If we treat the second equation we obtain $\alpha_x \equiv \forall \alpha_{\lambda y.y}. \alpha_{\lambda y.y}$, which is incorrect since α_x should be a functional type (an arrow).
Towards a Type Inference Algorithm: Notations

Let $\Gamma = x_1 : A_1, \ldots, x_n : A_n$ be an environment and let σ be a type substitution. then $\sigma(\Gamma) = x_1 : \sigma(A_1), \ldots, x_n : \sigma(A_n)$.

We note $\text{inst}(\forall \alpha_1 \ldots \forall \alpha_n. A)$ the type $A\{\alpha_1, \ldots, \alpha_n \backslash \beta_1, \ldots, \beta_n\}$, where β_1, \ldots, β_n are fresh variables.
Damas-Milner-Tofte Algorithm

Input: an environment Γ and a term t s.t. $fv(t) \subseteq \Gamma$.

Output: an ML type A and a type substitution σ s.t. $\sigma(\Gamma) \vdash_{ML} t : A$ (id is the empty type substitution).

\[
W((\Delta, x : A), x) = (inst(A), id)
\]
\[
W(\Delta, c) = (inst(TC(c)), id)
\]
\[
W(\Delta, \lambda x. u) = (\rho_B(\alpha_x) \to B, \rho_B)
\]

where $W((\Delta, x : \alpha_x), u) = (B, \rho_B)$ and α_x is a fresh variable

\[
W(\Delta, u \, v) = (\mu(\alpha), \mu \circ \rho_C \circ \rho_B)
\]

where $W(\Delta, u) = (B, \rho_B)$, $W(\rho_B(\Delta), v) = (C, \rho_C)$,

α is a fresh variable and $\mu = mgu\{\rho_C(B) \doteq C \to \alpha\}$

\[
W(\Delta, \text{let } x = u \text{ in } v) = (C, \rho_C \circ \rho_B)
\]

where $W(\Delta, u) = (B, \rho_B)$ and $W((\rho_B(\Delta), x : \text{Gen}(B, \rho_B(\Delta))), v) = (C, \rho_C)$
Premier exemple

\[W(\emptyset, \lambda x. \ast 4x) = (\text{int} \to \text{int}, \{\alpha/\text{int} \to \text{int}, \beta/\text{int}, \alpha_x/\text{int}\}) \]
\[W(x : \alpha_x, \ast 4x) = (\text{int}, \{\alpha/\text{int} \to \text{int}, \beta/\text{int}, \alpha_x/\text{int}\}), \text{computes } \text{mgu}\{\text{int} \to \text{int} \simeq \alpha_x \to \beta}\]
\[W(x : \alpha_x, \ast 4) = (\text{int} \to \text{int}, \{\alpha/\text{int} \to \text{int}\}), \text{computes } \text{mgu}\{\text{int} \to \text{int} \to \text{int} \simeq \text{int} \to \alpha\} \]
\[W(x : \alpha_x, \ast) = (\text{int} \to \text{int} \to \text{int}, \text{id}) \]
\[W(x : \alpha_x, 4) = (\text{int}, \text{id}) \]
\[W(x : \alpha_x, x) = (\alpha_x, \text{id}) \]

\[\text{Then } \emptyset \vdash_{\text{ML}} \lambda x. \ast 4x : \text{int} \to \text{int}. \]
Second Example

\[
\begin{align*}
W(\emptyset, \text{let } f = \lambda x. x \text{ in } f^2) &= (\text{int}, \{\beta/\text{int}, \gamma/\text{int}\}) \\
W(\emptyset, \lambda x. x) &= (\alpha_x \rightarrow \alpha_x, \text{id}) \\
W(x : \alpha_x, x) &= (\alpha_x, \text{id}) \\
W(f : \forall \alpha_x. \alpha_x \rightarrow \alpha_x, f^2) &= (\text{int}, \{\beta/\text{int}, \gamma/\text{int}\}), \text{ where } \text{mgu}\{\beta \rightarrow \beta \vdash \text{int} \rightarrow \gamma\} = \{\beta/\text{int}, \gamma/\text{int}\} \\
W(f : \forall \alpha_x. \alpha_x \rightarrow \alpha_x, f) &= (\beta \rightarrow \beta, \text{id}) \\
W(f : \forall \alpha_x. \alpha_x \rightarrow \alpha_x, 2) &= (\text{int}, \text{id}) \\
\end{align*}
\]

Then \(\emptyset \vdash_{\text{ML}} \text{let } f = \lambda x. x \text{ in } f^2 : \text{int}\).
Properties of the Type Inference Algorithm

Theorem (Soundness) If \(W(\Delta, t) = (A, \sigma) \), then \(\sigma(\Delta) \vdash_{ML} t : A \).

Theorem (Completeness) Let \(\Delta = x_1 : \alpha_1, \ldots, x_n : \alpha_n \) where \(\text{fv}(t) \subseteq \{x_1, \ldots, x_n\} \). Let \(\tau \) be a type substitution, If \(\tau(\Delta) \vdash_{ML} t : B \), then \(W(\Delta, t) = (A, \sigma) \), where \(B \) is an instance of \(A \) and \(\tau \) is an instance of \(\sigma \).

Corollary: \(\emptyset \vdash_{ML} t : A \) iff \(W(\emptyset, t) = (B, \sigma) \) and \(A \) is an instance of \(B \).
Strong Normalization of Simply Typed Lambda Calculus
Typed Properties

[Strong Normalization] Every simply typed term is normalising:
if $\Gamma \vdash_\lambda t : A$, then $t \in SN_\beta$.
Defining Strongly Normalizing Terms

- \(t \in SN_\beta \)
 - iff there is no infinite \(\beta \)-reduction sequence starting at \(t \).
- \(t \in SN_\beta \)
 - iff every \(\beta \)-reduction sequence starting at \(t \) is finite.

First inductive alternative:
- If \(t \) is a \(\beta \)-normal form, then \(t \in SN \)
- If \(\forall t' \ [(t \rightarrow_\beta t') \implies t' \in SN], \) then \(t \in SN \)
 (the first line is a special case of the second one)

Second inductive alternative:
- \(t_1, \ldots, t_n \in SN \) implies \(x \vec{t} = x t_1 \ldots t_n \in SN \).
- \(t \in SN \) implies \(\lambda x.t \in SN \).
- \(t[x\backslash u]\vec{r} \in SN \) and \(u \in SN \) implies \((\lambda x.t)u\vec{r} \in SN \).

In both cases one shows that \(t \in SN \iff t \in SN_\beta \).

Definition (Measuring \(SN_\beta \)-terms)

Given \(t \in SN_\beta \), we define the **measure** \(\mu_\beta(t) \) as \(\max\{n \in \mathbb{N} \mid t \rightarrow^n_\beta t' \} \).

Note that \(t \rightarrow_\beta t' \) implies \(\mu_\beta(t') < \mu_\beta(t) \), so that \(t \in SN_\beta \) and \(t \rightarrow_\beta t' \) implies \(t' \in SN_\beta \).
Some General Remarks About SN_{β}-Terms

- $u \in SN_{\beta}$ iff $\lambda y.\ u \in SN_{\beta}$.
- $u_1, \ldots, u_n \in SN_{\beta}$ iff $x\ u_1 \ldots u_n \in SN_{\beta}$.
- In general, if $t \in SN_{\beta}$, then every subterm of t is also SN_{β}, but the converse is not true, e.g. $(\lambda x.xx)(\lambda x.xx)$.
- This is because SN_{β} is not stable by substitution. Example: $x\ x \in SN_{\beta}$, $\lambda y.y\ y \in SN_{\beta}$, but $(x\ x)\{x\ \lambda y.y\ y\} = \Delta\ \Delta \notin SN_{\beta}$.
First Proof of the SN property

- This first proof is due to Tait.
- Uses the **first** alternative definition of SN_β
- It is based on a predicate SC to characterize *strong computable* terms.

Definition

Let t be of type $A = A_1 \rightarrow \ldots \rightarrow A_n \rightarrow \tau$. Then $t \in SC$ iff forall $u_i \in SC$ of type A_i we have $t \vec{u} = t \ u_1 \ldots u_n \in SN_\beta$.

The previous definition implies

1. $SC \subseteq SN_\beta$.
2. SC is closed under β (i.e. $t \in SC$ and $t \rightarrow_\beta t'$ implies $t' \in SC$).
3. $x \in SC$ for every variable x (using 1).
Lemma

If $t, u_1, \ldots, u_n \ (n \geq 1) \in SN_\beta$ and $t\{x\backslash u_1\}u_2 \ldots u_n \in SN_\beta$, then $(\lambda x.t)u_1u_2 \ldots u_n \in SN_\beta$.

Proof.

By the first alternative definition of SN_β, it is sufficient to show that all the reducts of $(\lambda x.t)u_1 \ldots u_n$ are in SN_β. We reason by induction on $\mu(t) + \Sigma_i \mu(u_i)$. Case analysis on the reducts:

- $(\lambda x.t')u_1 \ldots u_n$, where $t \rightarrow t'$. Then $\mu(t') < \mu(t)$, we conclude by the i.h.
- $(\lambda x.t)u_1 \ldots u'_i \ldots u_n$, where $u_i \rightarrow u'_i$. Then $\mu(u'_i) < \mu(u_i)$, we conclude by the i.h.
- $t\{x\backslash u_1\}u_2 \ldots u_n$. We conclude by the hypothesis.
Lemma

Let t be a typed term. Let σ be a type preserving substitution mapping all the free variables of t to terms in SC. Then $t\sigma \in \mathit{SC}$.

Proof.

We proceed by induction on the typed term t.

- If $t = x$, then $x\sigma = \sigma(x) \in \mathit{SC}$ by hypothesis.
- If $t = uv$, then let $\vec{r} \in \mathit{SC}$. We have $u\sigma$ and $v\sigma$ in SC by i.h. Then $(uv)\sigma\vec{r} = u\sigma \circ \sigma \vec{r} \in \mathit{SN}_\beta$ by definition.
- If $t = \lambda x.u$, then $(\lambda x.u)\sigma =_\alpha \lambda x.u\sigma$. Since $\sigma \cup \{x\} \{x\}$ verifies the hypothesis of the lemma, then by the i.h. $u(\sigma \cup \{x\}) = u\sigma \in \mathit{SC} \subseteq \mathit{SN}_\beta$. To show $\lambda x.u\sigma \in \mathit{SC}$ we show $(\lambda x.u\sigma)\vec{r} \in \mathit{SN}_\beta$ for $\vec{r} \in \mathit{SC} \subseteq \mathit{SN}_\beta$. This follows from the previous lemma.

\square
Lemma

Every typed term is in SC.

Proof.

Using the previous lemma with the identity substitution (which verifies the hypothesis of the current lemma).
Theorem

Every typed term is in $S N_{\beta}$.

Proof.

Using the previous lemma and the fact the $S C \subseteq S N_{\beta}$. □
Second proof of the SN property

- Can be found in Femke van Raamsdonk's Thesis.
- Uses the **second** alternative definition of SN_β

1. Define Λ_A (terms of type A) inductively:
 - If x is a variable of type A, then $x \in \Lambda_A$.
 - If $t \in \Lambda_C$ and x is a variable of type B, then $\lambda x.t \in \Lambda_{B \to C}$.
 - If $t \in \Lambda_{B \to A}$ and $u \in \Lambda_B$, then $tu \in \Lambda_A$.

2. Define $S N_A = SN \cap \Lambda_A$.

3. Define $X \to Y = \{t | \forall u. (u \in X \text{ implies } tu \in Y)\}$.

4. Show $\Lambda_{A \to B} = \Lambda_A \to \Lambda_B$.

5. Show $S N_A \to S N_B \subseteq S N_{A \to B}$ (easy).

6. If $u \in S N_{A_1} \to S N_{A_2} \to \ldots \to S N_{A_m}$ with A_m a base type and $t \in S N_B$, then $t\{x\{u\} \in S N_B$ (induction on SN using 5).

7. Show $S N_{A \to B} \subseteq S N_A \to S N_B$ (using 6).

8. Show that $\Lambda_A \subseteq S N_A$ (by induction using 7).

9. Since $S N_A \subseteq SN = S N_\beta$ we conclude.
Lemma

If t and u are typed and belong to SN_β, then $t\{x\backslash u\} \in SN_\beta$.

Proof.

By induction on $\langle \text{type}(u), \mu_\beta(t), \text{size}(t) \rangle$.

- The base case $\langle \text{base type}, 0, 1 \rangle$ is trivial.
- Case $t = \lambda y.v$ is by the i.h. on v ($\text{size}(_)$ strictly decreases).
- Case $t = y \vec{c}$ with $x \neq y$ is by the i.h. on c_i ($\mu_\beta(_)$ decreases and $\text{size}(_)$ strictly decreases).
- Case $t = x$. We have $x\{x\backslash u\} = u \in SN_\beta$ by hypothesis.
- Case $t = x b \vec{c}$. By the i.h. $B = b\{x\backslash u\}$ and $C_i = c_i\{x\backslash u\}$ are in SN_β. We want to show that $u B \vec{C} \in SN_\beta$. It is sufficient (first alternative definition of SN_β) to show that all its reducts are in SN_β. We reason by induction on $\mu_\beta(u) + \mu_\beta(B) + \Sigma_i \mu_\beta(C_i)$. The reducts are
 - $u' B \vec{C}$, where $u \rightarrow u'$. Apply the i.h.
 - $u B' \vec{C}$, where $B \rightarrow B'$. Apply the i.h.
 - $u' B C_1 \ldots C_i' \ldots C_n$, where $C_i \rightarrow C'_i$. Apply the i.h.
 - $v\{y\backslash B\} \vec{C}$, where $u = \lambda y.v$. But $v\{y\backslash B\} \vec{C} = (z\vec{C})\{z\backslash v\{y\backslash B\}\}$ and $\text{type}(v\{y\backslash B\}) < \text{type}(u)$. We thus conclude by the i.h. since $z\vec{C}$ and $v\{y\backslash B\}$ are typed and in SN_β by the i.h.

\Box
Case $t = (\lambda z.b) c \vec{d}$. By the i.h. $B = b{x\backslash u}$ and $C = c{x\backslash u}$ and $D_i = d_i{x\backslash u}$ are in SN_β. Suppose $t{x\backslash u} = (\lambda z.B) C \vec{D} \notin SN_\beta$. Then $B{z\backslash C} \vec{D} \notin SN_\beta$. But $B{z\backslash C} \vec{D} = (b{z\backslash c}\vec{d}){x\backslash u}$ and $\mu_\beta(b{z\backslash c}\vec{d}) < \mu_\beta(t)$. Thus $B{z\backslash C} \vec{D} \in SN_\beta$ by the i.h. Contradiction. Thus $t{x\backslash u} = (\lambda z.B) C \vec{D} \in SN_\beta$.
Theorem
If t is typable, then $t \in SN_\beta$.

Proof.
By induction on the typing derivation of t.

- Case $t = x$ is trivial.
- Case $t = \lambda y. u$ holds by the i.h.
- For the case $t = u \, v$ use the fact that $t = (z \, v)\{z\, u\}$ and apply previous lemma (verification of the hypothesis is easy).
Fourth proof of the SN property

See for example Gandy’s proof by Alexandre Miquel.
A combinatorial proof of strong normalisation for the simply typed lambda-calculus.
Strong Normalization of System F
Reducibility Candidates

- **Neutral Terms**: Terms that are not abstractions.
- **Strongly Normalizing Terms**: SN_F

Definition

A reducibility candidate of type A is a set R of terms of type A such that

(CR1) If $t \in R$, then $t \in SN_F$

(CR2) If $t \in R$ and $t \rightarrow_F t'$, then $t' \in R$

(CR3) If t is neutral and ($t \rightarrow_F t'$ implies $t' \in R$), then $t \in R$.

If R and S are reducibility candidates of type A and B respectively, then $R \rightarrow S$ is a set of terms of type $A \rightarrow B$ defined by

$$t \in R \rightarrow S \text{ iff } \forall u.(u \in R \text{ implies } tu \in S)$$
Remarks

- A consequence of $(CR3)$: If t is neutral and normal, then $t \in \mathcal{R}$.
- \mathcal{R} of type A is never empty, it contains at least the variables of type A.
- The set $\{t \in S N_F \text{ and } t \text{ of type } A\}$ is a reducibility candidate.
- $\mathcal{R} \rightarrow S$ is a reducibility candidate.
Let T be a type where $\text{tfv}(T) \subseteq \vec{\alpha}$. We write $T\{\vec{\alpha} \backslash \vec{A}\}$ for the simultaneous substitution of $\vec{\alpha}$ by \vec{A}. Given \vec{R} a sequence of reducibility candidates, we define a set $\text{RED}_T(\vec{\alpha}, \vec{R})$ of terms of type $T\{\vec{\alpha} \backslash \vec{A}\}$.

- If $T = \alpha_i$, then $\text{RED}_T(\vec{\alpha}, \vec{R}) = \mathcal{R}_i$
- If $T = A \rightarrow B$, then $\text{RED}_{A \rightarrow B}(\vec{\alpha}, \vec{R}) = \text{RED}_A(\vec{\alpha}, \vec{R}) \rightarrow \text{RED}_B(\vec{\alpha}, \vec{R})$
- If $T = \forall \gamma. B$, then $\text{RED}_{\forall \gamma. B}(\vec{\alpha}, \vec{R})$ is the set of terms t of type $T\{\vec{\alpha} \backslash \vec{A}\}$ such that for every type C and reducibility candidate S of this type, then $t[C] \in \text{RED}_B(\vec{\alpha} \gamma, \vec{R}S)$
Properties

Lemma

\(\text{RED}_T(\vec{\alpha}, \vec{R}) \) is a reducibility candidate of type \(T\{\vec{\alpha}\backslash \vec{A}\} \)

Lemma

\(\text{RED}_{T\{\gamma\backslash B\}}(\vec{\alpha}, \vec{R}) = \text{RED}_T(\vec{\alpha}\gamma, \vec{R} \text{RED}_B(\vec{\alpha}, \vec{R})) \)

Lemma

If for every type \(B \) and candidate \(S \), \(t\{\gamma\backslash B\} \in \text{RED}_A(\vec{\alpha}\gamma, \vec{R}S) \), then \(\Lambda \gamma t \in \text{RED}_{\forall \gamma, A}(\vec{\alpha}, \vec{R}) \)

Lemma

If \(t \in \text{RED}_{\forall \gamma, A}(\vec{\alpha}, \vec{R}) \), \(t[B] \in \text{RED}_{A\{\gamma\backslash B\}}(\vec{\alpha}, \vec{R}) \) for every type \(B \).
Reducible Terms

A term t of type A is reducible if $t \in \text{RED}_A(\vec{\alpha}, S\vec{N})$ where $\vec{\alpha} = \alpha_1 \ldots \alpha_n$ are the free type variables of A, and $S\vec{N}$ is $SN_1 \ldots SN_n$, where SN_i is the set of terms of SN_F of type α_i.
Final Theorem

Theorem

All terms of system \(F \) are reducible.

Corollary (by CR1)

Corollary

All terms of system \(F \) are in \(SN_F \).
Lemma

Let t be a term of type A. Suppose $\text{fv}(t) \subseteq \{x_1, \ldots, x_n\}$ and x_i is of type B_i. Suppose $t\text{fv}(A, B_1, \ldots, B_n) \subseteq \{\alpha_1, \ldots, \alpha_m\}$. If $\{R_1, \ldots, R_m\}$ are reducibility candidates of types $\{C_1, \ldots, C_m\}$ and v_1, \ldots, v_n are terms of types $B_1\{\vec{\alpha} \setminus \vec{C}\}, \ldots, B_n\{\vec{\alpha} \setminus \vec{C}\}$ which are in $\text{RED}_{B_1}(\vec{\alpha}, \vec{R}), \ldots, \text{RED}_{B_n}(\vec{\alpha}, \vec{R})$, then $t\{\vec{\alpha} \setminus \vec{C}\}\{\vec{x} \setminus \vec{v}\} \in \text{RED}_A(\vec{\alpha}, \vec{R})$