Unification
Unification

Two terms s and t are unifiable iff there exists a substitution (called unifier) s.t. $\theta(s) = \theta(t)$.

Example

- $f(x, g(x, a))$ and $f(f(a), y)$ are unifiable with $\theta = \{x/f(a), y/g(f(a), a)\}$

\[
\begin{align*}
 f(x, g(x, a)) & \equiv f(f(a), y) \\
 f(f(a), g(f(a), a)) & = f(f(a), g(f(a), a))
\end{align*}
\]

- $f(x, g(x, a))$ and $f(f(a), f(b, a))$ are not unifiable.
Principal substitutions

Let θ and τ be two substitutions and S be a set of substitutions.

- The composition of θ and τ is $(\theta \circ \tau)(x) = \theta(\tau(x))$ for every variable $x \in X$.
- θ is an instance of τ (or τ is more general than θ) iff there exists a substitution ρ s.t. for every variable $x \in X$, $(\rho \circ \tau)(x) = \theta(x)$.
- $\tau \in S$ is principal (or most general) iff every substitution $\theta \in S$ is an instance of τ.

Example

Let $\sigma_1 = \{y/b, z/h(c)\}$ and $\sigma_2 = \{x/f(y), y/z\}$.

$\sigma_1 \circ \sigma_2 = \{x/f(b), y/h(c), z/h(c)\}$.

σ_2 is more general than $\sigma_1 \circ \sigma_2$.
Theorem

Let S be a non-empty set of unifiers of s and t. Then, there exists a principal unifier $\theta \in S$ s.t. for every $\tau \in S$, θ is more general than τ. Moreover, this principal unifier is unique modulo renaming.
A substitution θ is idempotent iff $\theta \circ \theta = \theta$.

Example

\{y/b, z/h(c)\} is idempotent.
\{x/f(y), y/z\} is not idempotent.

Theorem

If s and t are unifiable, then there exists a principal unifier of s and t which is idempotent.

How we can construct this unifier?
An *equational system* is a set of *equations* of the form $s \doteq t$.
An equational system E is **unifiable** iff there exists a unifier (called **solution**) for all the equations of E.

Finite equational systems are denoted $\{s_1 \doteq t_1, \ldots, s_n \doteq t_n\}$.
Solved forms

The equational system $E = \{s_1 \doteq t_1, \ldots, s_n \doteq t_n\}$ is in solved form iff

- All the s_i are distinct variables.
- No s_i appears in t_j.

Example

$E_0 = \{x \doteq y, z \doteq f(a)\}$ is in solved form but $E_1 = \{x \doteq y, x \doteq f(a)\}$,
$E_2 = \{x \doteq y, y \doteq f(a)\}$,
$E_3 = \{x \doteq z, y \doteq f(y)\}$ do not.

Notation: For the solved system $E = \{x_1 \doteq t_1, \ldots, x_n \doteq t_n\}$ we note \vec{E} the substitution $\{x_1/t_1, \ldots, x_n/t_n\}$.

The transformation rules

\[
\begin{align*}
E \cup \{ s \doteq s \} & \quad \text{(erase)} \\
\hline
E & \\
\end{align*}
\]

\[
\begin{align*}
E \cup \{ t \doteq x \} & \quad t \notin \mathcal{X} \quad \text{(orient)} \\
\hline
E \cup \{ x \doteq t \} & \\
\end{align*}
\]

\[
\begin{align*}
E \cup \{ f(s_1, \ldots, s_n) \doteq f(t_1, \ldots, t_n) \} & \quad \text{(decompose)} \\
\hline
E \cup \{ s_1 \doteq t_1, \ldots, s_n \doteq t_n \} & \\
\end{align*}
\]

\[
\begin{align*}
E \cup \{ x \doteq s \} & \quad x \in \text{Var}(E) \quad x \notin \text{Var}(s) \quad \text{(substitute)} \\
\hline
E\{x\doteq s\} \cup \{ x \doteq s \} & \\
\end{align*}
\]
The unification algorithm

1. Take an equational system E
2. Compute a new system P by applying the transformation rules as far as possible.
3. If the system P is in solved form
 - then send the answer \vec{P}
 - else fail
Example

Unification of the system \(\{p(a, x, f(g(y))) \doteq p(z, f(z), f(u))\} \)

\[
\begin{align*}
p(a, x, f(g(y))) & \doteq p(z, f(z), f(u)) \\
a \doteq z, x \doteq f(z), f(g(y)) & \doteq f(u) \\
z \doteq a, x \doteq f(z), f(g(y)) & \doteq f(u) \\
z \doteq a, x \doteq f(a), f(g(y)) & \doteq f(u) \\
& \quad \rightarrow z \doteq a, x \doteq f(a), g(y) \doteq u \\
& \quad \rightarrow z \doteq a, x \doteq f(a), u \doteq g(y) (\text{solved form})
\end{align*}
\]

yields the (idempotent) substitution \(\{z/a, x/f(a), u/g(y)\} \).
Soundness and completeness of the algorithm

Theorem

The algorithm terminates.

Theorem

(Soundness) If the algorithm finds a substitution \(\vec{S} \) for the problem \(P \), then \(P \) is unifiable and \(\vec{S} \) is a m.g.u. of \(P \).

That is,

If \(P \) is not unifiable, then the algorithm fails.

Theorem

(Completeness) If the system \(P \) is unifiable, then the algorithm computes the m.g.u. of \(P \).

That is,

If the algorithm fails, then the system \(P \) is not unifiable.