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Simply versus Intersection Types

m Simply typed terms C strongly-normalizing terms.

m Simply typed terms 2 strongly-normalizing terms.

(e.g. Ax.xx).

m Intersection Types: The judgment I + ¢ : o A T means that ¢ has both types o and 7.

Finite polymorphism

Simply types

Intersection Types

No

Yes

x:(C>0)ANTFXX:O

m Intersection typed terms = strongly-normalizing terms.

m Intersection type systems are undecidable.




Intersection Types - Some Historical References

m System C (Coppo-Dezani) and System % (Pottinger).

m Types in both systems enjoy ACI Axioms.

Associativity (CAp)ANT ~ OoA(PEAT)
Commutativity TAp ~ pPACT
Idempotence oANT ~ o

m ACl intersection types can be seen as sets: (o A o) A T is represented by {o, 7}.

m Systems C and P were used to characterize different normalization properties of

A-calculus.



Basic Definitions of Normalization for A-Calculus

Definition
Let R be any reduction sequence.

m Aterm tis an R-normal form iff there is no p such that t —« p.

m Aterm tis R-weakly normalizing iff there is some reduction sequence t —, p,
y R

where p is an R-normal form.

m Aterm tis R-strongly normalizing iff there is no infinite reduction sequence

T or—>%....

The previous three notions will be considered for different reduction relations, notably for
B-reduction.



Examples

m Theterms I = Ax.x and A = Ax.xx are B-normal forms. They are B-weakly and

B-strongly normalizing.

m The term (Ax.I)(AA) is not a S-normal form. It is S-weakly normalizing, but not
B-strongly normalizing.

m The term AA is not a g-normal form. It is neither 8-weakly normalizing, nor

B-strongly normalizing.



Some Typical Results in 2-Calculus by means of Intersection Types

Definition
m Aterm tisin g-head normal form iff t = Axy...x,.yt;...t,(n,m > 0).

m Aterm tis f-head normalizing iff there is some reduction t —; p, where p is a

B-head normal form.
m A head context is a context of the shape (1x;...x,.0)t,...t,, (n,m > 0)

m Aterm t is solvable iff there is a head context C s.t. C[t] -, AX.X

Example
The term I is solvable, while AA is not solvable.



Some Typical Results by means of Intersection Types

Theorem
A term t is solvabile iff it is f-head normalizing iff I' + t : o in system C for some I" and

o such that o + w.

Theorem
A term t is S-weakly normalizing iff ' - t : o in system C for some I" and ¢ such that

w ¢ pos™([T, o).

Theorem
A term t is strongly-normalizing iff ' - t : o in system ¥ for some I" and o-.



Comments

m Only qualitative information is provided in the previous theorems.

m No relation between types and (quantitative) consumption of resources.



Towards Non-ldempotent Intersection Types

m The idempotence axiom is ruled out, i.e. o Ao + o

® The non-idempotent intersection operator A can be seen as the multiplicative linear

logic connective ®.
m Quantitave models for A-calculi (De Carvalho, Ehrhard).

m Head-Normalization, Solvability, Weak-Normalization and Strong-Normalization can

be proved by combinatorial arguments (weighted subject reduction properties).
m Implicit Complexity = use of ressources (e.g. substitution) can be measured.

m Partial substitution (c.f. Proof-Nets) can be seen as a measured operation of

substitution.
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Towards non-idempotent types

m Pioneers: P. Gardner, A. Kfoury, D. de Carvalho.

Today there are several typing systems sharing the same principles.

m Intuitionistic calculi (call-by-name, call-by-value, call-by-need, mixing strategies),

classical calculi, etc.

Called also quantitative types.

m We choose here to present the main principles of non-idempotent types on a

language with partial substitution (instead of the A-calculus).



The Linear Substitution Calculus

m Inspired from Milner’s calculus with partial substitution and the structural lambda

calculus.
m Terms: A-terms with explicit substitutions.
m Contexts are terms with one whole O.
m Reduction Relation —y, is at a distance and performs partial substitution:
@AxDlyt/vil. . yn/valu as tlx/ullyi/vil... [ya/val

ClxDx/ul 15 Cllull[x/u]
tx/u] Pge t iflt, =0

Example
(xx)[x/1] =15 (xDIx/1] =15 UD[x/1] —gc 11 —ap x[x/I] =15 I[x/1] —gc [



Linear-Head Reduction

Inspired from Milner’s calculus.
m With Linear-Logic Proof-Nets flavour.
m Conexion with Krivine’s Abstract Machine.

m Linear-Head Reduction is a standard strategy.

Linear-Head Reduction (lineary) performs reduction only on head-positions.

m Linear-Head Reduction does not erase terms.



Linear-Head Reduction Formally

m Linear-Head Contexts: Ly ::= O | Ax.Ly | Lyt | Ly[x/7].

m Linear-Head Reduction (written —z): rules {dB, hls} closed by head-linear

contexts.

(/lxj)b}l/vl]-w[yn/vn]u —a t[x/u][yl/vl]-”[yn/vn]
Ly[lxTl[x/u] Pns  Lallulllx/u]

Remark: —;zC—y.

Example

(x0)[x/1] =ms U0x/T] —ap Y[/ x1[x/1] —ms x[y/x1[x/1] —ms Ily/x1[x/1]
is a linear-head reduction

(x0)[x/1] =15 (cDx/1] =15 UD[x/1] —gc 1T —ap Y[Y/1] =15 1

is not



Types for Milner’s calculus

Types:
m Strict Types
m Non-idempotent intersection

m Intersection types are represented by multisets (o A o is [0, o]).

o = alA-o (linear types)
A == []|B (multiset types)
B = [oulex (K #0) (non-empty multiset types)

Typing Rules:
m Relevance (no weakening)
m Multiplicative rules
m Syntax-directed typing rules

m Typed terms may contain untyped subterms (I = 0)



The Type System HW

'rt:o .
XI[O']FXZO'(Var) F\XI—AX.t:F(X)—HT(_) )

Frt:fohek 20 (AU ophex

— E)
F+k€KAkl—tu:0'

X:[owhe;THEt 0 (ApFu: opex

(Cut)

I +iex A F t[x/u] : o



Example

(var)
x:[[]=>0]lrx:[]>0

(— E)
x:[[]=>0]lrxv:o

(Cut)
x:[[]—= 0]+ &V)|[y/u]:0o

Typed terms may contain (pink) untyped subterms.



Measuring Typing Derivations

Definition
Given a type derivation @, we define its measure sz(®) as the number of occurrences of

typing rules var, — I, — E and Cut in ®.

Example

(var)
x:[[]=0]lrtx:[]>0

(—E)
x:[[]=>0]lrxv:o

(Cut)
x:[[]—- o]+ &V[y/u]: o

The measure of this type derivation is 3.



Lemma (Weak Relevance)

IfT Fgpy t 2 o, then dom(T') C £v(r).



Technical Tools for Characterizing Head-Linear Normalization

m Position of terms are finite words on the alphabet {0, 1}.

m A position p € pos(t) is a typed occurrence of @ if either p =€, 0rp=ip’ (i=0,1)
and p’ € pos(tl;) is a typed occurrence of some of their corresponding

subderivations.

m A redex occurrence of ¢ which is also a typed occurrence of @ is a typed redex

occurrence of ¢ in ®@.

yill=tlryll->7 yllrlorlkyilr]lor zlr]rz7

x:[n,t]—=71]F X1, 7] >T yil[l-=7lFyzT yiltl—=r7l z[7] + yziT

x([nt]l-=7Ly:[]1-=7[r]—=7lz[7] F x(v2):T

yilll-orlryllo7 yAll-o7l+y[]l-o7

x[[r,r]—=71]+ xi[r, 7] >7 yilll=7l+yzr yil[l=71l+yzr

x[[r,rl=7Ly:l1-7[1-=7] F x(v2):T



Results: towards characterization of head-linear normalization

Lemma (Weighted Subject Reduction for Typed Redex Occurrences)
WheneverIl : T oy t : 0 @nd t —y t’ reduces a typed redex occurrence, then
I : T by t' : o and sz(I1) > sz(IT').

Corollary (Weighted Subject Reduction for Linear-Head Reduction)
WheneverIl : T bopqy t: o and t - g t/, thenIl’ : T by t/ 2 o and sz(I1) > sz(IT').

Lemma (Subject Expansion for the Linear Substitution Calculus)
fIT:T ke t:ooand t’ —y t, thenIl’ : T bopqy t/ : 0.

Corollary (Subject Reduction for Linear-Head Reduction)

fIT:T ko t oo and t’ -y t, thenIl : T kgqp t/ 2 0.



Results: characterization of head-linear normalization

Theorem
The following statements are equivalent:

m t is LHR-weakly normalizing.

m t is HW-typable.

Proof. uses, between others,
m Weighted Subject Reduction (combinatorial argument for non-idempotent types).

m Subject Expansion.



Results: towards characterization of weak normalization

Positive and Negative occurrences of types are defined as follows.

m A € pos*(A).

B A € post([0kkex) if Ik A € pos™(o); A € pos™([0k kex) if Tk A € pos™ (o).

B AeposT(E—7)if A€ pos™(E)or A e pos*(r); A€ pos (E—7)if A€ pos™(E) or
A € pos™ (7).

m Aepos™(T)if Ay e dom() s.t. A € pos™(I'(y)); A€ pos (I if Iy € dom(I') s.t.
A € pos™(T'(y)).

m A e pos™([T,7])if A€ pos™(T)or A € pos*(r); A € pos ([T, 7]) if A € pos™(T) or

A € pos™ (7).
As an example, [] € pos*([]), so that[] € pos™([]—0), [] € pos*(x:[[]—0c]) and

[1€pos*([x:[[]=0o], o).



Results: characterization of weak normalization

Theorem (Weak-Normalization)
A term t is M-weakly normalizing iff[" + t : o in system HW for some T and o such
that [ ] ¢ pos™ ([T, o).

The following term is M-weakly normalizing:

z:at (1x.z2)(AA) : @

The following term is not M-weakly normalizing:

z:[[]=alrz(AN) :



The Type System S

I'rt:o
XI[O’]FXSO'(var) F\xhlx.t:l"(x)—)(r( )

I'kt:|oilex — O (A Fu: O kek K#0

(= El
Tk ArFtu: o
X:[ohex;THE 0 (ArFu: opex
(Cutl)
r +rek Ak = t[X/U] o
'rt:[]>0 Aru:r I'rt:oc Aru:t x¢domI)

(= E2)
IF'+Artu:o I'+Art[x/u]:o

(Cut2)



Lemma (Strong Relevance)

IfT +st: o, then dom(I') = £fv(r).



Results: characterization of strong normalization

Theorem (Strong-Normalization)

A term t is M-strongly normalizing iff t is S-typable.

Proof. uses
m Postponement of erasing steps (which does not hold in A-calculus).
m Weighted Subject Reduction for system S.

m Subject Expansion for system S.



Summary

m Type system HW characterizes LHR-weak normalization.
m Type system HW with positive constraints characterizes M-weak normalization.

m Type system S characterizes M-weak normalization.
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Turning the inhabitation problem into a decidable
question



Typing and Inhabitation Problems

Typing Inhabitation
THt: ? I'r?:A
Simple Types : Decidable Decidable
Idempotent Types : Undecidable Undecidable
(Urzyczyn)
Non-idempotent Types :  Undecidable Decidable

(Bucciarelli-K.-Ronchi Della Rocca)

Decidability of restricted classes of idempotent types (Kurata & Takahashi), (Urzyczyn),
(Bunder), (Kusmierek), (Dudenhefner & Rehof), ...



The Typing System for the Lambda-Calculus

I'rt:o
T — I
x:[o]lrx:0 (var) M\ xrAxt: Tx) — o eD

F'rt:fodiag—>0c (Airu: o)
(—E)

T+ Airtu: o



Approximants

How to restrict the search space of the algorithm?

We use the normalization property to restrict the search space to approximants:

a,b,c = QN N = N | L L = x|La



The Algorithm

aeTT+(x:A),7) x ¢ dom(I")
Abs)
Ax.aeT(I,A - 1)
=+ (b; € TI(I';, A))i=1..n
(Head)

xb;...b, e TT+x:[A > ... oA, > 7T]),7)

M=+l (@ € T, 0)ier Tier
\/ ai € TI(T, []ier) (Union)

i€l




Soundness and Completeness

Theorem
The algorithm terminates, is sound and complete.



Some Final Remarks

m Non-idempotent intersection types are particularly pertinent for calculi with

ressources.
m Arithmetical arguments for terminating proofs.
m New logical characterizations of different notions of normalization for higher-order
languages.
m The inhabitation problem for intersection types has been proved to be undecidable,

but breaking the idempotency of intersection types makes inhabitation decidable.
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