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This paper introduces a functional term calculus, called pn, that captures the essence of the operational
semantics of Intuitionistic Linear Logic Proof-Nets with a faithful degree of granularity, both statically and
dynamically. On the static side, we identify an equivalence relation on pn-terms which is sound and complete
with respect to the classical notion of structural equivalence for proof-nets. On the dynamic side, we show
that every single (exponential) step in the term calculus translates to a different single (exponential) step in the
graphical formalism, thus capturing the original Girard’s granularity of proof-nets but on the level of terms. We
also show some fundamental properties of the calculus such as confluence, strong normalization, preservation
of f-strong normalization and the existence of a strong bisimulation that captures pairs of pn-terms having
the same graph reduction.
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1 INTRODUCTION

Pure functional programming can be mathematically understood by means of a universal model
of computation, known as the A-calculus [Church 1932] and presenting a clear analogy with
intuitionistic logic in natural deduction style. This analogy, called the Curry-Howard isomorphism, or
the proofs-as-programs correspondence, emphasizes the fact that proof systems and programming
languages are different facets of the same object. It has been extended to many other logical systems
like classical logic [Griffin 1990] or type theory [Martin-Lof 1972], and becomes particularly prolific
in the case of linear logic, which is at the center of this paper.

Linear logic (LL), introduced by Jean-Yves Girard [Girard 1987], can be seen as a refinement of
classical and intuitionistic logics emphasizing both the role of formulae as resources and the linear
treatment of information. This is concretely achieved by restricting the use of the structural logical
rules of weakening and contraction, which essentially amounts to controlling the crucial operations
of erasure and duplication during proof normalization. Given its emphasis on resources, linear logic
has provided a remarkable toolbox for enlightening different disciplines of theoretical computer
science, such as for example automata theory, complexity, game semantics and quantum theory, as
well as a fruitful range of applications in computational linguistics and programming languages.

The goal of this paper is to reformulate intuitionistic LL proof-nets from a programming per-
spective. Proofs-Nets (PN) are a graph formalism proposed by Girard to represent proofs free of
bureaucracy, i.e. the order in which the logical rules are applied in a (sequent) proof derivation
is abstracted away. Despite the obvious gain of the graphical interpretation, the essence of its
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dynamic semantics is not immediately clear from a programming point of view. More generally,
the operational semantics of programming languages can be conceptually conceived using graph
technology [Asperti et al. 1996; Henderson and Morris 1976; Lamping 1990; Mackie 1998; Muroya
and Ghica 2017; Wadsworth 1971], but they are usually specified by a term syntax, which provides
a complementary understanding of (bureaucratic-free) graphical frameworks.

Our aim is to define a novel term language establishing a fine-grained and faithful Curry-Howard
correspondence with Girard’s graphical intuitionistic PN, both from a static (objects) and a dynamic
(reductions) point of view. Providing such a language is not easy, since the degree of granularity on
the graphical side cannot be straightforwardly captured by the same degree of granularity on the
algebraic side. Let us first discuss some preliminary attempts.

Related Work. Danos and Regnier [Danos 1990; Danos and Regnier 1999; Regnier 1992] were
the pioneers in this topic, they showed how cut-elimination in multiplicative exponential linear logic
(MELL) proof-nets provides a micro-step refinement of f-reduction, the operational semantics of
the A-calculus. Some refinements and extensions were later proposed [Di Cosmo and Kesner 1994;
Di Cosmo et al. 2003; Ehrhard and Regnier 2006; Laurent 2003]. The correspondence between the
graphical formalism and the algebraic term calculus found in these works can be analyzed under at
least two different aspects: a static and a dynamic one.

On the static side, A-terms can be encoded by MELL PN, but the encoding is not injective: two
different terms may share the same graph representation. This is not surprising since it is a typical
situation arising when translating a (sequential) term syntax into a graphical notation [Muroya and
Ghica 2017]. Despite this mismatch, it was shown by [Regnier 1994] that different terms translated
to the same MELL PN behave in essentially the same way. More precisely, he introduced a structural
equivalence for A-terms, known as o-equivalence, and he proved that o-equivalent terms have
reductions of the same length. The static correspondence between A-terms and intuitionistic MELL
PN becomes then possible by using a quotient on A-terms, known as Regnier’s o-equivalence.

On the dynamic side, one f-reduction step from a given A-term can be encoded by several cut
elimination steps from its proof-net translation. This encoding puts in evidence the existing gap
between the evaluation mechanism in A-calculus, which is performed by a unique single rule §, and
the different kinds of cut-elimination rules in proof-nets: the multiplicative ones are operationally
simple as they strictly decrease the size of proof-nets by just (linearly) reconfiguring some wires:
they can be understood as innocuous. In contrast, the exponential ones are non-trivial as they
implement erasure and duplication by concatenating several atomic steps: they capture the essential
meaning of cut elimination in proof-nets. The granularity of both evaluation procedures, on terms
and proof-nets, is clearly not the same, so the challenge is to faithfully capture by a term language
what is really happening on the graphical formalism side, and the challenge of a fine-grained
simulation clearly lies on the exponential side.

It is at this point that the theory of explicit substitutions (ES) [Abadi et al. 1991; de Bruijn 1978;
Hardin and Lévy 1989; Kamareddine and Rios 1995; Nederpelt 1992; Rose 1992] come into the light
(a survey can be found in [Kesner 2007]). Some of them are designed by using intuitions coming
from category theory [Abadi et al. 1991; Curien 1991; Ghani et al. 1999; Lafont 2019; Ritter 1999].
From a logical point of view, calculi with ES can alternatively be seen as a term notation for cut
elimination transformations [Abramsky 1993; Benton et al. 1993; Fernandez and Siafakas 2014;
Herbelin 1994; Kesner and Lengrand 2005]. They can also bridge the gap between programming
languages and graphical formalisms, some examples are [Accattoli 2018; Di Cosmo and Kesner 1997;
Milner 2006]. Indeed, ES provide an intermediate formalism that —by decomposing the f-rule into
more atomic steps— allows a better understanding of the execution model of functional programs.
That is why ES calculi are the basic brick of environment-based abstract machines [Accattoli et al.
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2014a; Danos et al. 1996; Danvy and Zerny 2013; Krivine 2007; Landin 1964; Leroy 1990; Sestoft
1997]. In spite of all recent developments in the theory of ES [Accattoli 2018; Accattoli et al. 2014b;
Barenbaum and Bonelli 2017], their dynamics is still not fully clear from the perspective of the
resource theory provided by Girard’s PN.

The State of the Art. Adopting a refined implementation of A-calculus in view of a perfect
correspondence with intuitionistic proof-nets suggests to decompose f-reduction into multiplicative
and exponential steps on the level of terms. A first attempt gives only two rewriting rules:

(Ax.t)u g t[x\u]
tlx\u]  sws  H{x\u}

where [x\u] is an ES operator, and {x\u} is the standard (meta-level) substitution operator. Firing
the B-rule creates an ES operator so that B essentially reconfigures symbols, and indeed reads as
a series of multiplicative cuts on the level of proof-nets. The subs-rule executes the substitution
by performing a replacement of all free occurrences of x in ¢ by u, so that it is able to perform
erasure/duplication, and reads as a series of exponential cuts on the level of proof-nets. However, a
single subs-step on the term level potentially translates to a sequence of exponential cut-elimination
steps on the proof-nets level: we still have a major gap between the term and the graphical side.

Many different term calculi inspired from intuitionistic LL have been defined to investigate and
close this gap [Abramsky 1993; Accattoli 2018; Di Cosmo et al. 2003; Ghani et al. 2000; Kesner
and Lengrand 2005]. Some of them specify substitution by a big-step operation, while others do
implement a more refined small-step semantics. In all cases, none of them achieve a faithful dynamic
correspondence with Girard’s intuitionistic MELL PN.

One simple way to understand this mismatch is by observing that there are at least two alternative
definitions of the meta-level substitution t{x\u}. The first one, is the usual implementation of
substitution by induction on the structure of the term ¢. The second one is given by induction on
the number of free occurrences of the variable x in the term ¢: in the base case (0 occurrences of
x in t) the ES can be simply erased, in the inductive case (n > 0 occurrences of x in t), a linear
substitution/replacement can be performed, by delaying the n — 1 remaining cases. This is exactly
the principle used e.g. in [de Bruijn 1987; Milner 2006; Severi and Poll 1994], as well as in the
linear substitution calculus (LSC) by Accattoli and Kesner, a term calculus generalizing Milner’s
calculus [Milner 2006] with the notion of reduction at a distance [Accattoli and Kesner 2010].
However, as we will see, Girard’s exponential cut elimination rules do not implement any of these
two models of substitution, but a subtle combination of them.

It is also worth mentioning the existence of other static and dynamic correspondences between
term algebraic calculi and intuitionistic proof-nets. Some examples:

e Thanks to the use of explicit operators for substitutions, contractions and weakenings, the
operational semantics of the A1xr-calculus [Kesner and Lengrand 2005] is very close to that
of MELL proof-nets. However, the resulting reduction system (19 reduction rules) becomes
cumbersome, and the dynamic simulation of the calculus into proof-nets is not injective.

e The LSC is isomorphic to Accattoli’s intuitionistic proof-nets [Accattoli 2011, 2018; Accattoli
and Guerrini 2009], where exponential rules for boxes are implemented by box-crossing,
used to avoid the burden of commutative rules. More precisely, rewriting rules in Accattoli’s
graphical formalism are based on an implicit quantification over boxes used to specify the
behavior of cut constructors when crossing a finite number of boxes. The simple and neat
local definition of reduction in Girard’s PN is then converted into a global implementation of
cut elimination in Accattoli’s formalism, which is much heavier to handle.
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Thus, the non-trivial question of the definition of a functional programming language faithfully
implementing Girard’s intuitionistic MELL PN remains still open.

Contributions. We introduce a functional calculus, called pn, which corresponds to Girard’s
intuitionistic MELL PN on a static (objects) as well as on a dynamic (reduction steps) side. On the
static side, we identify an equivalence relation on pn-terms which is sound and complete with
respect to the classical notion of structural equivalence on proof-nets (Thm. 6.2 and Thm. 6.5). On
the dynamic side, we define an injective translation such that every single step in the term calculus
translates to a different single step in the graphical formalism (Thm. 6.6). This result indicates that
pn-reduction has exactly the Girard (exponential) granularity on the dynamic level of terms, a
property which does not hold in the framework of all other functional calculi with ES built in the
spirit of linear logic.

We also show some healthy untyped and typed properties of the pn-calculus such as full compo-
sition (Lem. 3.1), confluence (Thm. 3.4), and strong normalization (Cor. 7.2). A subtle simulation
result between the pn-calculus and the structural lambda-calculus modulo permutations [Accattoli
and Kesner 2012] provides a non-trivial result of preservation of f-strong normalization (Thm. 8.3).
This is a property to be highlighted, since calculi with ES can very easily lose strong normaliza-
tion [Mellies 1995]. It is also possible to define a strong bisimulation (Thm. 3.5) on the pn-calculus
which captures pairs of terms having the same reduction semantics.

Our development is based on non-trivial technical points that must be subtly combined. One key
technical ingredient to set the definitions of our formalism is the notion of reduction at a distance
(details in Sec. 2), materialized by the use of two different kinds of contexts. Indeed, head contexts
on the term side represent linear contexts in proof-nets —where cut elimination can neither erase
nor duplicate—, while argument contexts on the term side represent boxes in proof-nets, the only
kind of structure that can be erased and duplicated during cut elimination. Secondly, the salient
nature of our implementation of substitution is given by an operational semantics combining both
induction on the structure of terms and induction on the number of free occurrences of variables,
in contrast to all other existing implementations of substitution based entirely on one or the other.
Another important technical observation allowing reduction on terms to be fine-grained translated
to reduction on proof-nets is the use of quotients, both on terms and proof-nets. And the translation
used to achieve this result makes abstraction of the multiplicative nature of proof-nets, so that the
development is guided by their exponential structure.

Road Map. Sec. 2 introduces the untyped pn-calculus and Sec. 3 shows full composition, con-
fluence and strong bisimulation. A type system for the pn-calculus is presented in Sec. 4. Sec. 5
introduces Linear Logic and MELL proof-nets. In Sec. 6 we present the static and the dynamic
translation from pn-terms to MELL PN, together with their corresponding properties. Strong nor-
malization is proved in Sec. 7, and preservation of -strong normalization is proved in Sec. 8. We
conclude in Sec. 9.

2 THE UNTYPED pn-CALCULUS

In this section we introduce the syntax of the pn-calculus. We assume a countable infinite set of

symbols x, 1, z, . . .. The set of pn-terms of the pn-calculus is given by the following grammar:
Lu,oo=x | Ax.t | tu | t[x\u]

The term x is called a variable, tu an application, Ax.t an abstraction and t[x\u] a closure.
The syntactical object [x\u], which is not a term itself, is called an explicit substitution (ES).
Terms without closures are A-terms (also called pure terms). Application is left-associative so that
tujuy . .. u, (n > 1) is an abbreviation of ((tuy)us, .. .)up,.
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The sets of free and bound variables of pn-terms are defined as usual, they are denoted
respectively by fv(t) and bv(z). In particular fv(t[x\u]) := (fv(¢) \ x) U fv(u) and bv(t[x\u]) :=
bv(t) U {x} Ubv(u). We write |¢| for the size of the term ¢, defined by |x| := 1, |Ax.t| := 1 + |¢],
|tu| := |t[x\u]| := |t| + |u| + 1. The number of free occurrences of the variable x in the term t is
written |t|y, thus e.g. [x[w\x](Ay.yx)|, = 3.

We work modulo the standard notion of renaming of bound variables given by a-equivalence
on higher-order terms, thus e.g. Ax.x =, Ay.y and x[x\z] =, y[y\z]. Substitution on pn-terms is
defined modulo a-conversion as expected, and written _{_\_}, thus in particular ¢[x\ov]{y\u} :=
tH{y\u}[x\v{y\u}] is well-defined since we can always assume by a-conversion that the bound
variable x is not free in u.

The definition of the operational semantics of the pn-calculus makes use of different notions of
(term) contexts given by the following grammars:

(Contexts) Ca=A|H|L
(Argument Contexts) A :=t0O| t[y\O]

(Head Contexts) Ho=0| Ax.H | Ht | H[x\¢t]
(List Contexts) Lz=0O]|L[x\u]

Even if proof-nets are going to be formally introduced later, we can already give some intuitions
about our context definitions. The O symbol of an argument context is to be understood as a box in
the PN formalism, but O in a list context is intended to represent a proof-net linked to a list of cuts,
while O in a head (term) context is associated to a proof-net which does not lie in any other box of
the proof-net (i.e. a linear proof-net). Since erasure/duplication in proof-nets does only happen for
boxes, then only terms appearing inside (the 0O of) argument contexts can be erased/duplicated in
the term formalism, while those appearing inside head contexts are persistent (i.e. they contribute to
the normal form). This is why head contexts are also called linear contexts. Notice that list contexts
are in particular head contexts.

Free/bound variables are extended to contexts as expected. We write C(t) when the symbol
O in C is replaced by the term ¢, and C{(t)) when this is done without capturing any free variable of
t, i.e. there are no abstractions and substitutions in the context C that bind the free variables in t.
For instance, if H = Ay.O, then H(y) denotes the term Ay.y, but this last term cannot be written as
H{y)) since H captures the free variable y. We can however write Ay.z as H{(z)) for y # z. A term ¢
is said to be free for a context C, written fc(t,C) if bv(C) N fv(t) = 0. Thus e.g. x is free for Ay.0
but y is not free for Ay.0. Given an argument context A, we write A\, to denote a substituted
argument context defined as follows: ¢[x\u]O if A = t0, and t[x\u][y\O] if A = t[y\DO].

Operational Semantics. We now define the operational semantics of the pn-calculus, which
can be seen as an implementation of f-reduction, given by the rewriting rule (Ax.t)u — t{x\u}.
In order to incrementally introduce the rewriting rules of our framework, let us analyze different
situations.

Firing B. The rule that fires f-reduction takes in principle the natural form (Ax.t)u — t[x\u].
However, when working in a syntax equipped with closures, this rule could be blocked by an
explicit substitution lying between a function Ax.t and its argument u, e.g. in (Ax.t)[y\v]u. This
kind of stuck redex does not happen in graphical representations such as proof-nets (e.g. [Girard
1996a]), but it is typical in the sequential structure of term syntaxes. There are at least two ways
to handle this issue. The first one is based on structural/permutation rules, as in [Gundersen et al.
2013]. Indeed, in the previous example, the substitution is first pushed outside the application node
by means of a permutation rule, as (Ax.t) [y\v]u — ((Ax.t)u)[y\v], so that firing S-reduction is
finally possible. The second, less elementary, possibility is given by an operational semantics at
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a distance, inherited from the structural lambda-calculus [Accattoli and Kesner 2010], where the
P-rule can be fired by a rule like L{Ax.t)u — L{t[x\u]), where L is an arbitrary (capture-free) list
context. The distant paradigm is therefore used to gather meaningful and permutation rules in only
one reduction step called distant Beta, and written dB.

Erasing. Another rule is necessary to deal with useless substitutions, i.e. when x ¢ fv(t) in a term
of the form t[x\u]. The erasure step is then performed by the rule t[x\u] > ¢, called garbage
collector and written gc. This is the only rule of the calculus having erasure power.

Substituting the Head. The rewriting rule that fires a substitution on a single variable takes in
principle the form x[x\u] + u. However, this operation could be blocked by another ES, or more
generally by a head context, as e.g. in (Az.x)[y\v] [x\u]. Again, permutation like rules could be
used to push the head context (Az.0) [y\v] outside, as in (Az.x)[y\o][x\u] — (Az.x[x\u])[y\o]
so that the elementary reduction that substitutes x becomes now possible. Our calculus implements
these two operations by using again the distant paradigm, this is done in one single step of the
form H(x)[x\u] — H(u), where H is an arbitrary (capture-free) head context. We call this rule hs
because it is implementing head (linear) substitution.

Jumping into arguments. As explained before, the O symbol of an argument context will be associated
to a box in MELL proof-nets. Since boxes explicitly handle erasure and duplication in linear logic,
they play a key role in our reduction rules. Thus, if the variable x to be substituted is essentially
inside an argument context, i.e. the term to be substituted is of the form A(t), where x € fv(t) and
x ¢ fv(A), then the explicit substitution can in principle be pushed inside the argument by a rule
like A(t) [x\u] — A(t[x\u]). However, as in the case of the hs rule, some other explicit substitutions
—or more generally a head context— could lie between the term to be substituted A(t) and the ES
[x\u], as e.g. in (yx)[z\v] [x\u]. Instead of using permutation like rules to push the substitution
[z\v] outside the whole term, we use again the paradigm at a distance by introducing a rule to
jump inside the argument t of A. The rule, called arg, is of the form H(A(t)) [x\u] — H(A(t[x\u])).

Duplicating. Another situation arises when an explicit substitution affects different subterms of a
term, typically one inside an argument context and another one outside this context. This duplicating
situation is captured by means of contraction nodes in proof-nets, but it appears to be only implicit
in the term syntax of our calculus. Since we have already defined a rule to jump inside an argument,
we would now need a rule to jump inside the complementary (non-argument) part of an argument
context, something like A(t) [x\u] = Apn,)(t) [x\u]. Notice that the explicit substitution [x\u]
needs to be duplicated in this case, in contrast to all the other rules presented above. Following the
same idea developed before for the other rules of the calculus, we also consider this rule modulo
distance, by allowing a head context to lie between the argument and the explicit substitution. The
rule, called dup is written H(A(t)) [x\u] F>qup H(A[\w) () [x\u]).

In summary, the operational semantics of the pn-calculus is based on a reduction relation
generated by the following set of pn-rewriting rules:

L{Ax.t)u —ag L(t[x\u])

t[x\u] e x ¢ fv(t)

HEep [x\ul  —ns Hu) x & fv(H)

HAGE Y [x\u]l  arg  H(A(E[x\u])) x ¢ fv(H),x € fv(t),x ¢ fv(A)

HA) [x\u]  —awp HARa (0 [x\u])  x ¢ fv(H),x € fv(t),x € fv(A)

By analogy with linear logic proof-nets, we call the rule dB multiplicative, while all the remaining
rules {gc, hs, arg, dup} are called exponential. This nomenclature will become clear in Sec. 6.2.
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The reader will notice that given t, = (xt)[x\u], then x ¢ fv(t) implies ¢, can be written as
H(x)[x\u] where H = Ot and x ¢ fv(H) (so that rule hs applies); while x € fv(t) implies , can be
written as A(t) [x\u], where A = xO (so that rule dup applies). More generally, it can be shown that
any term ¢[x\u] corresponds to exactly one of the left-hand sides among the rules {gc, hs, arg, dup}.

Our implementation of substitution is given by an operational semantics of substitution combin-
ing both induction on the structure of terms, and induction on the number of free occurrences of
variables, in contrast to all other existing implementations of substitution based entirely on one or
the other. Indeed, take a term of the form #[x\u]. If there is no free occurrence of x in ¢, then rule
gc applies, while one free head (linear) occurrence of x in t makes use of rule hs, and non-head
free occurrence(s) of x in t are treated by structurally propagating the substitution [x\u] along the
term ¢ according to the rules arg and dup.

Given r € {dB, hs, gc, arg, dup}, we write — for the reduction relation generated by the rewrit-
ing rule —, and closed under all contexts. The pn-reduction relation, written —p, or simply —,
is the union of all such relations. The generic notation —,,_,, means —, U...U —, .

Here is an example of —p,-reduction sequence, where we highlight in blue the contexts used
to close the rewriting rules, and in 'green (resp. orange ) the list/head (resp. argument) contexts
used in the rewriting rules.

( (AzAyAx.yxx)w u)v  —gs ( Ay Ax.yxx)[z\w] u)v  —4g

( (AyAx.yxx)u o —a  (Ax.yxx) [y\u] v — 4B
(Cy0)x)[x\o] [y\u]  —ns  ((ux) x) [x\o] —dup
((ux)[x\o] x) [x\o]  —arg  ((ux)[x\o] x[x\0] ) —hs

( (ux) [x\o] v) —arg  ((ux[x\v] )o) —hs  ((u)o)

As expected, free variables are preserved by reduction.

LEMMA 2.1. Lett be a term.

o Ift >dghsargdup U then fv(t) = fv(u).
o Ift —gc u, then fv(t) 2 fv(u).

3 PROPERTIES

We now discuss and show some of the main untyped properties of the pn-calculus: full-composition,
confluence and strong bisimulation.

3.1 Full Composition

Full composition (FC) is a very natural property which guarantees that any term can be substituted as
such, without any need to compute its value beforehand. ES calculi without any sort of composition
operation for substitutions (e.g. the Ax-calculus [Bloo and Rose 1995]) do not verify the FC property,
but the pn-calculus, as well as other ES calculi using reduction at a distance, do verify it. In what
follows, we present the full proof of FC which gives a good understanding of the precise role played
by each rewrite rule of the pn-calculus in view of the implementation of substitution.

Lemma 3.1 (Furr ComPosITION). For all pn-terms t,u, we have t[x\u] —, t{x\u}.

Proor. We prove a more general property, namely, for all pn-terms ¢, u and all head context H

such that fc(u, H) and x ¢ fv(H) we have H(t) [x\u] — 7, H(t){x\u}. We proceed by induction on ¢.

o t =y. If y # x, then H(y) [x\u] —4c H(y) = H(y){x\u}. If y = x, then H(x) [x\u] —ns H(u) =
H(x){x\u}.
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e t = Ay.v. Then let H" = H(Ay.0). The i.h. gives H(Ay.v) [x\u] = H'(v)[x\u] —;, H'(v){x\u} =
H(Ay.v){x\u}.
e t = v;0y. There are four cases:
- x ¢ fv(vy) and x ¢ fv(vz). Then H(v10;) [x\u] —4c H(v102) = H(vjva) {x\u}.
- x € fv(v;) and x ¢ fv(vz). Let H" = H(Ouy). The i.h. gives H(v102) [x\u] = H'(v1) [x\u] —p,
H' (o) {x\u} = H{o1o2){x\u}.
- x ¢ fv(v;) and x € fv(v2). Using the i.h. with an empty head context we obtain vz [x\u] —,
v2{x\u}. Thus H(v1v2) [x\u] —arg H{v102 [x\u]) —5, (i.h.) H{vio2{x\u}) = H{vio2)}{x\u}.
- x € fv(v;) and x € fv(v;). Using the i.h. with empty head contexts we obtain v; [x\u] —,
o{x\u} and v [x\u] —p5, va{x\u}. Then H(v102) [x\u] —aup H{(v1[x\u]oz)[x\u]) —p,
(i.h.) H{(o1{x\u}oz) [x\u]) =5 H((or{x\u}oz[x\ul)) —5, (i.h) H{(or{x\u}oo{x\u})) =
H(v1o2){x\u}.

o t = v1[y\vz]. There are also four cases, and the proof is similar to the previous case.

Here is an example illustrating the previous lemma. Let t; := (xwx) [x\y[y\z]]. Then,

to —dwp (W) [x\y[y\z]]x) [x\y[y\z]] —arg  (ew)[x\y[y\z]]x[x\y[y\z]]
—hs  (ew) [x\y[y\z]ly[y\z] —hs  (yly\zlw)yly\zle = (xwx){x/y[y\z]}

3.2 Confluence

Confluence is a property stating that although terms can, in principle, be rewritten in more than one
way, they ultimately give the same result. It is a fundamental property guaranteeing determinism,
in the sense that every terminating program has one and only one result.

In order to show confluence of the pn-calculus we use the interpretation method [Hardin and
Lévy 1989], a technique which allows highlighting the relation between the pn-calculus and the
A-calculus!. The first part of the proof is based on the fact that f-reduction can be implemented by
pn-reduction.

LEMMA 3.2 (SIMULATION). Let t be a A-term. Ift —p t', thent —[ t'.

Proor. By induction on S-reduction on A-terms using the Full Composition Lemma 3.1. O

The second part of the confluence proof is devoted to show that pn-reduction can be projected
into f-reduction, a property which is achieved by the following transformation of pn-terms:

proj(x) = X

proj(Ay.t) = Ay.proj(t)
proj(tu) = proj(t)proj(u)
proj(t[x\u]) := proj(t){x\proj(u)}

Thus for example, proj((xy) [x"\z’] [x\z] [z\w[w\w']]) = w'y.

LEMMA 3.3 (PROJECTION). Let t,u be pn-terms.
(1) proj(t){x\proj(u)} = proj(t{x\u}).

(2) t =5, proj(z).

(3) Ift —hs,gc,arg,dup U, then proj(t) = proj(u).
(4) If t >4 u, then proj(t) —>; proj(u).

(5) Ift —pn u, then proj(t) —>;} proj(u).

INevertheless, other proof techniques seem to be possible, notably strong commutation [Terese 2003].
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Proor. Point (1) is shown by induction on t. Point (2) is by induction on ¢ using the Full
Composition Lemma 3.1. Points (3) and (4) are shown by induction on the relations —gs and —p,
respectively, and use the first point. The last point is a consequence of the two previous points. O

THEOREM 3.4. The pn-calculus is confluent.

Proor. Let t =%, u; and t —

pn pn
proj(u;) (i = 1,2). Since f-reduction is confluent then there exists v such that proj(u;) —>2 v. Then

uy. By the Projection Lemma 3.3(5) we have proj(t) —>;}

proj(u;) —>;n t” holds by the Simulation Lemma 3.2. We conclude since u; —,, proj(u;) (i =1,2)
holds by the Projection Lemma 3.3(2). Graphically,

t

us proj(t) Uz
pnl % \ﬂ5 lpn

proj(ui) proj(uz)

x /
pn pn
t/

3.3 Strong Bisimulation

This section is about terms having the same reduction semantics. This notion can be captured by
the mathematical notion of strong bisimulation: it is a symmetric relation ~ such that t ~ u and
t — t’ imply the existence of u” such that u — u’ and ¢’ ~ u’. Graphically,

L]

o=

~

The formulation of strong bisimulations for term calculi is inevitably related to their sequential
aspect. Consider for example the terms (Ax.(Ay.t)u)v and (Ax.Ay.t)ou. They seem to have the same
redexes, only permuted, however, this is not entirely correct. The former has two redexes (one
indicated by underlining and another by overlining) (Ax.(Ay.t)u)v, and the latter has only one
(underlined) (Ax.(Ay.t))ou. The overlined redex in the first term is not visible in the second one; it
will only reappear, as a newly created redex, once the underlined redex is computed.

Despite the sequential nature of A-calculus, these terms behave in essentially the same way [Reg-
nier 1994]. More precisely, Regnier introduced a structural equivalence for A-terms, known as
o-equivalence, and he proved that o-equivalent terms have head, leftmost, perpetual and, more
generally, maximal reductions of the same length. However, the mismatch between the o-equivalent
terms (Ax.(Ay.t)u)v and (Ax.(Ay.t))vu is still unsatisfying since there clearly seems to be an un-
derlying strong bisimulation, which is not showing itself due to the sequential notation of the
formalism itself. Thanks to the graphical intuition provided by LL PN, the term syntax of the
A-calculus enriched with explicit substitutions unveils a strong bisimulation in the LSC for the
intuitionistic case [Accattoli et al. 2014b]. In this paper, we resort to this same intuition to uncover
a strong bisimulation for the pn-calculus.
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8:10 Delia Kesner

We adopt an equivalence relation used in a classical setting [Kesner et al. 2020] , which simplifies
here to the following scheme of equations specifying the permeability of head contexts w.r.t. ES:

H(t) [x\u] = H{t[x\u]) if x ¢ fv(H) and fc(u,H)

where H is a head context, t and u are pn-terms and x is variable. Notice that the conditions of
the equational scheme avoids capture of free variables of the term u by the context H. We write
~, for the congruence (reflexive, symmetric, transitive, closed by contexts) relation generated
by a-conversion and the equations =. Thus in particular, the following equalities —known as
call-by-name o-equivalence for ES [Accattoli and Kesner 2012]— are valid in our framework:

y\ol[¥\ul =, tlx\ully\o] ifx ¢ Fv(o) andy ¢ Fv(u)
Ay.t)[x\u] = Ay.t[x\u] ify ¢ fv(u)
(to)[x\u] ~s  t[x\u]o if x ¢ fv(v)

The congruence =, relates terms that translate to (structural) equivalent proof-nets (c.f- Thm. 6.2).
It seems then unavoidable the use of quotients on terms in order to match the same graphical
object: terms are sequential while proof-nets were precisely defined to remove the bureaucracy of
sequential notations. See also the full discussion before Thm. 6.2.

THEOREM 3.5 (STRONG BISIMULATION). The relation =~ is a strong bisimulation w.r.t. —pn: if

t 25 uandt — t’, then there isu’ such thatu — u’ andt’ ~, u’.

It is worth noticing that this key result could not be achieved by a weaker reduction system
lacking the notion of distance for head contexts. Indeed, suppose we replace the pn-calculus with
the following system without distance:

(Ax.t)u gy t[x\u]

tx\u] gt x ¢ fv(t)
x[x\u] Phe U
Aty [x\u]  arg  A(t[x\ul) x € fv(t),x ¢ fv(A)

Ay [x\u]l  —au Axw () [x\u]l  x € fv(t),x € fv(A)
Here are some examples of diagrams that cannot be closed:

o uy g x[x\uly =5 (xy)[x\u].
o (yx[x\ul)z arg < (yx) [x\u]z =5 ((yx)2) [x\u].
o (x[x\ulx)[x\u]z qup = (xx) [x\u]z =5 ((xx)2) [x\u].

This is one of the key points where head contexts and reduction at a distance come into play.

4 THE TYPED pn-CALCULUS

This section presents a typed version of the pn-calculus, which will be related in Sec. 6 to proof-nets.
Types are given by the grammar A, B ::= 1 | A = B, where 1 belongs to a set of atomic types. An
environment is a finite function from variables to types. The support of an environment I is
given by supp(T’) := {x | I'(x) is defined}. We write I' C A if supp(T’) C supp(A) andx : A €T
implies x : A € A. Two environments I' and A are said to be compatible iff x = y implies A = B
forallx : Ae T andall y : B € A. The union of compatible contexts is written I' U A. Thus
for example (x : A,y : B)U (x : A,z : C) = (x : Ay : B,z : C). The predicate T'#A means
supp(T) N supp(A) = 0. When I'#A we write T, A instead of T’ U A. Typing judgments have the
form T + t : A where ¢ is a term, A is a type and I is an environment. The typing system for
the pn-calculus is presented in Fig. 1, where the typing rules read naturally from top to bottom.
Notice: (1) the absence of weakening, which implies the use of two disjoint rules for the cases
of abstraction and closure, and (2) the use of multiplicative rules for the cases of closure and
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I'+rt:B=>A At+u:B
(var)

. . app)

x:iAkx:A T
I''x:A+t:B T'ru:B Ax:Brt:A
———————— (abs¢) (ese)
F'rAx.t: A= B TUAFt[x/u]: A

F'+t:B  x¢supp(T) FT+tu:B Art:A x¢&supp(A)

absg) (cutg)

'rAxt: A= B TUAFt[x/u]: A

Fig. 1. Typing Rules for the pn-Calculus

ILdrt:B=A AIlru:B T#A

(var) (app)
x:Akx:4 LATFtu:A
I''x:A+t:B I'IIru:B AILx:Brt:A T#A
——— (abse¢) (ese)
F'+Ax.t: A= B LLATLFt[x/u] - A
Trt:B  x¢supp(T) ILOru:B AIrt:A x¢supp(AT) T#A
(absg) (cuty)
'rAxt:A=B AT t[x/u] : A

Fig. 2. Equivalent Formulation of the Typing Rules for the pn-Calculus

application. As a consequence, the system turns out to be relevant (c.f. Lem. 4.1). An alternative
but equivalent formulation of the typing system is presented in Fig. 2, where in each binary rule,
the overlap between the left and right environments (denoted by IT) is made explicit, so that the
additive (resp. multiplicative) treatment of common (resp. non-common) variables is highlighted.
This presentation is more appropriate for the inductive proofs, which are carried out from bottom
to top. (Type) derivations, written I -, t : A, can be obtained by application of a finite number

of typing rules. A term is said to be typable iff there is a type derivation such that T +p, t : A.
Here is an example of typing derivation, where A=B = ((D = B) = () :

(var) — (var) — (var)
y:Ary:A x:Brx:B x:Brx:B
(app) ~ ———— (absy)
y:Ax:Bryx:(D=B)=C x:BrAzx:D=B
—— (van) (app)
y:Ary A y:Ax:Bryx(Az.x): C
(ese)
y 1A x:Br (yx(Az.x)) [y\y'] : C
LEMMA 4.1 (RELEVANCE). IfT kpn t 2 A, then supp(T) = fv(t).
Proor. By induction on T tp, ¢ : A. o

THEOREM 4.2 (SUBJECT REDUCTION). IfT tpy t : A andt —pn t/, then I’ vpn t' © A for some
I'cr.

Proor. We prove the property by induction on ¢t —,, ¢’ by showing in particular the following:
o t ~; t" impliesT + ¢ : A.
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8:12 Delia Kesner

® t —dBhsargdup I implies T + ¢ : A.

o t >, t'implies I + ¢’ : Afor someI” CT.
The proof is routine and needs also induction on head contexts, but to illustrate the idea, we
detail here a simple case for —,p, where reduction takes place inside the context O, and the
head context is also 0. We consider the argument context to be an application, so that we have
t = (v102) [x\u] —=qup (v1[x\u]oz)[x\u] = ¢’ with x € fv(v;) (i = 1, 2). We start by considering a
type derivation for (v;0;) [x\u]:

I,x:Bro:C>A Ty,x:Broy:C

(app)
I, UL, x :BFojup : A I“ul—u:B( )
esc
(Ty, ULL,) UL, + (0109) [x\u] : A
where I' =T, UT,, UT},. Then we construct the following derivation for t’:
I,x:Brtv:C=A TI,+ru:B
(ese)
UL Fo[x\u] :C=> A Tvz,x:BI—UZ:C( )
es
(T, UT,) UL, x : Brog[x\ulog : A © I‘uku:B( )
esc
((rzn U ru) U rvz) UL+ (01 [x\u]UZ)[x\u] tA
We can conclude since (I, UT,,) UT, = ((T,, UL,) UT,,) UT,. ]

5 MULTIPLICATIVE EXPONENTIAL LINEAR LOGIC AND PROOF-NETS

The core connectives of linear logic are divided into two groups: additives and multiplicatives, each
of them introduced by the conclusion of a logical rule having a finite number of premises. For the
multiplicative connectives, the context/hypothesis of the conclusion is split up between the premises,
whereas for the additive cases the context of the conclusion is entirely transported into both
premises. The conjunction of classical logic splits into the additive & (with) and the multiplicative
® (tensor) connectives. Similarly, the classical disjunction is divided into an additive @ (plus) and
a multiplicative ’® (par) connectives. To recover the full expressive power of intuitionistic and
classical logics, it is also necessary to allow weakening and contraction structural rules. Introducing
them implicitly would collapse the system into classical logic itself, so they are introduced in a
controlled way, by means of two dual modalities, which are called resp. the of-course ! and the
why-not ? exponentials. Erasure (resp. duplication) of formulae can then only be materialized by
cut-elimination rules acting on exponential formulae introduced by weakening (resp. contraction).
All these ingredients lead to the formulation of full propositional linear logic.

Multiplicative exponential linear logic (MELL) is the fragment of full linear logic obtained by
omitting the additive connectives. In this paper we use MELL as a synonymous of MELL without
units, which is sufficient in particular to encode pure functional programming, corresponding to
minimal intuitionistic logic by means of the Curry-Howard isomorphism. We recall here some of
its basic notions, and we refer the interested reader to [Girard 1987] for a general and more detailed
introduction to full linear logic.

Let us consider a set of atomic symbols of the form 1 and 1. The set of formulae of MELL is defined
by the following grammar:

Auz=1]|1| A9B | A®B |?A |!A

The linear negation of a MELL formula A, denoted A* is defined by the following De Morgan
equations:

o= (A®B)* At®B* (?A)* 1AL
= (A®B)t = AbtwB*t (1At = AL
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Notice that the linear negation is involutive: At* = A,

We write + I for a (unilateral) sequent, where T is a list of formulae. If T is the list Ay, ... Ap,
we denote by T the list ?Ay, ..., ?A,, and by I'* the list A%, ..., A,,*. The logical system MELL is
given by the rules in Fig. 3:

(1d) FAT FAL A FF,A,B,A() +ABT 09) FAT I—B,A( |
—— (Cut X S ®
FATA FT,A (Cut) FT,B, A, A + ASB,T + A®B,T, A
+T F?A,?A, T AT A
——— (Weak) ——— (Cont) (?) M
F?A, T F?A, T F?A, T HA, T

Fig. 3. MELL Rules

Notice that the two binary rules (Cut) and (®) are multiplicative. Weakening and contraction
are restricted to ?-formulae, and rule (?) induces the loss of linearity for the underlying formula.
Rule (!) is only possible when the context contains only ?-formulae, and allows the main formula
to become potentially erased or duplicated.

MELL Proof-Nets. Proof-nets were introduced by Jean-Yves Girard [Girard 1996b] as an
abstract representation of linear logic proofs, the goal being to create a unique representation for
syntactical different (tree) proofs that are morally the same. It is in this sense that proof-nets are
said to be a graphical formalism eliminating syntactical bureaucracy.

In general, a MELL proof-net can be seen as a finite acyclic oriented graph (see the discussion
after Thm. 6.2) verifying some correctness criteria which ensures that the graph actually encodes a
MELL sequent derivation. For the purpose of this section, we prefer the alternative presentation
which defines proof-nets as graphs given by an inductive definition based on the sequent rules
in Fig. 3. For each of these rules, there is a different proof-net construction, except for (X) which
vanishes in the graph notation: the wires of a graph are naturally considered to be unordered. In
what follows, we define the set of MELL proof-nets, that we denote by PN. Each MELL proof-net
has an associated multiset of conclusions, each of which is a MELL formula.

e For every MELL formula A, there is a PN with conclusions A, A+ having the form:

e Given a PN with conclusions I', A, B on the left we can construct the following PN with

conclusions I', A’9B on the right
' A B

AB
e Given a PN with conclusions I', A and a PN with conclusions A, B, both on the left, we can
construct the following PN with conclusions I', A®B, A on the right
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= TR

A®B
e Given a PN with conclusions T, A and a PN with conclusions A, A*, both on the left, we can
construct the following PN with conclusions I', A on the right

r A

o Given a PN with conclusions I' on the left, we can construct the following PN with conclusions
I', ?A on the right

r ?A T
e Given a PN with conclusions I', ?A, ?A on the left, we can construct the following PN with

conclusions T, ?A on the right

T

C — ) I ?A ?A
I 74 74 \CQ/
?2A

e Given a PN with conclusions I', A on the left, we can construct the following PN with conclu-

sions I, ?A on the right
@ roa

2

e Given a PN with conclusions ?T, A on the left, we can construct the following PN with
conclusions ?T, !A on the right

777777777777

— o

A m
A T 1A
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Notice that squares with rounded corners denote arbitrary proof-nets, while the box constructor
(which is a particular proof-net) is denoted with a dotted line square, so that boxes are used to
encapsulate other proofs, which can now be potentially erased or duplicated. Axioms may be
restricted to atomic symbols by using a notion of eta-like expansion on proof-nets, but we prefer to
keep in this paper the traditional general presentation.

The cut elimination rules for MELL appear in Fig. 4. Rules {C(a), C(’?, ®)} are known as mul-
tiplicative, while {C(w, b),C(d, b),C(c, b),C(b,b)} are called exponential (these cuts only relates
exponential formulae). As mentioned in the introduction, the multiplicative rules are essentially
used to (linearly) reconfigure wires, and thus they are harmless. In contrast, the exponential ones
implement erasure and duplication, so they capture the crucial operational semantics of MELL.

The reduction relation generated by the multiplicative rules {C(a), C(’9, ®)} is trivially confluent
and terminating, so we can consider (unique) C(a)/C(’®, ®)-normal forms of proof-nets in the
sequel (see in particular Sec. 7). They are also called multiplicative normal forms.

Although the cut elimination rules in Fig. 4 are sufficient to describe the normalization process
of proofs from a logical point of view, the original MELL formalism by Girard also needs some
complementary equations in order to capture/simulate the notion of evaluation in functional
programs (see e.g. [Laurent 2002]). In fact, it is necessary to identify those proof-nets which, while
having the same box structure (same nesting and number of boxes), allow certain liberal movements
of their weakening and contraction nodes. We thus consider the four equations in Fig. 5. The first
equations E(c, ¢) specifies associativity of contraction nodes, the second one E(b, ¢) axiomatizes
permeability of boxes w.r.t. contraction, the third one E(c, w) specifies neutrality of weakening w.r.t.
the contraction operation, the fourth one E(b, w) pushes final weakening nodes to the top level.

We call R (resp. E) the set of the following rewriting rules (resp. axioms)

2
I

= {C(a),C(®,®),C(w,b),C(d,b),C(c,b),C(b,b)}
& = {E(cc),E(b,c),E(c,w),E(b,w)}

The reduction relation — is defined as the closure by all the PN contexts of the rewriting rules
in R. The contextual relation & is defined as the closure of the equations & in the following way:
the identities E(c, ¢), E(b, ¢) and E(c, w) are closed by any context, while E(b, w) is only closed by
contexts not binding the weakening wire (i.e. not connecting the weakening wire to any other
construct). Finally, the structural equivalence ~g on MELL proof-nets is taken as the reflexive,
symmetric and transitive closure of E.Inthe sequel, MELL proof-nets are always considered modulo
structural equivalence ~g.

We shall write —g/g for the reduction relation on MELL PN generated by —% modulo the
equivalence relation ~g, i.e.

P —r/e p, ifprl,pz such thatp ~g p1 OR P2 & p/

The reduction relation —%,g on MELL PN is known to be strongly normalizing [Di Cosmo and
Piperno 1995], i.e. every —g/g-reduction sequence starting at a MELL PN is finite.
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—c(a)

AL

D)

C

D)

C

D)

C

D)

|

cut,

T

AL

=c(d,b)

¢ (e,b)

Fig. 4. Cut Elimination for MELL Proof-Nets
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?A ?A ?A A

24 =E(c,0) 24

=E(c,w)

?B

Fig. 5. Equations & for MELL Proof-Nets

6 TRANSLATING THE TYPED pn-CALCULUS INTO MELL PROOF-NETS

This section presents a translation of the typed pn-calculus into MELL proof-nets. The static
translation is discussed in Sec. 6.1, where simple types and typing derivations (c.f. Sec. 4) are encoded
into MELL formulae and MELL proof-nets (c.f- Sec. 5) respectively. Soundness and completeness
results of this encoding are proved. The dynamic translation is presented in Sec. 6.2: it is shown
that pn-reduction can be simulated by the reduction relation —g,g on proof-nets (c.f. Sec. 5). In
particular, one single exponential —,,-step on pn-term is captured by exactly one different single
exponential —g,g-step on proof-nets (see the discussion after Thm. 6.6).

6.1 The Static Translation

This section presents the translation from pn-terms to proof-nets, together with appropriate results
of soundness and completeness of the translation. For that, let’s start by the usual translation of
intuitionistic types [Girard 1987] into MELL formulae given by :

I =

(A= B)* = 2A)%B*
A” = (A"t
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The translation of (typed) pn-terms into MELL proof-nets is defined by induction on typing
derivations. In particular, given a derivation x; : By, ..., Xy : By Fpn t : A, the resulting proof-net
contains n conclusions of the form ?B[, ..., ?B;, and one conclusion for A*. We also add a label x;
to each conclusion ?B; of the resulting proof-net. The conclusion A* has no name/label. A variable
which is erased during some inductive step of the translation, is written between parentheses.
Proof-net equality and reduction take variable labels into account. In particular, we would like
the translation of the type derivations x : A kp, x : Aand y : A Fp, y : A to result in different
proof-nets, although the resultant proof-nets actually have the same graphical structure and they
only differ in their labels. As mentioned above, labels between parenthesis are assumed to have
been erased and hence are not taken into account in proof-net equality/reduction.

Given an environment I' = x; : By, ..., x, : B, we write ?I'" for the multiset ?B,...,?B;,. The
translation of a pn-typed derivation 7 =T +p, t : A into a MELL proof-net, written 7°, is
defined as the multiplicative normal form (i.e. the C(a)/C(°®, ®)-normal form) of the PN 7°, where
7° is a MELL PN with conclusions ?T'~, A* constructed by induction on 7 as follows:

e If t is a variable x, then (x : A Fpp x : A)° is the following MELL proof-net

A” A*

o

?7A”

e If t is an application vu, then (Ay, Ay, Agy Fpn vu : A)°, where supp(A,) = fv(v) \ fv(u),
supp(Ay) = fv(u) \ fv(v), and supp(Ayy) = fv(v) N fv(u), is given by the following MELL

proof-net

?BTRAY A, Ay,

- cut) J

Each wire in ?A,, is labelled with its corresponding variable in fv(v) N fv(u).
e If t is an abstraction Ax.v, there are two cases:
- If x € fv(v), then (T + Ax.v : B = C)° is given by the following MELL proof-net

(x)
?B~ Ct M
7B 9C*

- x ¢ fv(v), then (I' F Ax.v : B = C)° is given by the following MELL proof-net

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 8. Publication date: January 2022.



A Fine-Grained Computational Interpretation of Girard’s Intuitionistic Proof-Nets 8:19

® Comar

(x)

?B9C*
e If t is a closure v[x\u] there are again two cases:
- If x € fv(v), then (Ay, Ay, Ay + v[x\u] : A)°, where supp(A,) = fv(v) \ {x} \ fv(u),
supp(Ay) = fv(u) \ fv(v), and supp(Ayy,) = fv(v) N fv(u) is given by the following MELL
proof-net

,,,,,,,,,,,,,,,,

(Av,Auu,x:B}—v:A)") 3 !
‘(x)‘ ‘ ‘ i ‘ 3

A* 2B A, A, R B
0y, A, 1BY

23,

- cul

Each wire in ?A,, is labelled with its corresponding variable in fv(v) N fv(u).
- If x ¢ fv(v), then (Ay, Ay, Apy Fpn v[x\u] : A)°, where where supp(A,) = fv(v) \ {x} \
fv(u), supp(Ay) = fv(u) \ fv(v), and supp(Ayy) = fv(v) N fv(u) is given by the following

MELL proof-net

A A, Ay,

21,
Each wire in ?A,, is labelled with its corresponding variable in fv(v) N fv(u).

Remark that even when (T kpn ¢ : A)° and (T Fp, ¢t : A)® are different, they have the same box
structure, in the sense that _* does not add or remove boxes, nor does it modify the nesting of
boxes. Since ~g-equivalence on proof-nets also preserves the box structure, then ~g-equivalent
proof-nets in multiplicative normal form have the same box structure too. More interestingly,
equivalent A-terms in the sense of Regnier _* translate to structural equivalent proof-nets, because
they have the same box structure. However, they do not _° translate to structural equivalent
proof-nets, because they do not necessarily have the same multiplicative structure, as illustrated by
the terms (Ax.(Ay.t)u)o and (Ax.Ay.t)ou in the Strong Bisimulation subsection. Since our notion of
~,-equivalence on pn-terms is obtained from Regnier’s equivalence on A-terms by just removing
some multiplicative cuts on the level of terms, then it is not surprising that not only the translation
_*, but also _°, realizes a structural equivalence on ~,-equivalent terms:
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LEMMA 6.1. Let my =T tpy t1 0 A Ift; =4 ty, then there exists 1, = ' + t, : A such that both

o

~ o o .
7y =g 7, and w7 ~g 75 hold.

Proor. The proof proceeds by induction on ~. In the base case t; = H(s) [x\u] =~ H(s[x\u]) = £,
with x ¢ fv(H) and fc(u, H), we proceed by induction on H. The base case H = O is straightforward.
The inductive cases are easy because head contexts do not contain any box. Only the equation
=g (¢) could be necessary to conclude when H and u share some common free variables. m]

Soundness and Completeness. The static translation from typable pn-terms to MELL proof-
nets guarantees that the congruence ~, relates terms corresponding to (structural) equivalent
proof-nets (c.f. Lem. 6.1), but it is worth noticing that the converse does not hold. Indeed, there
exist A-terms t; and ¢, translating to the same proof-net, which are not ~;-equivalent, as e.g.
t1 .= (Ax.(Ay.y)w)z and t; := (Ax.(Ay.y))zw. Indeed, the terms #; and #; are equivalent in the sense
of Regnier [Regnier 1994] (so in particular they _* translate to structural equivalent proof-nets), but
not in the sense of our equivalence relation =, on pn-terms, particularly because =~ only relates
terms with explicit substitutions, and not pure terms. This mismatch can be repaired by defining
the following structural equivalence = on pn-terms:

t=u iﬂt(ﬁdg U 2g)u

where ~gg is the reflexive, symmetric and transitive congruence generated by the distant Beta
rule —g4g introduced in Sec. 2. Indeed, it is possible to show that two A-terms t; and t, are equivalent
in the sense of Regnier if and only if t; = t,. Thus e.g. t; =gz y[y\w][x\z] ~gs t2. Now, structural
equivalence on pn-terms _° translates (but not _° translates) to structural equivalence on MELL PN:

THEOREM 6.2 (SOUNDNESS). Let 1 =T bpn t1 : Ay Ifty = t,, then there exists 1 = T, bpn £ 1 Ap
such that m,° ~g m,°.

We now show completeness, i.e. the structural equivalence ~g on proof-nets corresponds to the
structural equivalence = on pn-terms. For that, we alternatively interpret a proof-net as a finite
acyclic oriented graph, where the nodes are labeled by the following alphabet {cut, ax, ’®, ®, ¢, w, d, b}.
Each node has a number of in and out ports. Indeed, the cut-node has two ports in, the ax-node
has two ports out, the ’®, ® and c-nodes have two ports in and one port out, the w-node has one
port out, the d-node has one port in and one port out, and the b-node has n ports in and n ports
out for n > 1. Each edge is decorated with a type and is connected to exactly one port out and at
most one port in, i.e. each edge has a source node but not necessary a target node.

We say that a node n occurs at depth d in a proof net 7 iff n appears inside d different boxes of 7.
We say that a node n is pre-final in a proof net 7 iff there exists an edge connected to an out port
of n but not to an in port of another node of 7. Thus, pre-final nodes represent the interface of
the proof-net as their outgoing edges are free. Remark that the cut-node is never pre-final. In order
to adapt these notions to the relation ~g on proof-nets, we finally define a node n to be final in
7, if n is pre-final in the proof-net n’ resulting from 7 by application of the equations E(b, ¢) and
E(b, w). Given a proof-net 7 and a final node f of = we define 7 \ f as the proof-net = deprived
from node n and its corresponding edges. This operation is simply used to inductively reason on
the number of nodes of proof-nets.

Remark that given two MELL proof-nets p and q such that p ~g g their final nodes are the same.
As a consequence, if 11 = I tpn t1 1 Ay, 1y =I5 Fpn £z : Ap and ty = ty, then the final nodes of 7;°
and m»* are the same.

We start the completeness proof by some auxiliary lemmas.

LEMMA 6.3. Let 1 =T tp t : A and f be a final '9-node of n°. Then there exists y,u’ such that
Ayu’ = t.
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Proor. The proof is based on the fact that for every pn-term ¢, there is u = ¢ such that u is either
a A-abstraction or has the form (xt;...t,) [x:\ui] ... [xm\tm], where n,m > 0. O

LEMMA 6.4. Let 1 =T Fpn t : A. If ° has no s-node but some cut-node at depth 0, then there exist
u, v, x such thatt = (Ax.u)o.

Proor. The proof proceed by case analysis. O

We can now conclude:

THEOREM 6.5 (COMPLETENESS). Letmy =T bpn ty : Aand my =T bpg £y : A If m° ~g m2°, then
b = 1.

Proor. By induction on the size (i.e. number of nodes) of 7;°.

e If 77 has a final *®-node (let us say n), then 7 also does. Therefore t; = Ay.t] and t, = Ay.t;
by Lem. 6.3. By definition of the translation we then have A = B = C, where (I';y : B Fp,
] :C)* = (T rpn ty : A)*\nand (I;y : B kpy t; : O)° = (T kpy £z 2 O)° \ n. Thus
(T;y : B rpn t] : O)° =g (Iy : B rpy ty = C)°. By the i.h. we have t] = ¢, so that
= Aytl/ >~ Aytz/ = 1.

e If 777 has no final "¥-node, then ¢, is necessarily an application, a variable or a closure. There
are two cases to consider:

- If 77 has no cut-node at depth 0, then t; = xu; ...u, and t, = xv; ..., for n > 0, where
the subterms are typed by derivations m1; = A’ +pn u; : Gy and 7a; = A? Fpy v; ¢ G for
i=1...n Moreover, my;* ~g my;° and 7;;* is smaller than 7;° for j = 1, 2. The i.h. gives
u; =v; (i=1...n). Thent; = xu;...u, = x01...0, = t,.

- If 77 has some cut-node at depth 0, then by Lem. 6.4 there exists u;, vy, x; such that
t1 = (Axy.u)v;. The same happens with 77, so that Lem. 6.4 gives uy, vz, x, such that
ty = (Axy.u)vy. The proof-net 77 has two sub proof-nets 7r1"1 and ﬁi , coming resp. from
71,1 = Ay bpn Axy.uy 2 B= Cand my5 = Ay +py 01 : B. Moreover, 77, and 7}, are smaller
than 77. The same happens with 7;. Therefore Ax;.u; = Axy.up and v = Uz,WhiCh imply
= (Axl.ul)vl = (AXZ.UZ)UZ = 1.

]

6.2 The Dynamic Translation

This section states and proves a fine-grained relation between reduction on terms and reduction
on MELL proof-nets. More precisely, we show that _* is injective, as every single exponential step
on terms is captured by a single exponential step on PN. Thus, the neat discrimination between
"boxing" and "duplication" holds also on the level of terms.

Given an environment A = x; : Ay,...,x, : A, (n > 0) and a proof-net p, we write ‘Wi [p]
for the proof-net obtained by adding n weakening wires, labeled respectively with the formulae
?A] ...?A,, on the top level of p (outside all the boxes). The following property is the key result of
our dynamic translation, it justifies in particular the use of the additional equations & in Fig. 5.

THEOREM 6.6 (FAITHFUL DYNAMIC TRANSLATION). LetT Fpn t: A.
o Ift »ggt’,thenT Fpn t’ : Aand (T Fpn t : A)® =g (T Fpn t’ : A)°.
o Ift —pst’, thenT bpy t': Aand (T bpn t 2 A)® —c@apy/e (T bpn t' 1 A)°.
o Ift —agt/, thenT bpn t': Aand (T bpn t : A)® —cppy/e (T kpn t’ 1 A)°.
o Ift —qpt’, thenT rpn t' : Aand (T bpa t 2 A)® —=cepy/e (T Fpn t/ 1 A)°.
o Ift —=gc t/, thenT Fpnt’ : AforT" CT and (T bpn t : A)® —=c(wpy/e Wi [T Fon t7: A)°].
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Proor. The proof proceeds by induction on the reduction relations, i.e. by induction on the
context C where the rewriting rule is applied. In all the base cases (i.e. C = O) the L and H contexts
can be omitted by just using ~, equivalence and Lem. 6.1. Thus for example H{(x)) [x\u] —ns H{u))
can be decomposed as H{(x)) [x\u] ~, H{x[x\u])) —ns H{wu)), so thanks to Lem. 6.1 it is sufficient
to consider only hs-reduction steps of the form x[x\u] —ps u. The same observation applies for
all the other cases. More precisely,

o If t = (Ax.s) u —gg s[x\u] =1, then (T kp, t : A)° —¢(a)/crs,0)-Teduces to (T kp, t' 2 A)°
so that (T kpn £ : A)® =g (T kpn £ : A)°.

o If t = x[x\u] —ns u = t’, then the result is straightforward.

o If t = A)[x\u] —arg A[x\u]) = t/, then (T +p, t : A)® —¢(pp) -reduces to another
proof-net which is ~g-equivalent (by means of =g (p)) to (I' Fpn t' 1 A)°.

o If t = Aw)[x\o] —qup Apx\o] (W) [x\0] = t/, then (T Fpn t 2 A)® —¢(cp)-reduces to another
proof-net which is ~g-equivalent (by means of =g () to (I' kpy £ : A)°.

o t =s[x\u] —gc s =1, withx ¢ fv(s), then (T rpn t : A)® =" =g Wrp [(T Fpn t' 2 A)°],
where I C T and ‘Wr\v denotes all the weakening wires labelled with variables in I" but not
inI”. Moreover, equation =g(c,.) could be necessary to conclude when s and u share some
free variables.

We now consider the cases where t —p, t’ is an internal reduction step.

o If t ~, t’ then the property trivially holds since ~g is a congruence.

o Ift —» t'isAx.s — Ax.s’ orsu — s" u or s[x\u] — s’[x\u] coming from s — s’, then we
obtain (A tp, s : B)® —>;;/8 WI(A vpn s" : B)*] by the i.h. and the property holds by the fact
that the context W[ ] of weakening wires surrounding (A +p, s : B)® can also be considered
as a context of weakening wires surrounding (T" kpn t' 1 A)°.

oIft —» t'isus — us’ oru[x\s] = u[x\s’] coming from s — s’, then we obtain (A Fp,
s : B)* _);2/8 WI(A tpn s" : B)®] by the i.h. and the property holds by the fact that the
context ‘W{ ] of weakening wires surrounding (A Fpn s” : B)® can be pushed outside the
box containing (A +p, 8" : B)® by using the equation =g ) in order to obtain a context of
weakening wires surrounding (T +p, ¢ : A)°.

]

The converse implication does not necessarily hold: thus e.g. if (I' kpn t : A)® =g (I kpn t' 1 A)®
we can perfectly have t ~, ¢’ but not t —4g t’. Remark also that the last case of the statement is
the only one adding weakening wires on the top level of the translation of ¢’: this is because gc is
the only rule which eventually loses free variables (c.f: Lem. 2.1).

Notice also that every dB-step on the term side is captured by the computation of the multiplicative-
normal form used to construct the proof-net _° (translation of term type derivations into MELL PN).
In addition, every single step in {gc, hs, arg, dup} is captured by a single exponential step on the
proof-net side. This phenomenon perfectly explains why we call multiplicative (resp. exponential)
the dB-step (resp. any step in {gc, hs, arg, dup}) on the terms. The analogy between steps on terms
and proof-nets can be summarized by the following table:

pn-rewriting rule | MELL PN cut elimination rule Meaning
dB C(a)/C(2,®) Application becomes ES
gc C(w,b) Erasure
hs C(d,b) Linear Substitution
arg C(b,b) Commutative Step
dup C(c, b) Duplication
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It is worth mentioning that the dynamic simulation does not only hold for the _* translation
but also for the _° translation: in particular, —4g on pn-terms simulates with C(’2, ®) and C(a) on
proof-nets, and —¢ simulates with C(d, b) and C(a). Thus, the _° translation is not injective, and
the magic one-to-one simulation between reduction on terms and proof-nets disappears. That is

why our simulation result is stated with the function _°.

7 STRONG NORMALIZATION

We now show that all typable pn-terms are strong normalizing w.r.t. the reduction relation —p.
Indeed, given any reduction relation —, a term ¢ is said to be R-strongly normalizing, written
t € SN, iff there is no infinite pn-reduction sequence starting at ¢; and the reduction relation
R is strongly normalizing (SN), if every term ¢ verifies t € SNg. It is clear that SN, cannot
hold in general for all terms, because strong-normalization does not hold for — 4, and — g strictly
translates to —;, (Lem. 3.2). Strong normalization for typable terms can be shown by resorting to
the dynamic translation presented in Section 6.2 and the following abstract rewriting theorem.

THEOREM 7.1. Let O, P be two sets. Let R, S be two relations on 0 X 0, U be a relation on P X P, and
K a relation on O X P. Let us denote by U* (resp. U" ) the reflexive-transitive (resp. transitive) closure
of U. Assume also:

(1) R is SN
(2) t Rt and t K T implies there is T’ € P such thatt’ KT and T U* T’
(3) t St' andt K T implies there is T’ € P such thatt’ K T’ and T U+ T’

Thent KT andT € SNq; implyt € SNgus.

ProorF. Supposet KT, T € SNqsand t ¢ SN gys. Since R is SN by (1), then there is an infinite
sequence on O where S occurs infinitely many times:

t=ty .. R'St;.. R*St,.. R*St;...

Butt K T,thenby (2) and (3) thereare Ty, Ty, .. ., Tj, . .. € Psuchthatty KT, t, KD, ..., t; KT, ...

and the following infinite ¢/-reduction sequence is then generated
TUTTU LU .. UT ...
This leads to a contradiction with the hypothesis T € SN . O

COROLLARY 7.2. The reduction relation —p, is strongly normalizing on typable terms.

Proor. We let O be the set of typable pn-terms, R :=—gg, and S :=—>4¢ hs arg,dup- Let also consider
P be the set of MELL proof-nets, U :=—g/g, and K the relation given by tKWr[(T +pn t : A)°]
for any environment A. The property then holds by the abstract Theorem 7.1 instantiated to the
sets and relations described above. Indeed, (2) and (3) hold by Thm. 6.6, —gg is straightforwardly
SN, and —g/g is SN on MELL proof-nets by [Di Cosmo and Piperno 1995]. O

The previous result can be extended to a stronger property stating that typable pn-terms are
strongly normalizing w.r.t. the pn-reduction modulo o-equivalence, where t —,/, t” iff there
are u,u’ such that t ~; t' —p, u’ =, u. We omit here the details by lack of space.

8 PRESERVATION OF STRONG NORMALIZATION

Preservation of strong normalization (PSN) is a property about untyped terms, that becomes crucial
when implementing a source language S with a more refined target calculus 7~ (possibly extending
the syntax of S), simply because 7~ is expected to preserve the underlying properties of S, including
termination. Indeed, we say that 7 preserves S-strong normalization, or 7 enjoys S-PSN, if
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t € SN g implies t € SN for every term t. PSN received a lot of attention in the theory of calculi
with ES, starting from an unexpected result by Melliés [Mellies 1995], who showed that Ao [Abadi
et al. 1991] does not enjoy B-PSN. When PSN holds, it is usually a non-trivial property to prove.
Here we adopt a technique projecting —n, into another reduction relation enjoying -PSN itself.
For that, we consider the structural lambda-calculus 1j modulo an equivalence relation [Accattoli
and Kesner 2012], a choice that could be perceived as surprising, since Aj is less fine-grained
than pn. However, the simulation proof (Lem. 8.2) perfectly works because the target calculus is
considered modulo a set of equations =gp0x, Which encompasses in particular the commutative rules
hidden in Girard’s MELL proof-nets, and thus those in pn.

The reduction relation —; is given by the closure of all contexts of the four rewriting rules:

L{Ax.t)u gz L{t[x\u])

t[x\u] >yt if [t]y=0
t[x\u] g H{x\u} if|t|, =1
f\al ety X\l l\al iffel > 1

where rule dB is exactly the same used in the pn-calculus, and ¢[],. denotes any non-deterministic
replacement of i (1 < i < n — 1) occurrences of x in t by a fresh variable y, an operation
which is always defined when |t|, > 1. Here is an example: (Ax.xxx)z —gs (xxx)[x\z] —-«
(yxy) [x\z] [y\z] =4 (yzy)[y\z] —c (yzy")[y\z][y"\z] —4q (y2z2)[y\z] —q 22z.

The equivalence relation =gpoy is the reflexive, symmetric, transitive and closed by all contexts
relation generated by the following axioms:

tly\o][x\u] = t[x\u][y\o] ifx ¢ fv(v),y & fv(u)
ty\o][x\u] = t[y\o[x\u]] ifx ¢ fv(t),x ¢ fv(v)
(Ay.t)[x\u] = Ay.t[x\u] ify ¢ fv(u)
(tv) [x\u] ~  t{x\u]o if x ¢ fv(v)
(to) [x\u] ~  to[x\u] if x ¢ fv(t),x € fv(v)

We now define 1j-reduction modulo obox-equivalence, as the relation such that t — 3;/0box t’
iff there are u,u’ such that t =qpox t' —25 U’ Zobox . We based our result on the following
result [Accattoli and Kesner 2012, Thm. 5.18]:

THEOREM 8.1 (B-PSN FOR —35/0box). The relation — );/opox enjoys f-PSN.
In order to show that —, enjoys in turn -PSN, we study the relation between —,, and — 35/0box-

LEMMA 8.2. Lett be a pn-term.
o Ift =, t’, thent =gpox t'-
o Ift =g t/, thent =gpox t'.
’ ’
L4 Ift —dB,gchs,dup L then t —1j/obox t-

Proor. We prove each item as follows:

o If t ~, t/, then t =qpox t’ is straightforward since =~ is included in =gpox.

o If t = C{H(A(to)) [x\u]) —arg C(H(A(to[x\u]))) = t', with x ¢ fv(H),x € fv(t),x & fv(A),
then t = C(H(A(to)) [x\u]) =obox C(H(A(to[x\u]))) =1".

o Ift —gg t' ort —g t’ this is straightforward. If t = C(H(x)[x\u]) —pns C(H(u)) = t’,
with x ¢ fv(H), then t = C(H(x)[x\u]) —q C(H(x){x\u}) = C(H(u)) = ¢t’. Finally, if ¢t =
C(H{(A(to)) [x\ul) —aup CCH(ALw {to) [x\ul)) = t/, with x ¢ fv(H),x € fv(ty),x € fv(A),
then t = C(H(A(to)) [x\u]) =obox C{H(Ato) [x\u]}) —c C(H(AS) [x\u]))t".

O

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 8. Publication date: January 2022.



A Fine-Grained Computational Interpretation of Girard’s Intuitionistic Proof-Nets 8:25

COROLLARY 8.3 (8-PSN FOR —n). The relation —pn enjoys f-PSN.

Proor. Let 0 and P be the set of (untyped) pn-terms, R :=—arg, S == gchs,dup> U =15 /0boxs
and %K the identity relation given by tKt for any pn-term t. The property holds by the abstract
Theorem 7.1 instantiated to the sets and relations described above. Indeed, (2) and (3) hold by
Lem. 8.2, — ¢ is straightforwardly SN, and ¢ is —;/obox-SN by Them. 8.1. m]

The S-PSN property can be extended to pn-reduction modulo o-equivalence, as we did for strong
normalization in Sec. 7.

9 CONCLUSION

This paper bridges the gap between sequential syntaxes and graphical formalisms by proposing a
term calculus which translates to Girard’s MELL proof-nets with a faithful degree of granularity,
both statically and dynamically. From a static point of view, we characterize equivalence relations
on both sides (terms and PN) which are in perfect correspondence (Thm 6.2 and Thm 6.5). From a
dynamic point of view, we show that the reduction relation of our calculus translates to Girard’s cut
elimination accurately, i.e. one-to-one (Thm. 6.6). Many non-trivial properties are established for the
pn-calculus, in particular, confluence (Thm. 3.4), strong normalization (Cor. 7.2), and preservation
of f-strong normalization (Thm. 8.3). We also define a strong bisimulation on pn-terms which
captures Regnier’s well-known o-equivalence relation lifted to ES (Thm. 3.5), a property that only
a few calculi with ES enjoy [Accattoli et al. 2014b].

Our work highlights the fact that Girard’s implementation of substitution combines both induc-
tion on the structure of terms and induction on the number of free occurrences of variables, in
contrast to all other existing implementations of substitution based entirely on one or the other. We
argue that the pn-calculus can be used to introduce and explain linear logic from a Curry-Howard
perspective, mainly its exponential fragment, which is the most intriguing.

While the main interest of the computational interpretation of the cut elimination process in
linear logic proof-nets relies on its exponential fragment, it could be also intriguing to explore the
case of other linear logic connectives. The multiplicative units for ® and *® seems unproblematic,
but it is however not clear how to extend the interpretation to the additive connectives [Hughes
and van Glabbeek 2005], particularly to deal with the links for axioms on the level of variables.

As a future work, we would like to extend these ideas to polarized proof-nets [Laurent 2003] —an
extension of MELL proof-nets for the polarized fragment of linear logic—, which would faithfully
capture a functional programming language with continuations, probably materialized by some
refined version of the Ap-calculus [Parigot 1992]. An alternative or complementary direction is to
address the entire linear logic (without polarization), in the spirit of [Abramsky 1993], by keeping
our interpretation of the exponential fragment.

Extending the model to real programming languages would need to consider different features
such as data-types/pattern-matching, polymorphism, continuations and effects, etc. With that sight,
an implementation scheme by means of an abstract machine is under consideration, it concerns
in particular a mechanism to search the next redex to be reduced according to some concrete
evaluation strategy (call-by-name, call-by-value, call-by-need, etc).

Alternative approaches to model cut elimination in linear logic use the geometry of interac-
tion [Girard 1988a,b], where a flow of tokens around a network is used rather than graph-rewriting.
It will be interesting to understand how our approach relates to this alternative view.
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