Mealy machines, automaton (semi)groups,
decision problems and random generation

ANR JCJC 12 JS02 012 01
Refereed Articles
[1] Th. Godin, I. Klimann, "On bireversible Mealy automata and the Burnside problem", In Theoretical Computer Science, to appear. [bibtex]
[2] F. Bassino, C. Nicaud, P. Weil, "Generic properties of subgroups of free groups and of finite presentations", In Contemporary Mathematics, to appear. [bibtex]
[3] I. Klimann, "On level-transitivity and exponential growth", In Semigroup Forum, 2016. [bibtex] [pdf] [doi]
[4] I. Klimann, M. Picantin, D. Savchuk, "Orbit automata as a new tool to attack the order problem in automaton groups", In Journal of Algebra, vol. 445, no. , pp. 433 - 457, 2016. [bibtex] [pdf] [doi]
[5] I. Klimann, "Automaton Semigroups: The Two-state Case", In Theory of Computing Systems, pp. 1-17, 2014. [bibtex] [pdf] [doi]
[6] P. Gillibert, "The finiteness problem for automaton semigroups is undecidable", In Int. J. Algebra Comput., vol. 24, no. 1, pp. 1-9, 2014. [bibtex] [pdf]
[7] A. Akhavi, I. Klimann, S. Lombardy, J. Mairesse, M. Picantin, "On the finiteness problem for automaton (semi)groups", In Int. J. Algebra Comput., vol. 22, no. 4, pp. 26p., 2012. [bibtex] [pdf]
Refereed Conference Papers
[8] Th. Godin, "An analogue to Dixon's theorem for automaton groups", In Proceedings of the Fourteenth Worksh. on Analytic Algorithmics a nd Combinatorics, ANALCO 2017, January 16-17, 2017., pp. 164-173, 2017. [bibtex] [pdf] [doi]
[9] Th. Godin, I. Klimann, "Connected reversible Mealy automata of prime size cannot generate infinite Burnside groups", In MFCS, 2016. [bibtex] [pdf]
[10] C. Nicaud, "Fast Synchronization of Random Automata", In Approximation, Randomization, and Combinatorial Optimization. Alg orithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, pp. 43:1-43:12, 2016. [bibtex] [pdf] [doi]
[11] I. Klimann, M. Picantin, D. Savchuk, "A connected 3-state reversible Mealy automaton cannot generate an infinite Burnside group", In DLT, LNCS, vol. 9168, pp. 313-325, 2015. [bibtex] [pdf]
[12] Th. Godin, I. Klimann, M. Picantin, "On torsion-free semigroups generated by invertible reversible Mealy automata", In LATA, LNCS, vol. 8977, pp. 328-339, 2015. [bibtex] [pdf]
[13] I. Klimann, M. Picantin, "A characterization of those automata that structurally generate finite groups", In LATIN, LNCS, vol. 8392, pp. 180-189, 2014. [bibtex] [pdf]
[14] I. Klimann, "The finiteness of a group generated by a 2-letter invertible-reversible Mealy automaton is decidable", In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013) (Natacha Portier, Thomas Wilke, eds.), Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, vol. 20, Dagstuhl, Germany, pp. 502-513, 2013. [bibtex] [pdf] [doi]
[15] S. De Felice, C. Nicaud, "Random generation of deterministic acyclic automata using the recursive method", In CSR, 2013. [bibtex]
[16] I. Klimann, J. Mairesse, M. Picantin, "Implementing Computations in Automaton (Semi)groups", In CIAA, LNCS, no. 7381, pp. 240-252, 2012. [bibtex] [doi]
Other Publications
[17] Th. Godin, "Knapsack problem for automaton groups", 2016. [bibtex] [pdf] [doi]
[18] M. Picantin, "Automatic semigroups vs automaton semigroups", 2016. [bibtex] [pdf]
[19] D. d'Angeli, Th. Godin, I. Klimann, Picantin M., Rodaro E., "Boundary action of automaton groups without singular points and Wang tilings". [bibtex] [pdf]
Powered by bibtexbrowser