We define the following two operations for every \(x, y \in \{0, 1\}^n \)

\[x \oplus y = (x_1 \oplus y_1, \ldots, x_n \oplus y_n), \quad \text{and} \quad x \odot y = (x_1 \cdot y_1) \oplus \cdots \oplus (x_n \cdot y_n), \]

where \(0 \oplus 0 = 1 \oplus 1 = 0 \) and \(0 \oplus 1 = 1 \oplus 0 = 1 \).

Let \(H \) be the Hadamard transform that maps \(|b\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle + (-1)^b|1\rangle) \), for \(b = 0, 1 \). Let \(H \otimes^n \) be the transformation that applies \(H \) in each of the qubit of an \(n \)-qubit. You can use without justifying that for every \(x \in \{0, 1\}^n \)

\[H \otimes^n |x\rangle = \frac{1}{2^{n/2}} \sum_{y \in \{0, 1\}^n} (-1)^{x \odot y} |y\rangle. \]

Question 1 Show that

\[H \otimes^n \left(\frac{1}{2^{n/2}} \sum_{y \in \{0, 1\}^n} (-1)^{x \odot y} |y\rangle \right) = |x\rangle. \]

Question 2 For any value \(i \in \{1, \ldots, n\} \), explain how to construct a quantum circuit \(A_i \) that maps \(|0\log^n 0\rangle |0\rangle \mapsto |0\log^n 0\rangle |0\rangle \) and \(|0\log^n 1\rangle |i\rangle \mapsto |i\rangle |1\rangle \).

Assume from now that \(x \in \{0, 1\}^n \) is some input given by a quantum unitary \(O_x \) such that

\[O_x |i\rangle \mapsto \begin{cases} (-1)^x |i\rangle & \text{if } 1 \leq i \leq n, \\ |i\rangle & \text{if } i = 0. \end{cases} \]

Also assume that other than by using \(O_x \) it is impossible to learn anything about \(x \).

Question 3 Give a quantum circuit \(B \) that realizes the map \(|y\rangle \mapsto (-1)^{x \odot y} |y\rangle \), for \(y \in \{0, 1\}^n \), using at most \(n \) times the unitary \(O_x \). Your circuit can use auxiliary qubits initialized to \(|0\rangle \) and that come back to \(|0\rangle \) at the end of the computation. (Therefore, to be more precise, the map is in fact \(|y\rangle |0^\ell\rangle \mapsto (-1)^{x \odot y} |y\rangle |0^\ell\rangle \), for some integer \(\ell \) of your choice.)

Compute the output of your circuit when the input state is \(\frac{1}{2^{n/2}} \sum_{y \in \{0, 1\}^n} |y\rangle \).

Last, complete the circuit with some gates other than \(O_x \), such that the final output is \(|x\rangle \).

Call \(C \) this final circuit.
For \(y \in \{0, 1 \}^n \), we denote by \(\| y \| = \sum_{i=1}^{n} y_i \) the Hamming weight of \(y \), and by \(I(y) = (i_1, \ldots, i_{\| y \|}) \) the increasing sequence of indices where \(y \) has bit value 1, that is such that \(i_1 < \cdots < i_{\| y \|} \) and \(y_{i_j} = 1 \) for \(j = 1, \ldots, \| y \| \).

Question 4 Fix some integer \(k \leq n \). Justify why there exists a quantum circuit \(D_k \) that realizes the map
\[
|y\rangle \mapsto \begin{cases}
|y\rangle|I(y), 0^{k-\| y \|}\rangle & \text{if } \| y \| \leq k, \\
|y\rangle|0^k\rangle & \text{if } \| y \| > k,
\end{cases}
\]
where \(y \in \{0, 1\}^n \), and with possibly auxiliary qubits as in Question 3.

Question 5 Fix some integer \(k \leq n \). Give a quantum circuit \(E_k \) that uses at most \(k \) times the unitary \(O_x \) to realize the map
\[
|y\rangle \mapsto \begin{cases}
(-1)^{x \cdot y} |y\rangle & \text{if } \| y \| \leq k, \\
|y\rangle & \text{if } \| y \| > k,
\end{cases}
\]
where \(y \in \{0, 1\}^n \), and with possibly auxiliary qubits as in Question 3.

Let \(S_k = \{ y \in \{0, 1\}^n : \| y \| \leq k \} \), \(M_k = \sum_{i=0}^{k} \binom{n}{i} \) and \(|\psi_k\rangle = \frac{1}{\sqrt{M_k}} \sum_{y \in S_k} |y\rangle \). Without any justification you can use that \(|\psi_k\rangle \) has norm 1, and that \(M_k \geq 0.95 \times 2^n \) when \(k \geq \frac{n}{2} + \sqrt{n} \).

Question 6 Use circuit \(C \) of Question 2 with input state \(|\psi_k\rangle \). Prove that the measure of the output gives \(x \) with probability \(M_k/2^n \). What happens if \(B \) is replaced by \(E_k \)? Conclude that \(x \) can be learned with bounded error 5\% and using at most \((\frac{n}{2} + \sqrt{n}) \) times the unitary \(O_x \).

Part II

We define the following communication problems:

- \(IP : \{0, 1\}^n \times \{0, 1\}^n \longrightarrow \{0, 1\} \) defined by \(IP(x, y) = \sum_{i=1}^{n} x_i \cdot y_i \mod 2 \) (the inner product of \(x \) and \(y \), viewed as \(n \)-dimensional vectors over \(Z_2 \)).

- \(SEND \), where Alice has a string \(x \in \{0, 1\}^n \); at the end of the protocol, Bob produces \(x \) as his output.

Question 7

1. Out of the \(2^n \) inputs \((x, y) \in \{0, 1\}^n \times \{0, 1\}^n \) to \(IP \), show that \(2^{2n}/2 \) of them evaluate to 0.

2. For any set of vectors \(A \) in \(Z_2^n \), denote by \(A' \) the span of the elements in \(A \) (the span of \(A \) is the subspace composed of all vectors that can be obtained as linear combinations of vectors in \(A \)). Show that if \(A \times B \) is a rectangle such that \(\forall (x, y) \in A \times B, f(x, y) = 0 \), then it is also the case that \(\forall (x, y) \in A' \times B', f(x, y) = 0 \).
3. Let $A \times B$ be a rectangle such that $\forall (x, y) \in A \times B, f(x, y) = 0$. Give an upper bound on $\dim(A') + \dim(B')$.

4. Give an upper bound on the cardinality of any such rectangle $A \times B$. How many rectangles are necessary to cover all the 0 values in the communication matrix of IP?

5. Give a lower bound on the deterministic communication complexity of IP.

6. Generalize the previous result to any function $f : X \times Y \rightarrow Z$. Let $\text{rect}_z(f)$ be the size of the largest rectangle $R = A \times B$ such that $\forall (x, y) \in A \times B, f(x, y) = z$. Prove that $\forall f, D(f) \geq \max_{z \in Z} \text{rect}_z(f)$.

Question 8 Recall that

$$O_x|i\rangle \mapsto \begin{cases} (-1)^{x_i}|i\rangle & \text{if } 1 \leq i \leq n, \\ |i\rangle & \text{if } i = 0. \end{cases}$$

Construct a circuit that computes the mapping $U_x|i\rangle|b\rangle \mapsto |i\rangle|x_i \oplus b\rangle$, using a single call to the unitary O_x. Hint: define a circuit control-O_x and start by applying control-O_x to an appropriate state.

Question 9 Let us consider a restricted version of IP where there is a promise that input y has small Hamming weight, that is, $\|y\| \leq k$. Based on the circuits in Part I, give an efficient quantum protocol for this restricted version of IP, and give its communication complexity in terms of n and k.

You may use without proof that the quantum communication complexity of $SEND$ is

$$Q(SEND) \geq \lceil \frac{n}{2} \rceil.$$

Question 10 Show that if there is a protocol for IP that uses t qubits of communication, then it can be used to obtain a protocol for $SEND$ that uses the same number of qubits. Give a linear lower bound (including constants) on the quantum communication of IP.