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Query complexity: classical model

For any boolean
function f:

© Goal compute f(x)

© Cost worst case
number of queries
to bits of x

DT(f) = depth of the shallowest decision
tree that computes f



Query complexity: quantum model
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© Queries : unitary transformation O,
that maps |¢,b) to|i,bdx;) (identity
on remaining qubits)

@ Computation :
@ Output : Measure first qubit of Yr)
@ Error probability bounded by 1/3

@ Same model with stochastic matrices
for randomized query complexity



Ambainis’ unweighted adversary method
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Quantum lower bound techniques

Semidefinite programming
[BSSO03]
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Query complexity

This talk
Spectral method Polynomial method
[BS02, BSSO3] [BBCMW]
Ad hoc for
ordered search
and sorting
[HNSO02] Welghted
adversary methods
[AmO03,Aa04]
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Adversary method
[AmO02]



Kolmogorov complexity

Defn K (x|y)is the length of the shortest program
that prints 7, given as input the string ¥

For any finite set of strings A,
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© Such a string x is called incompressible with

respect to A.

@ Incompressible strings are “typical”, behave like
strings taken at random from A.




Why use Kolmogorov complexity?

© Captures intuition of “not enough information to
carry out computational task”.

© Similar to, but often easier to apply than:
© Information theoretic techniques,

© Probabilistic method.



Simple case: decision tree complexity

For any function f :{0,1}"" — D and any
inputs I, Y such that f(z) # f(y),if T decides f,its
deterministic decision tree complexity is

DT(f) > min {max{2&(leT) ok(ily.T1

e
Claim:
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Main Theorem

For any function f :{0,1}" — D
and any inputs , Y such that f(z) # f(y)
if A decides f,

® The quantum query complexity is

1
C>Q
N T sz<w,A>K<wvA>>

® The randomized query complexity is

1



Example: Lower bound for parity

< n > < log(n) —»
\ X [
Flip i 1" bit

;o

Pick an incompressible string of length n + log(n)

o K(i|z) = log(n)

® n_|_10g(n) < K(Z,CIB) < K(Zay) y SO
o K(ily) =log(n)

Therefore

QQC(Parity) > Q (\/22 10g(n)) = Q (n)




Sketch of proof (1/2)

|. Model-dependent part
® Quantum case:

pf (Z) = probability of querying 1 at step t on input x.

P(0) = 7 > b ()



Sketch of proof (2/2)

2. Model-independent part

Using the Shannon-Fano code for the
probability distribution on queries,

K (i|z, A) < log <_1. )

(1
Therefore, p* (i)
® Quantum case:

o7 Y V2 KileA)-K(ileA) > (1)
VT FY;
® Randomized case:
27 ) min{2 KUI=A) =KUY > q(1)

VT Y

QED



Ambainis’ unweighted adversary method
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Main theorem implies unweighted adversary method

X Y X Y
P >m () 1)/' xQ&O
|R| = m|X]| .q y (i # i) | e ; e |y
\./ Zm’li./ @ <V

Jz,y K(z,y) > log |R)
> logm + log | X|

Vo K(r) <log |X|
Vo, y, 1 K(y|z, i) < logl

> log(7) + K(i|lz,y, K(x,y))



Main theorem implies unweighted adversary method

We have shown 3z,y Vi s.t. z; # i

K(ile) = log() + K(ile,y, K (a,y))

K(ily) > log(") + Kile,y. K(z.3)

Recall the general theorem:

1
QQC > (Z \/2K(ia:)K(iy)>

and apply Kraft’s inequality:

QQC>Q< 77)




Certificate complexity

® A b-certificate of size m for f is a partial assignment of
m bits of the input, which forces the value of a

function fto b (b=0,1).

O-certificate: f(*0* | | **0*0***) = 0
| -certificate: f(*0* | *** | *0*0%*) = |

@ The b-certificate complexity, C,(f), is the size of the

largest minimal b-certificate for f.

@ Bipartiteness: an odd cycle is a O-certificate.

@ Connectivity: a spanning tree is a |-certificate.



Limits of adversary methods

[Troy Lee] Consider x,y with f(x)=0 and f(y)=1.
O-certificate consistent with x:
f(*o*l I**O*O***) — 0
fly) =1

So there exists i with x; # y;, such that

K(i|x) < log(Co(f))
Similarly, there exists j with X; # Vi

K(jly) <log(Ci(f))

1
> iraspy, V2 K0 A=K (il 4) < /nCo(f), v/nCi(f)
1:x; Y

(Indep. S. Zhang, for weighted method,
ICALP 2004)




Limits of adversary methods

R. Spalek total
[Troy Lee] For an)yfunction f,and inputs x,y with

f(x)=0 and f(y)=1, there exist i, with x; = y;, /R x5/
K (ifz) < log(Co(f))
K(fly) < log(C1(1))
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Summary of results

@ New framework to prove lower bounds in
query complexity.

@ Unified proofs for quantum and randomized
lower bounds.

© Generalizes previous adversary methods.

© Applies to boolean as well as non-boolean
functions.

@ Easy-to-prove limits of adversary methods in
terms of certificate complexity.



Directions for future work

© Lower bounds for bounded rounds (adaptive vs
nonadaptive queries).

© Similar techniques involving K(i|x) may apply to
other models, such as communication
complexity, time/space tradeoffs.

© Quantum Kolmogorov complexity might be
necessary to handle these models.
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