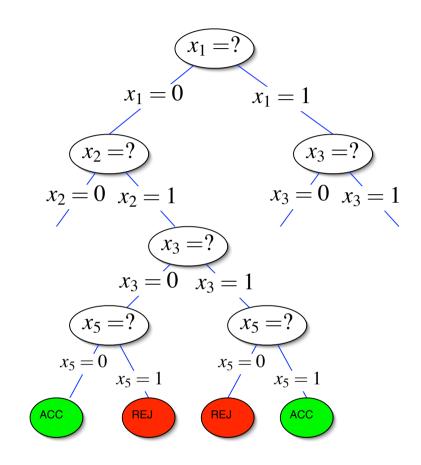
Quantum and randomized query complexity lower bounds using Kolmogorov adversary arguments

Sophie Laplante - LRI Frédéric Magniez - CNRS LRI Université Paris-Sud, Orsay

Query complexity: classical model

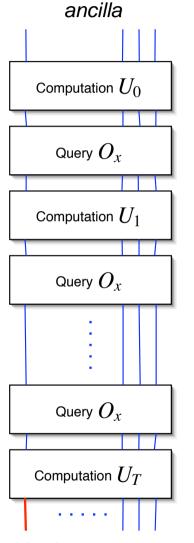


For any boolean function *f*:

- <u>Goal</u> compute f(x)
- Cost worst case number of queries to bits of x

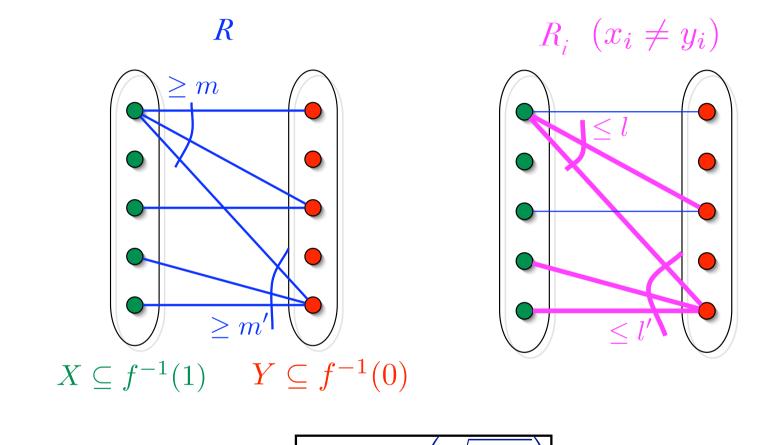
DT(f) = depth of the shallowest decision tree that computes f

Query complexity: quantum model



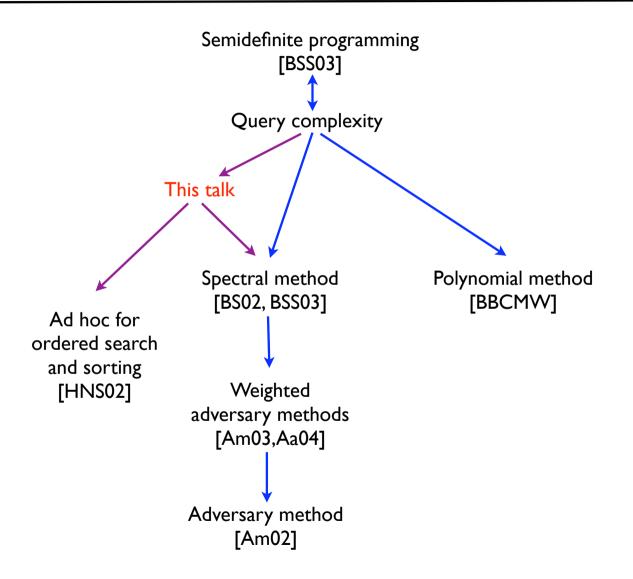
- Queries : unitary transformation O_x that maps $|i,b\rangle$ to $|i,b\oplus x_i\rangle$ (identity on remaining qubits)
- Computation : $|\psi_T\rangle = U_T O_x \cdots O_x U_0 |0\rangle$
- Output : Measure first qubit of $|\psi_T
 angle$
- Error probability bounded by 1/3
- Same model with stochastic matrices for randomized query complexity

Ambainis' unweighted adversary method



$$\mathsf{QQC} \geq \Omega\left(\sqrt{\frac{mm'}{ll'}}\right)$$

Quantum lower bound techniques



Defn K(x|y) is the length of the shortest program that prints x, given as input the string y

For any finite set of strings A,

- $\forall x \in A \ K(x|A) \le \log(|A|)$
- $\exists x \in A \ K(x|A) \ge \log(|A|)$
 - Such a string x is called incompressible with respect to A.
 - Incompressible strings are "typical", behave like strings taken at random from A.

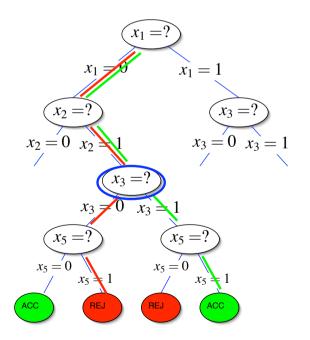
- Captures intuition of "not enough information to carry out computational task".
- Similar to, but often easier to apply than:
 - Information theoretic techniques,
 - Probabilistic method.

Simple case: decision tree complexity

For any function $f : \{0,1\}^n \to D$ and any inputs x, y such that $f(x) \neq f(y)$, if T decides f, its deterministic decision tree complexity is $DT(f) \geq \min_{i:x_i \neq y_i} \{\max\{2^{K(i|x,T)}, 2^{K(i|y,T)}\}\}$

Claim:

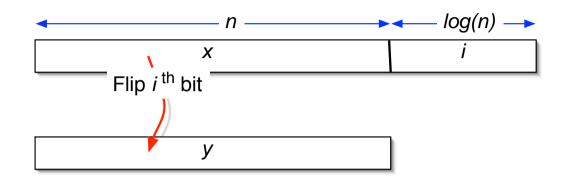
 $\exists i : x_i \neq y_i \ (i = 3)$ $K(i|x,T) \leq \log(DT(f))$ $K(i|y,T) \leq \log(DT(f))$ $\frac{x = 01011}{y = 01101}$



For any function $f: \{0,1\}^n \to D$ and any inputs x, y such that $f(x) \neq f(y)$ if A decides f,

• The quantum query complexity is $QQC \ge \Omega\left(\frac{1}{\sum_{i:x_i \neq y_i} \sqrt{2^{-K(i|x,A) - K(i|y,A)}}}\right)$

• The randomized query complexity is $\operatorname{RQC} \ge \Omega\left(\frac{1}{\sum_{i:x_i \neq y_i} \min\{2^{-K(i|x,A)}, 2^{-K(i|y,A)}\}}\right)$ Example: Lower bound for parity



Pick an incompressible string of length $n + \log(n)$

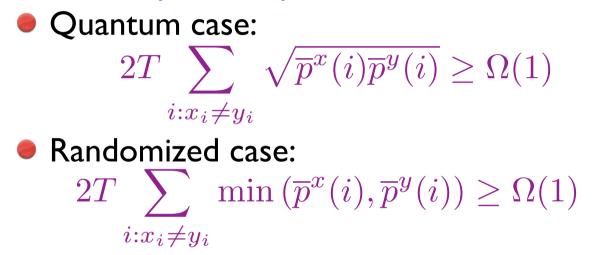
- $K(i|x) \ge log(n)$
- $\quad \bullet \quad n + \log(n) \leq K(i,x) \leq K(i,y) \text{ , so}$
- $K(i|y) \ge \log(n)$

Therefore

$$QQC(Parity) \ge \Omega\left(\sqrt{2^{2\log(n)}}\right) = \Omega(n)$$

Sketch of proof (1/2)

I. Model-dependent part



$$p_t^x(\mathbf{i}) = probability of querying \mathbf{i}$$
 at step t on input x .
 $\overline{p}^x(\mathbf{i}) = rac{1}{T} \sum_t p_t^x(\mathbf{i})$

П

Sketch of proof (2/2)

2. Model-independent part

Using the Shannon-Fano code for the probability distribution on queries,

$$K(i|x,A) \leq \log\left(\frac{1}{\overline{p^x}(i)}\right)$$
 Therefore,

• Quantum case: $2T \sum \sqrt{2^{-1}}$

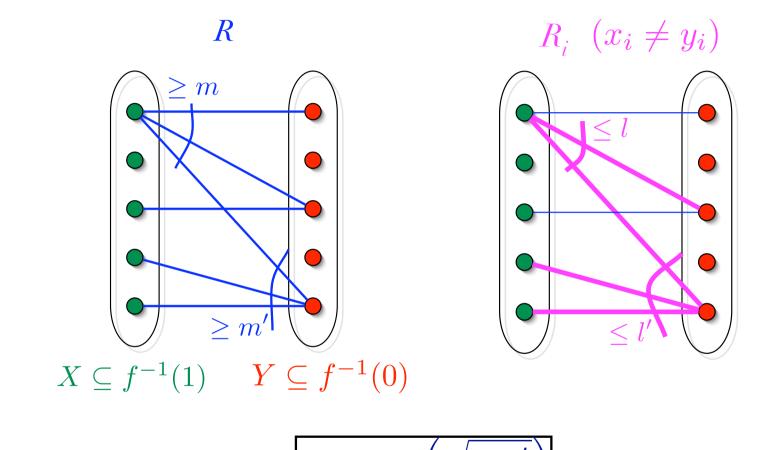
$$\Gamma \sum_{i:x_i \neq y_i} \sqrt{2^{-K(i|x,A) - K(i|x,A)}} \ge \Omega(1)$$

Randomized case:

$$2T\sum_{i:x_i \neq y_i} \min\{2^{-K(i|x,A)}, 2^{-K(i|y,A)}\} \ge \Omega(1)$$

QED

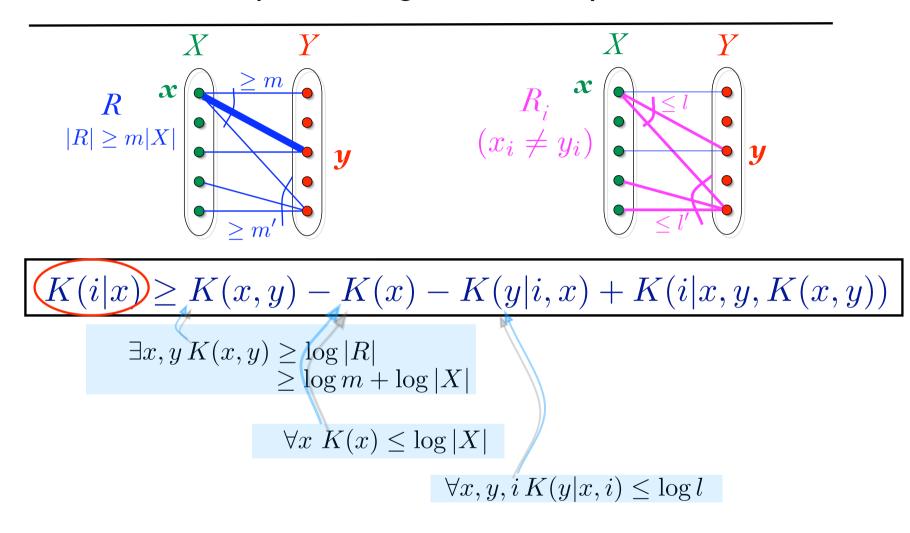
Ambainis' unweighted adversary method



$$\mathsf{QQC} \geq \Omega\left(\sqrt{\frac{mm'}{ll'}}\right)$$

13

Main theorem implies unweighted adversary method



 $\geq \log(\frac{m}{l}) + K(i|x, y, K(x, y))$

We have shown
$$\exists x, y \ \forall i \ \text{s.t.} \ x_i \neq y_i$$

$$K(i|x) \geq \log(\frac{m}{l}) + K(i|x, y, K(x, y))$$

$$K(i|y) \geq \log(\frac{m'}{l'}) + K(i|x, y, K(x, y))$$
Recall the general theorem:

$$QQC \geq \Omega\left(\frac{1}{\sum_{i:x_i \neq y_i} \sqrt{2^{-K(i|x) - K(i|y)}}}\right)$$

and apply Kraft's inequality:

$$\mathsf{QQC} \geq \Omega\left(\sqrt{\frac{mm'}{ll'}}\right)$$

Certificate complexity

A b-certificate of size m for f is a partial assignment of m bits of the input, which forces the value of a function f to b (b=0,1).

> 0-certificate: f(*0*11**0*0***) = 0 1-certificate: f(*0*1***1*0*0*) = 1

• The *b*-certificate complexity, $C_b(f)$, is the size of the largest minimal *b*-certificate for *f*.

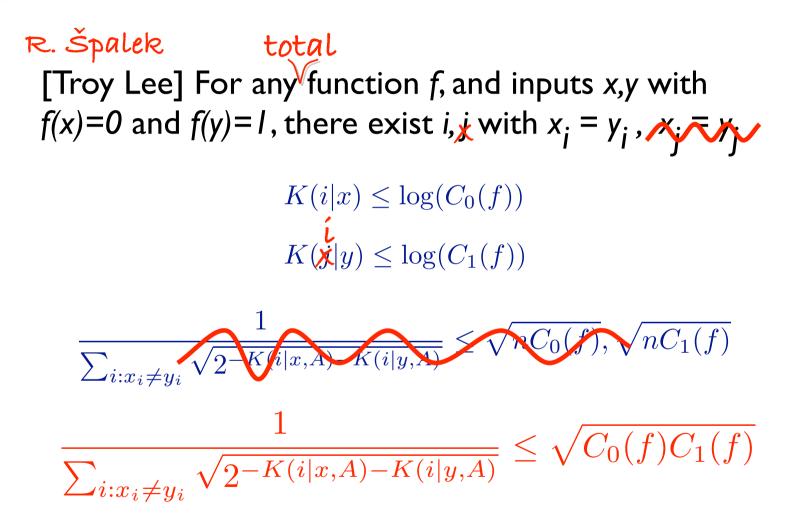
Bipartiteness: an odd cycle is a 0-certificate.

• Connectivity: a spanning tree is a I-certificate.

[Troy Lee] Consider x,y with f(x)=0 and f(y)=1. *0-certificate consistent with x:* f(*0*11**0*0***) = 0f(y) = ISo there exists *i* with $x_i \neq y_i$, such that $K(i|x) \le \log(C_0(f))$ Similarly, there exists j with $x_i \neq y_i$ $K(j|y) < \log(C_1(f))$ $\frac{1}{\sum_{i:x_i \neq y_i} \sqrt{2^{-K(i|x,A) - K(i|y,A)}}} \le \sqrt{nC_0(f)}, \sqrt{nC_1(f)}$ (Indep. S. Zhang, for weighted method, ICALP 2004)

17

Limits of adversary methods



- New framework to prove lower bounds in query complexity.
- Unified proofs for quantum and randomized lower bounds.
- Generalizes previous adversary methods.
- Applies to boolean as well as non-boolean functions.
- Easy-to-prove limits of adversary methods in terms of certificate complexity.

- Lower bounds for bounded rounds (adaptive vs nonadaptive queries).
- Similar techniques involving K(i|x) may apply to other models, such as communication complexity, time/space tradeoffs.
- Quantum Kolmogorov complexity might be necessary to handle these models.