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Query complexity: classical model
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Text

DT(f) = depth of the shallowest decision 
tree that computes f

For any boolean 
function f:

Goal compute f(x)

Cost worst case 
number of queries 
to bits of x
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Queries : unitary transformation       
that maps        to               (identity 
on remaining qubits)

Computation : 

Output :  Measure first qubit of                      

Error probability bounded by 1/3

Same model with stochastic matrices 
for randomized query complexity

Query complexity: quantum model

Ox

|i, b〉 |i, b⊕xi〉

|ψT 〉

|ψT 〉 = UT Ox · · ·OxU0|0〉

Computation U0

Query Ox

Computation U1

Query Ox

Query Ox  

Computation UT

output

ancilla
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Ri (xi != yi)R

Y ⊆ f−1(0)X ⊆ f−1(1)

Ambainis’ unweighted adversary method

≥ m

≥ m
′

≤ l

≤ l
′

QQC ≥ Ω

(√
mm′

ll′

)
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Quantum lower bound techniques

Semidefinite programming 
[BSS03]

Polynomial method
[BBCMW]

Spectral method 
[BS02, BSS03]

This talk

Weighted
adversary methods 

[Am03,Aa04]

Adversary method 
[Am02]

Ad hoc for 
ordered search

and sorting
[HNS02]

Query complexity
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Defn              is the length of the shortest program 
that prints   , given as input the string 

For any finite set of strings A, 

               

 

Such a string x is called incompressible with 
respect to A.

Incompressible strings are “typical’’, behave like 
strings taken at random from A. 

K(x|y)
x y

Kolmogorov complexity

∀x ∈ A K(x|A) ≤ log(|A|)

∃x ∈ A K(x|A) ≥ log(|A|)



Captures intuition of  “not enough information to 
carry out computational task”.

Similar to, but often easier to apply than:

Information theoretic techniques,

Probabilistic method.
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Why use Kolmogorov complexity?
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Simple case: decision tree complexity

For any function                                                                          and any 
inputs         such that                                            , if  T decides f, its 
deterministic decision tree complexity is

f : {0, 1}n → D
x, y f(x) != f(y)

x1 =?

x1 = 1x1 = 0

x2 =?

x2 = 1x2 = 0

x3 =?

x3 = 1x3 = 0

x3 =?

x3 = 1x3 = 0

x5 =?

x5 = 1

x5 = 0

x5 =?

x5 = 1

x5 = 0

ACC ACCREJ REJ

y = 01101

x = 01011

(i = 3)

DT (f) ≥ min
i:xi !=yi

{max{2K(i|x,T ), 2K(i|y,T )}}

∃i : xi "= yi

K(i|x, T ) ≤ log(DT (f))

K(i|y, T ) ≤ log(DT (f))

Claim:



9

For any function  

and any inputs        such that 

if A decides f, 

The quantum query complexity is

The randomized query complexity is

f : {0, 1}n → D

x, y f(x) != f(y)

Main Theorem

QQC ≥ Ω

(
1∑

i:xi !=yi

√
2−K(i|x,A)−K(i|y,A)

)

RQC ≥ Ω

(
1∑

i:xi !=yi
min{2−K(i|x,A)

, 2−K(i|y,A)}

)
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Example: Lower bound for parity

Pick an incompressible string of length 

  

                                               , so

Therefore 

n + log(n)

K(i|x) ≥ log(n)

n + log(n) ≤ K(i, x) ≤ K(i, y)

K(i|y) ≥ log(n)

QQC(Parity) ≥ Ω
(√

22 log(n)
)

= Ω (n)

x i

n log(n)

y

Flip i th bit



1. Model-dependent part
Quantum case:

Randomized case:

          = probability of querying i at step t on input x.  
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px

t
(i)i

px(i) =
1

T

∑

t

px

t
(i)i i

Sketch of proof (1/2)

2T
∑

i:xi !=yi

√
px(i)py(i) ≥ Ω(1)

2T
∑

i:xi !=yi

min (px(i), py(i)) ≥ Ω(1)



2. Model-independent part
Using the Shannon-Fano code for the 
probability distribution on queries,

Therefore,
Quantum case:

Randomized case:
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QED

Sketch of proof (2/2)

2T
∑

i:xi !=yi

min{2−K(i|x,A), 2−K(i|y,A)} ≥ Ω(1)

K(i|x,A) ≤ log

(
1

px(i)

)

2T

∑

i:xi !=yi

√
2−K(i|x,A)−K(i|x,A) ≥ Ω(1)

Sketch of proof (2/2)
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Ri (xi != yi)R

Y ⊆ f−1(0)X ⊆ f−1(1)

Ambainis’ unweighted adversary method

≥ m

≥ m
′

≤ l

≤ l
′

QQC ≥ Ω

(√
mm′

ll′

)



K(x, y) ≤ K(x) + K(i|x) + K(y|i, x) − K(i|x, y,K(x, y))
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R

≥ log(m

l
) + K(i|x, y,K(x, y))

Ri
(xi != yi)

≥ m

≥ m
′

≤ l

≤ l
′

Main theorem implies unweighted adversary method

K(i|x) ≥ K(x, y) − K(x) − K(y|i, x) + K(i|x, y,K(x, y))

|R| ≥ m|X|

≥ log m + log |X|
∃x, y K(x, y) ≥ log |R|

∀x K(x) ≤ log |X|

∀x, y, i K(y|x, i) ≤ log l

X XY Y
x

y

x

y
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We have shown  

Recall the general theorem:

and apply Kraft’s inequality:

Main theorem implies unweighted adversary method

QQC ≥ Ω

(√
mm′

ll′

)

K(i|x) ≥ log(
m

l
) + K(i|x, y, K(x, y))

K(i|y) ≥ log(
m′

l′
) + K(i|x, y, K(x, y))

∃x, y ∀i s.t. xi #= yi

QQC ≥ Ω

(
1∑

i:xi !=yi

√
2−K(i|x)−K(i|y)

)



A b-certificate of size m for f is a partial assignment of 
m bits of the input, which forces the value of a 
function f to b (b=0,1).

The b-certificate complexity, Cb(f), is the size of the 

largest minimal b-certificate for f.

Bipartiteness: an odd cycle is a 0-certificate.  

Connectivity: a spanning tree is a 1-certificate.
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Certificate complexity

0-certificate: f(*0*11**0*0***) = 0
1-certificate: f(*0*1***1*0*0*) = 1



[Troy Lee] Consider x,y with f(x)=0 and f(y)=1. 
0-certificate consistent with x: 

f(*0*11**0*0***) = 0
f(y) = 1

So there exists i with xi =̷ yi ,  such that

Similarly, there exists j with xj =̷ yj 
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Limits of adversary methods

K(i|x) ≤ log(C0(f))

1
∑

i:xi !=yi

√
2−K(i|x,A)−K(i|y,A)

≤
√

nC0(f),
√

nC1(f)

K(j|y) ≤ log(C1(f))

(Indep. S. Zhang, for weighted method,
ICALP 2004)



[Troy Lee] For any function f, and inputs x,y with 
f(x)=0 and f(y)=1, there exist i, j with xi = yi ,  xj = yj
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Limits of adversary methods

K(i|x) ≤ log(C0(f))

K(j|y) ≤ log(C1(f))

1
∑

i:xi !=yi

√
2−K(i|x,A)−K(i|y,A)

≤
√

nC0(f),
√

nC1(f)

total

x

xi

R. Špalek

1
∑

i:xi !=yi

√
2−K(i|x,A)−K(i|y,A)

≤
√

C0(f)C1(f)
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Summary of results

New framework to prove lower bounds in 
query complexity.

Unified proofs for quantum and randomized 
lower bounds.

Generalizes previous adversary methods.

Applies to boolean as well as non-boolean 
functions.

Easy-to-prove limits of adversary methods in 
terms of certificate complexity.
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Directions for future work

Lower bounds for bounded rounds (adaptive vs 
nonadaptive queries).

Similar techniques involving K(i|x) may apply to 
other models, such as communication 
complexity, time/space tradeoffs.

Quantum Kolmogorov complexity might be 
necessary to handle these models.


