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Abstract

We introduce two new complexity measures for Boolean
functions, which we name sumPI and maxPI. The quan-
tity sumPI has been emerging through a line of research
on quantum query complexity lower bounds via the so-
called quantum adversary method [Amb02, Amb03, BSS03,
Zha04, LM04], culminating in [ŠS04] with the realization
that these many different formulations are in fact equiva-
lent. Given that sumPI turns out to be such a robust invari-
ant of a function, we begin to investigate this quantity in its
own right and see that it also has applications to classical
complexity theory.

As a surprising application we show that sumPI2(f) is a
lower bound on the formula size, and even, up to a con-
stant multiplicative factor, the probabilistic formula size
of f . We show that several formula size lower bounds
in the literature, specifically Khrapchenko and its exten-
sions [Khr71, Kou93], including a key lemma of [Hås98],
are in fact special cases of our method. The second quan-
tity we introduce, maxPI(f), is always at least as large as
sumPI(f), and is derived from sumPI in such a way that
maxPI2(f) remains a lower bound on formula size.

Our main result is proven via a combinatorial lemma
which relates the square of the spectral norm of a matrix
to the squares of the spectral norms of its submatrices. The
generality of this lemma gives that our methods can also be
used to lower bound the communication complexity of re-
lations, and a related combinatorial quantity, the rectangle
partition number.

To exhibit the strengths and weaknesses of our methods,
we look at the sumPI and maxPI complexity of a few ex-
amples, including the recursive majority of three function,
a function defined by Ambainis [Amb03], and the collision
problem.

1 Introduction

A central and longstanding open problem in complexity
theory is to prove superlinear lower bounds for the circuit
size of an explicit Boolean function. While this seems quite
difficult, a modest amount of success has been achieved in
the slightly weaker model of formula size, a formula being
simply a circuit where every gate has fan-out at most one.
The current best formula size lower bound for an explicit
function is n3−o(1) by Håstad [Hås98].

In this paper we show that part of the rich theory de-
veloped around proving lower bounds on quantum query
complexity, namely the so-called quantum adversary argu-
ment, can be brought to bear on formula size lower bounds.
This adds to the growing list of examples of how studying
quantum computing has led to new results in classical com-
plexity, including [SV01, KW03, Aar04, LM04], to cite just
a few.

The roots of the quantum adversary argument can be
traced to the hybrid argument of [BBBV97], who use it
to show a Ω(

√
n) lower bound on quantum search. Am-

bainis developed a more sophisticated adversary argument
[Amb02] and later improved this method to the full-strength
quantum adversary argument [Amb03]. Further general-
izations include Barnum, Saks, and Szegedy [BSS03] with
their spectral method and Zhang [Zha04] with his strong
adversary method. Laplante and Magniez [LM04] use Kol-
mogorov complexity to capture the adversary argument in
terms of a minimization problem. This line of research cul-
minates in recent work of Špalek and Szegedy [ŠS04] who
show that in fact all the methods of [Amb03, BSS03, Zha04,
LM04] are equivalent.

The fact that the quantum adversary argument has so
many equivalent definitions indicates that it is a natu-
ral combinatorial property of Boolean functions which is
worthwhile to investigate on its own. We give this quan-



tity its own name, sumPI, and adopt the following primal
formulation of the method, from [ŠS04, LM04]. Letting
S ⊆ {0, 1}n and f : S → {0, 1}, be a Boolean function we
say

sumPI(f) = min
p

max
x,y

f(x)6=f(y)

1∑
i

xi 6=yi

√
px(i)py(i)

, (1)

where p = {px : x ∈ S} is a family of probability distribu-
tions on the indices [n]. If Qε(f) is the two sided error quan-
tum query complexity of f then Qε(f) = Ω(sumPI(f)).
We show further that sumPI2(f) is a lower bound on the
formula size of f . Moreover, sumPI2(f) generalizes sev-
eral formula size lower bounds in the literature, specifically
Khrapchenko and its extensions [Khr71, Kou93], and a key
lemma of [Hås98] used on the way to proving the current
best formula size lower bounds for an explicit function.

We also introduce

KI(f) = min
α∈Σ∗

max
x,y

f(x)6=f(y)

min
i:xi 6=yi

K(i|x, α) + K(i|y, α),

where K is prefix-free Kolmogorov complexity. This for-
mulation arises from the quantum and randomized lower
bounds of [LM04]. This formulation is especially inter-
esting because of the intuition that it provides. For ex-
ample, it allows for a very simple proof that circuit depth
d(f) ≥ KI(f), using the Karchmer-Wigderson characteri-
zation of circuit depth [KW88].

We define a quantity closely related to 2KI, which we call
maxPI.

maxPI(f) = min
p

max
x,y

f(x)6=f(y)

1
maxi:xi 6=yi

√
px(i)py(i)

. (2)

Notice that this is like sumPI but where the sum is re-
placed by a maximum. By definition, maxPI is larger than
sumPI, but its square is still a lower bound on formula
size. However, maxPI is no longer a lower bound on quan-
tum query complexity in general, and we give an exam-
ple of a partial function f for which sumPI(f) = 2 and
maxPI(f) =

√
n/2. For this function, the collision prob-

lem, maxPI(f) � Qε(f) = Θ(n1/3) [AS04, BHT97].
We look at several concrete problems to illustrate the

strengths and weaknesses of our methods. We study the
height h recursive majority of three problem, R−MAJh

3 ,
and show that Qε(R−MAJh

3 ) = Ω(2h) and a lower bound
of 4h for the formula size. We also look at a function de-
fined by Ambainis [Amb03] to separate the quantum query
complexity of a function from the bound given by the poly-
nomial method [BBC+01]. This function gives an exam-
ple where sumPI2 can give something much better than
Khraphchenko’s bound. We also give bounds for the col-
lision problem.

1.1 Organization

In Section 2, we give the definitions, results, and notation
that we use throughout the paper, and introduce the quanti-
ties sumPI, maxPI, and KI. In Section 3 we prove some
properties of sumPI and maxPI. In Section 4, we show how
sumPI and maxPI give rise to formula size lower bounds,
for deterministic and probabilistic formula size. In Sec-
tion 5, we compare our new methods with previous methods
in formula size complexity. In Section 6, we investigate the
limits of our and other formula lower bound methods. Fi-
nally, in Section 7 we apply our techniques to some concrete
problems.

2 Preliminaries

We use standard notation such as [n] = {1, . . . , n}, |S|
for the cardinality of a set S, and all logarithms are base 2.
Hamming distance is written dH .

2.1 Complexity measures of Boolean functions

We use standard measures of Boolean functions, such
as sensitivity and certificate complexity. We briefly re-
call these here, see [BW02] for more details. For a set
S ⊆ {0, 1}n and Boolean function f : S → {0, 1}, the
sensitivity of f on input x is the number of positions i ∈ [n]
such that changing the value of x in position i changes the
function value. The zero-sensitivity, written s0(f) is the
maximum over x ∈ f−1(0) of the sensitivity of f on x.
The one-sensitivity, s1(f) is defined analogously. The max-
imum of s0(f), s1(f) is the sensitivity of f , written s(f).

A certificate for f on input x ∈ S is a subset I ⊆ [n]
such that for any y satisfying yi = xi for all i ∈ I it must be
the case that f(y) = f(x). The zero-certificate complexity
of f , written C0(f) is the maximum over all x ∈ f−1(0)
of the minimum size certificate of x. Similarly, the one-
certificate complexity of f , written C1(f) is the maximum
over all x ∈ f−1(1) of the minimum size certificate of x.

2.2 Linear algebra

For a matrix A (respectively, vector v) we write AT

(resp. vT ) for the transpose of A, and A∗ (resp. v∗) for
the conjugate transpose of A. For two matrices A,B we
let A ◦ B be the Hadamard product of A and B, that is
(A◦B)[x, y] = A[x, y]B[x, y]. We write A ≥ B if A is en-
trywise greater than B, and A � B when A−B is positive
semidefinite, that is ∀v : vT (A − B)v ≥ 0. We let rk(A)
denote the rank of the matrix A.

We will make extensive use of the spectral norm, denoted
‖A‖2. For a matrix A,

‖A‖2 = {
√

λ : λ is the largest eigenvalue of A∗A}.



For a vector v, we let |v| be the `2 norm of v.
We will also make use of the maximum abso-

lute column sum norm, written ‖A‖1 and defined as
‖A‖1 = maxj

∑
i |A[i, j]|, and the maximum absolute

row sum norm, written ‖A‖∞ and defined ‖A‖∞ =
maxi

∑
j |A[i, j]|.

We collect a few facts about the spectral norm. These
can be found in [HJ99].

Proposition 1 Let A be an arbitrary m by n matrix. Then

1. ‖A‖2 = maxu,v
|u∗Av|
|u||v|

2. ‖A‖2
2 ≤ ‖A‖1‖A‖∞

3. For nonnegative matrices A,B, if A ≤ B then ‖A‖2 ≤
‖B‖2

2.3 Deterministic and probabilistic formulae

A Boolean formula over the standard basis {∨,∧,¬} is
a binary tree where each internal node is labeled with ∨ or
∧, and each leaf is labeled with a literal, that is, a Boolean
variable or its negation. The size of a formula is its number
of leaves. We naturally identify a formula with the function
it computes.

Definition 2 Let f : {0, 1}n → {0, 1} be a Boolean func-
tion. The formula size of f , denoted L(f), is the size of the
smallest formula which computes f . The formula depth of
f , denoted d(f) is the minimum depth of a formula comput-
ing f .

It is clear that L(f) ≤ 2d(f); that in fact the opposite in-
equality d(f) ≤ O(log L(f)) also holds is a nontrivial re-
sult due to Spira [Spi71].

We will also consider probabilistic formulae, that is, a
probability distribution over deterministic formulae. We
take a worst-case notion of the size of a probabilistic for-
mula. Probabilistic formula size has been studied before,
for example in [Val84, Bop89, DZ97, Kla04].

Definition 3 Let {fj}j∈J be a set of functions with fj :
S → {0, 1} for each j ∈ J . For a function f : S → {0, 1},
we say that f is ε-approximated by {fj}j∈J if there is a
probability distribution α = {αj}j∈J over J such that for
every x ∈ S,

Pr
α

[f(x) = fj(x)] ≥ 1− ε.

In particular, if maxj L(fj) ≤ s, then we say that f is ε-
approximated by formulas of size s, denoted Lε(f) ≤ s.

Note that even if a function depends on all its variables,
it is possible that the probabilistic formula size is less than
the number of variables.

2.4 Communication complexity of relations

Karchmer and Wigderson [KW88] give an elegant char-
acterization of formula size in terms of a communication
game. We will use this framework to present our lower
bounds. This presentation has the advantage of showing
that our methods work more generally for the communica-
tion complexity of relations beyond the “special case” of
formula size. The framework of communication complex-
ity also allows us to work with the rectangle partition num-
ber, CD(R), which is known to lower bound communica-
tion complexity and arises very naturally when using our
techniques.

Let X, Y, Z be finite sets, and R ⊆ X×Y×Z. In the
communication game for R, Alice is given some x ∈ X ,
Bob is given some y ∈ Y and their goal is to find some
z ∈ Z such that (x, y, z) ∈ R, if such a z exists. A commu-
nication protocol is a binary tree where each internal node
v is labelled by a either a function av : X → {0, 1} or
bv : Y → {0, 1} describing either Alice’s or Bob’s mes-
sage at that node, and where each leaf is labelled with
an element z ∈ Z. A communication protocol computes
R if for all (x, y) ∈ X×Y walking down the tree ac-
cording to av, bv leads to a leaf labelled with z such that
(x, y, z) ∈ R, provided such a z exists. The communica-
tion cost D(R) of R is the height of the smallest commu-
nication protocol computing R. The communication matrix
of R is the matrix MR[x, y] = {z : R(x, y, z)}. A rect-
angle X ′×Y ′ with X ′ ⊆ X and Y ′ ⊆ Y is monochro-
matic if

⋂
x∈X′,y∈Y ′ MR[x, y] 6= ∅. The protocol parti-

tion number CP (R) is the number of leaves in the small-
est communication protocol computing R, and the rectangle
partition number CD(R) is the smallest number of disjoint
monochromatic rectangles required to cover X×Y . (Note
that CD(R) ≤ CP (R).)

Definition 4 For any Boolean function f we associate a re-
lation Rf = {(x, y, i) : f(x) = 0, f(y) = 1, xi 6= yi}.

Theorem 5 (Karchmer-Wigderson) For any Boolean
function f , L(f) = CP (Rf ) and d(f) = D(Rf ).

2.5 sumPI and the quantum adversary method

Knowledge of quantum computing is not needed for
reading this paper; for completeness, however, we briefly
sketch the quantum query model. More background on
quantum query complexity and quantum computing in gen-
eral can be found in [BW02, NC00].

As with the classical counterpart, in the quantum query
model we wish to compute some function f : S → {0, 1},
where S ⊆ Σn, and we access the input through queries.
The complexity of f is the number of queries needed to
compute f . Unlike the classical case, however, we can now



make queries in superposition. Formally, a query O corre-
sponds to the unitary transformation

O : |i, b, z〉 7→ |i, b⊕ xi, z〉

where i ∈ [n], b ∈ {0, 1}, and z represents the workspace.
A t-query quantum algorithm A has the form A =
UtOUt−1O · · ·OU1OU0, where the Uk are fixed unitary
transformations independent of the input x. The compu-
tation begins in the state |0〉, and the result of the com-
putation A is the observation of the rightmost bit of A|0〉.
We say that A ε-approximates f if the observation of the
rightmost bit of A|O〉 is equal to f(x) with probability at
least 1− ε, for every x. We denote by Qε(f) the minimum
query complexity of a quantum query algorithm which ε-
approximates f .

Along with the polynomial method [BBC+01], one
of the main techniques for showing lower bounds in
quantum query complexity is the quantum adversary
method [Amb02, Amb03, BSS03, Zha04, LM04]. Re-
cently, Špalek and Szegedy [ŠS04] have shown that all the
strong versions of the quantum adversary method are equiv-
alent, and further that these methods can be nicely charac-
terized as primal and dual.

We give the primal characterization as our principal def-
inition of sumPI.

Definition 6 (sumPI) Let S ⊆ {0, 1}n and f : S → {0, 1}
be a Boolean function. For every x ∈ S let px : [n] →
R be a probability distribution, that is, px(i) ≥ 0 and∑

i px(i) = 1. Let p = {px : x ∈ S}. We define the
sum probability of indices to be

sumPI(f) = min
p

max
x,y

f(x)6=f(y)

1∑
i

xi 6=yi

√
px(i)py(i)

We will also use two versions of the dual method, both a
weight scheme and the spectral formulation. The most con-
venient weight scheme for us is the “probability scheme”,
given in Lemma 4 of [LM04].

Definition 7 (Probability Scheme) Let S ⊆ {0, 1}n and
f : S → {0, 1} be a Boolean function, and X =
f−1(0), Y = f−1(1). Let q be a probability distribution
on X×Y , and pA, pB be probability distributions on X, Y
respectively. Finally let {p′x,i : x ∈ X, i ∈ [n]} and
{p′y,i : y ∈ Y, i ∈ [n]} be families of probability distri-
butions on X, Y respectively. Assume that q(x, y) = 0
when f(x) = f(y). Let P range over all possible tuples
(q, pA, pB , {p′x,i}x,i) of distributions as above. Then

PA(f) = max
P

min
x,y,i

f(x)6=f(y),xi 6=yi

√
pA(x)pB(y)p′x,i(y)p′y,i(x)

q(x, y)

We will also use the spectral adversary method.

Definition 8 (Spectral Adversary) Let S ⊆ {0, 1}n and
f : S → {0, 1} be a Boolean function. Let X =
f−1(0), Y = f−1(1). Let Γ 6= 0 be an arbitrary |X|×|Y |
non-negative symmetric matrix that satisfies Γ[x, y] = 0
whenever f(x) = f(y). For i ∈ [n], let Γi be the matrix:

Γi[x, y] =
{

0 if xi = yi

Γ[x, y] if xi 6= yi

Then

SA(f) = max
Γ

‖Γ‖2

maxi ‖Γi‖2

Note that the spectral adversary method was initially de-
fined [BSS03] for symmetric matrices over X ∪ Y . The
above definition is equivalent: if A is a X ∪ Y matrix sat-
isfying the constraint that A[x, y] = 0 when f(x) = f(y)

then A is of the form A =
[

0 B
BT 0

]
, for some matrix

B over X×Y . Then the spectral norm of A is equal to that
of B. Similarly, for any X×Y matrix A we can form a
symmetrized version of A as above preserving the spectral
norm.

We will often use the following theorem implicitly in
taking the method most convenient for the particular bound
we wish to demonstrate.

Theorem 9 (Špalek-Szegedy) Let n ≥ 1 be an integer,
S ⊆ {0, 1}n and f : S → {0, 1}. Then

sumPI(f) = SA(f) = PA(f)

2.6 The KI and maxPI complexity measures

The definition of KI arises from the Kolmogorov com-
plexity adversary method [LM04]. The Kolmogorov com-
plexity CU (x) of a string x, with respect to a universal
Turing machine U is the length of the shortest program p
such that U(p) = x. The complexity of x given y, de-
noted C(x|y) is the length of the shortest program p such
that U(〈p, y〉) = x. When U is such that the set of out-
puts is prefix-free (no string in the set is prefix of another in
the set), we write KU (x|y). From this point onwards, we
fix U and simply write K(x|y). For more background on
Kolmogorov complexity consult [LV97].

Definition 10 Let S ⊆ Σn for an alphabet Σ. For any
function f : S → {0, 1}, let

KI(f) = min
α∈Σ∗

max
x,y

f(x)6=f(y)

min
i:xi 6=yi

K(i|x, α) + K(i|y, α).

The advantage of using concepts based on Kolmogorov
complexity is that they often naturally capture the informa-
tion theoretic content of lower bounds. As an example of
this, we give a simple proof that KI is a lower bound on
circuit depth.



Theorem 11 For any Boolean function f , KI(f) ≤ d(f).

Proof: Let P be a protocol for Rf . Fix x, y with different
values under f , and let TA be a transcript of the messages
sent from A to B, on input x, y. Similarly, let TB be a tran-
script of the messages sent from B to A. Let i be the output
of the protocol, with xi 6= yi. To print i given x, simulate
P using x and TB . To print i given y, simulate P using y
and TA. This shows that ∀x, y : f(x) 6= f(y),∃i : xi 6=
yi,K(i|x, α) + K(i|y, α) ≤ |TA|+ |TB | ≤ D(Rf ), where
α is a description of A’s and B’s algorithms. 2

Remark A similar proof in fact shows that KI(f) ≤
2N(Rf ), where N is the nondeterministic communication
complexity. Since the bound does not take advantage of in-
teraction between the two players, in many cases we cannot
hope to get optimal lower bounds using these techniques.

An argument similar to that in [ŠS04] shows that

2KI(f) = Θ

(
min

p
max

x,y
f(x)6=f(y)

1
maxi

√
px(i)py(i)

)
Notice that the right hand side of the equation is identical to
the definition of sumPI, except that the sum in the denom-
inator is replaced by a maximum. This led us to define the
complexity measure maxPI, in order to get stronger formula
size lower bounds.

Definition 12 (maxPI) Let f : S → {0, 1} be a function
with S ⊆ Σn. For every x ∈ S let px : [n] → R be a
probability distribution. Let p = {px : x ∈ S}. We define
the maximum probability of indices to be

maxPI(f) = min
p

max
x,y

f(x)6=f(y)

1
maxi

√
px(i)py(i)

It can be easily seen from the definitions that sumPI(f) ≤
maxPI(f) for any f . The following lemma is also straight-
forward from the definitions:

Lemma 13 If S′ ⊆ S and f ′ : S′ → {0, 1} is a domain
restriction of f : S → {0, 1} to S′, then sumPI(f ′) ≤
sumPI(f) and maxPI(f ′) ≤ maxPI(f).

3 Properties of sumPI and maxPI

3.1 Properties of sumPI

Although in general, as we shall see, sumPI gives weaker
formula size lower bounds than maxPI, the measure sumPI
has several nice properties which make it more convenient
to use in practice.

The next lemma shows that sumPI behaves like most
other complexity measures with respect to composition of
functions:

Lemma 14 Let g1, . . . , gn be Boolean functions, and h be
a function, h : {0, 1}n → {0, 1}. If sumPI(gj) ≤ a for
1 ≤ j ≤ n and sumPI(h) ≤ b, then for f = h(g1, . . . , gn),
sumPI(f) ≤ ab.

Proof: Let p be an optimal family of distribution functions
associated with h and pj be optimal families of distribution
functions associated with gj . Define the distribution func-
tion

qx(i) =
∑
j∈[n]

pg(x)(j)pj,x(i).

Assume that for x, y ∈ S we have f(x) 6= f(y). It is
enough to show that

∑
i: xi 6=yi

√∑
j∈[n]

pg(x)(j)pj,x(i)
√∑

j∈[n]

pg(y)(j)pj,y(i)

≥ 1
ab

. (3)

By Cauchy–Schwarz, the left hand side of Eq. 3 is
greater than or equal to∑

i:xi 6=yi

∑
j∈[n]

√
pg(x)(j)pj,x(i)

√
pg(y)(j)pj,y(i)

=
∑
j∈[n]

√pg(x)(j)pg(y)(j)
∑

i:xi 6=yi

√
pj,x(i)pj,y(i)

 .

(4)
As long as gj(x) 6= gj(y), by the definition of pj , we

have
∑

i:xi 6=yi

√
pj,x(i)

√
pj,y(i) ≥ 1/a. Thus we can es-

timate the expression in Eq. 4 from below by:

1
a

∑
j:gj(x) 6=gj(y)

√
pg(x)(j)pg(y)(j).

By the definition of p we can estimate the sum (without
the 1/a coefficient) in the above expression from below by
1/b, which finishes the proof. 2

Another advantage of working with sumPI complexity is
the following very powerful lemma of Ambainis [Amb03]
which makes it easy to lower bound the sumPI complexity
of iterated functions.

Definition 15 Let f : {0, 1}n → {0, 1} be any Boolean
function. We define the dth iteration of f , written fd :
{0, 1}nd → {0, 1}, inductively as f1(x) = f(x) and

fd+1(x) = f(fd(x1, . . . , xnd), fd(xnd+1, . . . , x2nd), . . . ,

fd(x(n−1)nd+1, . . . , xnd+1))



Lemma 16 (Ambainis) Let f be any Boolean function and
fd the dth iteration of f . Then sumPI(fd) ≥ (sumPI(f))d.

Combining this with Lemma 14, we get:

Corollary 17 Let f be any Boolean function and fd the dth
iteration of f . Then sumPI(fd) = (sumPI(f))d.

Lemmas 13 and 14 together with the adversary argu-
ment lower bound for the Grover search [Gro96, Amb02]
imply that for total Boolean functions, the square root of
the block sensitivity is a lower bound on the sumPI com-
plexity [Amb02]. Hence, by [NS94, BBC+01]:

Lemma 18 (Ambainis) For total Boolean functions the
sumPI complexity is in polynomial relation with the various
(deterministic, randomized, quantum) decision tree com-
plexities and the Fourier degree of the function.

3.2 Properties of maxPI

One thing that makes sumPI so convenient to use is that
it dualizes [ŠS04]. In this section we partially dualize the
expression maxPI. The final expression remains a mini-
mization problem, but we minimize over discrete index se-
lection functions, instead of families of probability distri-
butions, which makes it much more tractable. Still, we re-
mark that maxPI can take exponential time (in the size of
the truth table of f ) whereas, sumPI takes polynomial time
in the size of the truth table of f to compute by reduction to
semidefinite programming.

Definition 19 (Index selection functions) Let
f : {0, 1}n → {0, 1} be a Boolean function, X=f−1(0),
and Y =f−1(1). For i ∈ [n] let Di be |X|×|Y | be defined
by Di[x, y] = 1 − δxi,yi

. We call the set of n Boolean
(0− 1) matrices {Pi}i∈n index selection functions if

1.
∑

i Pi = E, where E[x, y] = 1 for every x ∈ X ,
y ∈ Y . (informally: for every x ∈ X , y ∈ Y we select
a unique index)

2. Pi ≤ Di (informally: for every x ∈ X , y ∈ Y the
index we select is an i such that xi 6= yi).

Notice that index selection functions correspond to par-
titioning X×Y , in such a way that if x, y are in the ith part,
then xi 6= yi.

Theorem 20 (Spectral adversary version of maxPI) Let
f,X, Y be as in the previous definition. Let A be an arbi-
trary |X|×|Y | nonnegative matrix satisfying A[x, y] = 0
whenever f(x) = f(y). Then

maxPI(f) = min
{Pi}i

max
A

‖A‖2

maxi ‖A ◦ Pi‖2
,

where {Pi}i runs through all index selection functions.

Proof: For a fixed family of probability distributions p =
{px}, and for the expression

max
x,y

f(x)6=f(y)

1
maxi:xi 6=yi

√
px(i)py(i)

, (5)

let us define the index selection function Pi[x, y] = 1 if
i = argmaxi:xi 6=yi

√
px(i)py(i) and 0 otherwise. (Argmax

is the smallest argument for which the expression attains its
maximal value.) Then the denominator in Eq. 5 becomes
equal to

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y]. If we replace the

above system of Pis with any other choice of index selection
function the value of

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y] will not

increase. Thus we can rewrite Eq. 5 as

max
x,y

f(x)6=f(y)

1
max{Pi}i

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y]

,

where here Pi[x, y] runs through all index selection func-
tions. Thus:

maxPI(f) =

1
/

max
p

min
x,y

f(x)6=f(y)

max
{Pi}i

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y]. (6)

Notice that in Eq. 6 the minimum is interchangeable with
the second maximum. The reason for this is that for a
fixed p there is a fixed {Pi[x, y]}i system that maximizes∑

i:xi 6=yi

√
px(i)py(i)Pi[x, y] for all x, y : f(x) 6= f(y).

Thus:
maxPI(f) =

1
/

max
{Pi}i

max
p

min
x,y

f(x)6=f(y)

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y].

Following the proof of the main theorem of Špalek and
Szegedy we can create the semidefinite version of the above
expression. The difference here, however, is that we have to
treat {Pi}i (the index selection functions) as a “parameter”
of the semidefinite system over which we have to maximize.
Unfortunately it also appears in the final expression.

Semidefinite version of maxPI: For fixed {Pi}i let µ′max

be the solution of the following semidefinite program:

maximize µ′

subject to (∀i) Ri � 0,∑
i Ri ◦ I = I,∑

i Ri ◦ Pi ≥ µ′F.

Define µmax as the maximum of µ′max, where Pi (1 ≤ i ≤
n) run through all index selection functions. Then maxPI =
1/µmax.

We can dualize the above program and simplify it in
same way as was done in Špalek and Szegedy for the case
of sumPI with the only change that Di needs to be replaced
with Pi, and that we have to minimize over all choices of
{Pi}i. 2



4 Formula size lower bounds

Karchmer and Wigderson [KW88] give an elegant char-
acterization of formula size in terms of a communication
game. We will use this framework to present our lower
bounds. This presentation has the advantage of showing
that our methods work more generally for the communica-
tion complexity of relations beyond the “special case” of
formula size. The framework of communication complex-
ity also allows us to work with a combinatorial quantity,
the rectangle partition number, CD(R), which is known
to lower bound communication complexity and arises very
naturally when using sumPI.

4.1 Key combinatorial lemma

We first prove a combinatorial lemma which is the key
to our main result. This lemma relates the spectral norm
squared of a matrix to the spectral norm squared of its sub-
matrices. This lemma may also be of independent interest.

Let X and Y be finite sets. A set system S (over X×Y )
will be called a covering if∪S∈SS = X×Y . Further, S will
be called a partition if S is a covering and the intersection
of any two distinct sets from S is empty. A rectangle (over
X×Y ) is an arbitrary subset of X×Y of the form X0×Y0

for some X0 ⊆ X and Y0 ⊆ Y . A set system R will be
called a rectangle partition if R is a partition and each R ∈
R is a rectangle. Let A be a matrix with rows indexed from
X and columns indexed from Y and let R be a rectangle
partition of X×Y . For a rectangle R = X0×Y0 ∈ R Let
AR be the |X0|×|Y0| submatrix of A corresponding to the
rectangle R. For subsets S ⊆ X×Y we define:

ÂS [x, y] = A[x, y], if (x, y) ∈ S and 0 otherwise. (7)

Notice that for a rectangle R, matrices AR and ÂR differ
only by a set of all-zero rows and columns. We are now
ready to state the lemma:

Lemma 21 Let A be an arbitrary |X|×|Y | matrix (possi-
bly with complex entries), andR a partition of X×Y . Then
‖A‖2

2 ≤
∑

R∈R ‖AR‖2
2

Proof: By Proposition 1, ‖A‖2 = maxu,v |u∗Av|, where
the maximum is taken over all unit vectors u, v. Let u, v be
the unit vectors realizing this maximimum. Then we have

‖A‖2 = |u∗Av| =

∣∣∣∣∣u∗
(∑

R∈R
ÂR

)
v

∣∣∣∣∣ =
∣∣∣∣∣∑
R∈R

u∗ÂRv

∣∣∣∣∣ .
Let u∗R be the portion of u∗ corresponding to the rows of R,
and vR be the portion of v corresponding to the columns of
R. Notice that {uR}R∈R do not in general form a partition

of u. We now have

‖A‖2 =

∣∣∣∣∣∑
R∈R

u∗RARvR

∣∣∣∣∣ ≤ ∑
R∈R

|u∗RARvR|

≤
∑
R∈R

‖AR‖2|uR||vR|

by Proposition 1. Applying the Cauchy–Schwarz inequal-
ity, we obtain

‖A‖2 ≤

(∑
R∈R

‖AR‖2
2

)1/2(∑
R∈R

|uR|2|vR|2
)1/2

.

Now it simply remains to observe that∑
R∈R

|uR|2|vR|2 =
∑
R∈R

∑
(x,y)∈R

u[x]2v[y]2 = |u|2|v|2 = 1,

as R is a partition of X×Y . 2

4.2 Deterministic formulae

In this section, we prove our main result that maxPI is a
lower bound on formula size. We first identify two natural
properties which are sufficient for a function to be a formula
size lower bound.

Definition 22 A function µ : 2X×Y → R+ is called a rect-
angle measure if the following properties hold.

1. (Subadditivity) For any rectangle partition R of
X×Y , µ(X×Y ) ≤

∑
R∈R µ(R).

2. (Monotonicity) For any rectangle R ⊆ X×Y , and
subset S ⊆ X×Y , if R ⊆ S then µ(R) ≤ µ(S).

Theorem 21 implies that for any |X|×|Y | matrix A with
non-negative entries S → ||ÂS || of expression (7) is a rect-
angle measure. Other examples include the rank of ÂS for
any matrix A over any field (see Section 5.4), and the µ-
rectangle size bounds of [KKN95].

Let S1,S2 be two families of sets over the same universe.
We say that S1 is embedded in S2 (S1 ≺ S2) if for every
S ∈ S1 there is a S′ ∈ S2 such that S ⊆ S′.

Theorem 23 Let µ be a rectangle measure over 2X×Y , S
be a covering of X×Y andR a rectangle partition of X×Y

such that R ≺ S. Then |R| ≥ µ(X×Y )
maxS∈S µ(S) .

The proof follows by subadditivity and monotonicity of µ.

Theorem 24 (Main Theorem)

sumPI2(f) ≤ maxPI2(f) ≤ CD(Rf ) ≤ L(f)



Proof: We have seen that sumPI2(f) ≤ maxPI2(f), and
CD(Rf ) ≤ L(f) follows from the Karchmer–Wigderson
communication game characterization of formula size, thus
we focus on the inequality maxPI2(f) ≤ CD(Rf ).

Let R be a monochromatic rectangle partition of Rf

such that |R| = CD(Rf ), and let A be an arbitrary
|X|×|Y | matrix with nonnegative real entries. For R ∈ R
let color(R) be the least index c such that xc 6= yc holds for
all (x, y) ∈ R. By assumption each R is monochromatic,
thus such a color exists. Define

Sc = ∪ color(R)=cR.

Then R is naturally embedded in the covering {Sc}c∈[n].
For any S ⊆ X×Y , let µA(S) = ‖ÂS‖2

2. By Lemma 21,
and item 3 of Proposition 1, µA is a rectangle measure.
Hence by Theorem 23,

max
A

‖A‖2
2

maxc ‖ÂSc
‖2
2

≤ CD(Rf ).

We have exhibited a particular index selection function, the
{Sc}c, for which this inequality holds, thus it also holds for
maxPI2(f) which is the minimum over all index selection
functions. 2

4.3 Probabilistic Formulae

The properties of sumPI allow us to show that it can be
used to lower bound the probabilistic formula size.

Lemma 25 Let ε < 1/2. If f : S → {0, 1} is ε-
approximated by functions {fj}j∈J with sumPI(fj) ≤ s
for every j ∈ J , then sumPI(f) ≤ s/(1− 2ε).

Proof: By assumption there is a probability distribution
α = {αj}j∈J such that Pr[f(x) = fj(x)] ≥ 1 − ε. Thus
for a fixed x ∈ S, letting Jx = {j ∈ J : f(x) = fj(x)}, we
have

∑
j∈Jx

αj ≥ 1 − ε. Hence for any x, y ∈ S we have∑
j∈Jx∩Jy

αj ≥ 1−2ε. For convenience, we write Jx,y for
Jx ∩ Jy . As sumPI(fj) ≤ s there is a family of probability
distributions pj such that whenever fj(x) 6= fj(y)

∑
i

xi 6=yi

√
pj,x(i)pj,y(i) ≥ 1/s.

Define px(i) =
∑

j∈J αjpj,x(i). Let x, y be such that
f(x) 6= f(y).∑

i
xi 6=yi

√
px(i)py(i)

=
∑

i
xi 6=yi

√∑
j∈J

αjpj,x(i)
√∑

j∈J

αjpj,y(i))

≥
∑

i
xi 6=yi

√ ∑
j∈Jx,y

αjpj,x(i)
√ ∑

j∈Jx,y

αjpj,y(i)

≥
∑

i
xi 6=yi

∑
j∈Jx,y

√
αjpj,x(i)

√
αjpj,y(i)

=
∑

j∈Jx,y

αj

∑
i

xi 6=yi

√
pj,x(i)pj,y(i)


≥ 1− 2ε

s
,

where for the third step we have used the Cauchy–Schwarz
Inequality. 2

This lemma immediately shows that the sumPI method
can give lower bounds on probabilistic formula size.

Theorem 26 Let S ⊆ {0, 1}n and f : S → {0, 1}. Then
Lε(f) ≥ ((1− 2ε)sumPI(f))2 for any ε < 1/2.

Proof: Suppose that {fj}j∈J gives an ε-approximation to
f . Using Lemma 25 in the contrapositive implies that there
exists some j ∈ J with sumPI(fj) ≥ (1 − 2ε)sumPI(f).
Theorem 24 then implies L(fj) ≥ ((1− 2ε)sumPI(f))2

which gives the statement of the theorem. 2

5 Comparison among methods

In this section we look at several formula size lower
bound techniques and see how they compare with our meth-
ods. A bottleneck in formula size lower bounds seems to
have been to go beyond methods which only consider pairs
(x, y) with f(x) 6= f(y) which have Hamming distance
1. In fact, the methods of Khrapchenko, Koutsoupias, and
a lemma of Håstad can all be seen as special cases of the
sumPI method where only pairs of Hamming distance 1 are
considered.

5.1 Khrapchenko’s method

One of the oldest and most general techniques available
for showing formula size lower bounds is Khrapchenko’s



method [Khr71], originally used to give a tight Ω(n2) lower
bound for the parity function. This method considers a bi-
partite graph whose left vertices are the 0-inputs to f and
whose right vertices are the 1-inputs. The bound given is
the product of the average degree of the right and left hand
sides.

Theorem 27 (Khrapchenko) Let S ⊆ {0, 1}n and f :
S → {0, 1}. Let A ⊆ f−1(0) and B ⊆ f−1(1). Let C
be the set of pairs (x, y) ∈ A×B with Hamming distance
1, that is C = {(x, y) ∈ A×B : dH(x, y) = 1}. Then
L(f) ≥ sumPI(f)2 ≥ |C|2

|A||B| .

Khrapchenko’s method can easily be seen as a special
case of the probability scheme. Letting A,B,C be as in the
statement of the theorem, we set up our probability distri-
butions as follows:

• pA(x)=1/|A| for all x∈A, pA(x)=0 otherwise
• pB(x)=1/|B| for all x∈B, pB(x)=0 otherwise
• q(x, y)=1/|C| for all (x, y)∈C, q(x, y)=0 otherwise
• px,i(y)=1 if (x, y)∈C and xi 6= yi, 0 otherwise. Note

that this is a probability distribution as for every x there
is only one y such that (x, y)∈C and xi 6= yi.

By Theorem 9 and Theorem 24,

L(f) ≥ min
x,y,i

f(x)6=f(y),
xi 6=yi

pA(x)pB(y)p′x,i(y)p′y,i(x)
q(x, y)

=
|C|2

|A||B|
,

where the expression in the middle is a lower bound on
sumPI(f)2.

5.2 The Koutsoupias bound

Koutsoupias [Kou93] extends Khrapchenko’s method
with a spectral version. The weights are always 1 for pairs
of inputs with different function values that have Hamming
distance 1, and 0 everywhere else.

Theorem 28 (Koutsoupias) Let f : {0, 1}n → {0, 1}, and
let A ⊆ f−1(0), and B ⊆ f−1(1). Let C = {(x, y) ∈
A×B : dH(x, y) = 1}. Let Q be a |B|×|A| matrix
Q[x, y] = C(x, y) where C is identified with its charac-
teristic function. Then L(f) ≥ sumPI(f)2 ≥ ‖Q‖2

2.

Proof: The bound follows easily from the the spectral ver-
sion of sumPI. Let Q be as in the statement of the theorem.
Notice that since we only consider pairs with Hamming dis-
tance 1, for every row and column of Qi there is at most one
nonzero entry, which is at most 1. Thus by Proposition 1 we
have ‖Qi‖2

2 ≤ ‖Q‖1‖Q‖∞ ≤ 1. The theorem now follows
from Theorem 24. 2

5.3 Håstad’s method

The shrinkage exponent of Boolean formulae is the least
upper bound γ such that subject to a random restriction
where each variable is left free with probability p, Boolean
formulae shrink from size L to expected size pγL. De-
termining the shrinkage exponent is important as Andreev
[And87] defined a function f whose formula size is L(f) =
n1+γ . Håstad [Hås98] shows the shrinkage exponent of
Boolean formulae is 2 and thereby obtains an n3 formula
size lower bound (up to logarithmic factors), the largest
bound known for an explicit function. On the way to this
result, Håstad proves an intermediate lemma which gives a
lower bound on formula size that depends on the probabil-
ity that restrictions of a certain form occur. He proves that
this lemma is a generalization of Khrapchenko’s method;
we prove that Håstad’s lemma is in turn a special case of
sumPI. Since Håstad’s method uses random restrictions,
which at first glance seems completely different from ad-
versary methods, it comes as a surprise that it is in fact a
special case of our techniques.

Definition 29 For any function f : {0, 1}n → {0, 1},

1. A restriction is a string in {0, 1, ?}n where ? means the
variable is left free, and 0 or 1 mean the variable is set
to the constant 0 or 1, respectively.

2. The restricted function f |ρ is the function that remains
after the non-? variables in ρ are fixed.

3. Rp is the distribution on random restrictions to the
variables of f obtained by setting each variable, in-
dependently, to ? with probability p, and to 0 or 1 each
with probability (1−p)

2 .
4. A filter ∆ is a set of restrictions which has the property

that if ρ ∈ ∆, then every ρ′ obtained by fixing one of
the ?s to a constant is also in ∆.

5. When p is known from the context, and for any event
E, and any filter ∆, we write Pr[E|∆] to mean
Prρ∈Rp

[E|ρ ∈ ∆].

Theorem 30 (Håstad, Lemma 4.1) Let f : {0, 1}n →
{0, 1}. Let A be the event that a random restriction in Rp

reduces f to the constant 0, B be the event that a random
restriction in Rp reduces f to the constant 1, and let C be
the event that a random restriction ρ ∈ Rp is such that f |ρ
is a single literal. Then

L(f) ≥ Pr[C|∆]2

Pr[A|∆]Pr[B|∆]

(
1− p

2p

)2

Proof: We show that the theorem follows from the proba-
bility scheme (Definition 7). In this proof we only consider
restrictions obtained from Rp that are in the filter ∆. We



also abuse notation and use A and B to mean the sets of re-
strictions in ∆ which contribute with non-zero probability
to the events A and B respectively.

Implicit in Håstad’s proof is the following relation be-
tween restrictions in A and B. For every ρ ∈ C, f |ρ reduces
to a single literal, that is, for every ρ ∈ C, there is an i such
that f |ρ = xi (or ¬xi if the variable is negated). Define ρb

to be ρ where xi is set to b, for b ∈ {0, 1} (set xi to 1−b
if the variable is negated). To fit into the framework of the
probability scheme, let ρb be ρb where all remaining ?s are
set to 1. This doesn’t change the value of the function, be-
cause it is already constant on ρb. Then we say that ρ0, ρ1

are in the relation.
We set pA(σ) = Pr[σ]

Pr[A|∆] for any σ ∈ A, and pB(τ) =
Pr[τ ]

Pr[B|∆] for any τ ∈ B, and for every pair ρ0, ρ1 in the
relation, where ρ ∈ C, f |ρ = xi or ¬xi, let

p′
ρ0,i

(ρ1) = 1

p′
ρ1,i

(ρ0) = 1

q(ρ0, ρ1) =
Pr[ρ]

Pr[C|∆]

The probabilities are 0 on all other inputs. We can easily
verify that the probabilities sum to 1. For p′, notice that the
Hamming distance between ρ0 and ρ1 is 1, so when ρb and
i are fixed, there is only a single ρ1−b with probability 1.

By Theorem 9 and Theorem 24,

L(f) ≥
pA(x)pB(y)p′y,i(x)p′x,i(y)

q(x, y)2

=
Pr[ρ0]

Pr[A|∆]
Pr[ρ1]

Pr[B|∆]

(
Pr[C|∆]

Pr[ρ]

)2

Finally, notice that Pr[ρ] = 2p
1−pPr[ρb]. 2

Remark Håstad actually defines f |ρ to be the result of re-
ducing the formula for f (not the function) by applying a
sequence of reduction rules, for each restricted variable. So
there is a subtlety here about whether f |ρ denotes the re-
duced formula, or the reduced function, and the probabili-
ties might be different if we are in one setting or the other.
However both in his proof and ours, the only thing that is
used about the reduction is that if the formula or function
reduces to a single literal, then fixing this literal to 0 or to
1 reduces the function to a constant. Therefore, both proofs
go through for both settings.

5.4 Razborov’s method

Razborov [Raz90] proposes a formula size lower bound
technique using matrix rank:

Theorem 31 (Razborov) Let S be a covering over X×Y ,
let A be an arbitrary nonzero |X|×|Y | matrix, and R be a
rectangle partition of X×Y such that R ≺ S. Then

max
A

rk(A)
maxS∈S rk(ÂS)

≤ α(S).

It can be easily verified that the function S → rk(ÂS) is
a rectangle measure, thus this theorem follows from Theo-
rem 23. Razborov uses Theorem 31 to show superpolyno-
mial monotone formula size lower bounds, but also shows
that the method becomes trivial (limited to O(n) bounds)
for regular formula size [Raz92]. An interesting differ-
ence between matrix rank and and spectral norm is that
rk(A + B) ≤ rk(A) + rk(B) holds for any two matrices
A,B, while a necessary condition for subadditivity of the
spectral norm squared is that A,B be disjoint rectangles.

6 Limitations

6.1 Hamming distance 1 techniques

We show that the bounds for a function f given by
Khrapchenko’s and Koutsoupias’ method, and by Håstad’s
lemma are upper bounded by the product of the zero sen-
sitivity and the one sensitivity of f . We will later use this
bound to show a function on n bits for which the best lower
bound given by these methods is n and for which an n1.32

bound is provable by sumPI2.

Lemma 32 The bound given by the Khrapchenko method
(Theorem 27), Koutsoupias’ method (Theorem 28), and
Håstad’s Lemma (Theorem 30) for a function f are at most
s0(f)s1(f) ≤ s2(f).

Proof: Let A be a nonnegative matrix, with nonzero entries
only in positions (x, y) where f(x) = 0, f(y) = 1 and the
Hamming distance between x, y is one. We first show that

max
A

‖A‖2
2

maxi ‖Ai‖2
2

≤ s0(f)s1(f). (8)

Let amax be the largest entry in A. A can have at most
s0(f) many nonzero entries in any row, and at most s1(f)
many nonzero entries in any column, thus by item 2 of Pro-
postion 1,

‖A‖2
2 ≤ ‖A‖1‖A‖∞ ≤ a2

maxs0(f)s1(f).

On the other hand, for some i, the entry amax appears in Ai,
and so by item 1 of Proposition 1, ‖Ai‖2

2 ≥ a2
max. Equa-

tion 8 follows.
Now we see that the left hand side of Equation 8 is

larger than the three methods in the statement of the the-
orem. That it is more general than Koutsoupias method



is clear. To see that it is more general than the probabil-
ity schemes method where q(x, y) is only positive if the
Hamming distance between x, y is one: given the proba-
bility distributions q, pX , pY , define the matrix A[x, y] =
q(x, y)/

√
pX(x)pY (y). By item 1 of Proposition 1,

‖A‖2 ≥ 1, witnessed by the unit vectors u[x] =
√

pX(x)
and v[y] =

√
pY (y). As each reduced matrix Ai has at

most one nonzero entry in each row and column, by item 2
of Proposition 1 we have

max
i
‖Ai‖2

2 ≤ max
x,y

q2(x, y)
pX(x)pY (y)

.

Thus we have shown

max
A

‖A‖2
2

maxi ‖Ai‖2
2

≥ max
pX ,pY ,q

min
x,y

pX(x)pY (y)
q2(x, y)

.

2

The only reference to the limitations of these methods
we are aware of is Schürfeld [Sch83], who shows that
Khrapchenko’s method cannot prove bounds greater than
C0(f)C1(f).

6.2 Limitations of sumPI and maxPI

The limitations of the adversary method are well known
[Amb02, LM04, Sze03, Zha04, ŠS04]. Špalek and Szegedy,
in unifying the adversary methods, also give the most ele-
gant proof of their collective limitation. The same proof
also shows the same limitations hold for the maxPI mea-
sure.

Lemma 33 Let f : {0, 1}n → {0, 1} be any partial
or total Boolean function. If f is total (respectively,
partial) then maxPI(f) ≤

√
C0(f)C1(f) (respectively,

min{
√

nC0(f),
√

nC1(f)}).

Proof: Assume that f is total. Take x, y such that f(x) = 0
and f(y) = 1. We choose any 0-certificate B0 for x and any
1-certificate B1 for y and let px(i) = 1/C0(f) for all i ∈
B0 and py(i) = 1/C1(f) for all i ∈ B1. As f is total, we
have B0∩B1 6= ∅, thus let j ∈ B0∩B1. For this j we have
px(j)py(j) ≥ 1/ (C0(f)C1(f)), thus mini 1/px(i)py(i) ≥
C0(f)C1(f).

The case where f is partial follows similarly. As we no
longer know that B0∩B1 6= ∅, we put a uniform distribution
over a 0-certificate of x and the uniform distribution over [n]
on y or vice versa. 2

This lemma implies that sumPI and maxPI are polyno-
mially related for total f .

Corollary 34 Let f be a total Boolean function. Then
maxPI(f) ≤ sumPI4(f).

Formula size

Rectangle
partition

maxPI2

sumPI2

(Unweighted
Ambainis)2 Koutsoupias

Khrapchenko

Håstad

s0 s1

C0 C1Randomized
formula size

Figure 1. Summary of the methods and their limita-
tions. The containments denoted by solid lines hold
for total as well as partial functions. All containments
are strict.

Proof: By [Amb02, Thm. 5.2] we know that
√

bs(f) ≤
sumPI(f). As f is total, by the above lemma we know that
maxPI(f) ≤

√
C0(f)C1(f). This in turn is smaller than

bs(f)2 as C(f) ≤ s(f)bs(f) [Nis91]. The statement fol-
lows. 2

Besides the certificate complexity barrier, another seri-
ous limitation of the sumPI method occurs for partial func-
tions where every positive input is far in Hamming distance
from every negative input. Thus for example, if for any pair
x, y where f(x) = 1 and f(y) = 0 we have dH(x, y) ≥ εn,
then by putting the uniform distribution over all input bits
it follows that sumPI(f) ≤ 1/ε. The measure maxPI does
not face this limitation as there we still only have one term
in the denominator.

Following this line of thinking, we can give an exam-
ple of a partial function f where maxPI(f) � sumPI(f).
Such an example is the Collision problem (see Section 7.3),
as here any positive and negative input must differ on at
least n/2 positions. Another family of examples comes
from property testing, where the promise is that the input
either has some property, or that it is ε-far from having the
property.



7 Concrete lower bounds

The quantum adversary argument has been used to prove
lower bounds for a variety of problems. Naturally, all of
these lower bounds carry over to formula size lower bounds.
In this section we present some new lower bounds, in or-
der to highlight the strengths and weaknesses of maxPI and
sumPI.

7.1 Recursive majorities

As an example of applying sumPI, we look at the re-
cursive majority of three function. We let R−MAJh

3 :
{0, 1}3h → {0, 1} be the function computed by a complete
ternary tree of depth h where every internal node is labeled
by a majority gate and the input is given at the leaves.

Recursive majority of three has been studied before in
various contexts. It is a monotone function which is very
sensitive to noise [MO03], making it useful for hardness
amplification in NP [O’D02]. Jayram, Kumar, and Sivaku-
mar [JKS03] give nontrivial lower and upper bounds on the
randomized decision tree complexity of recursive majority
of three. They show a lower bound of (7/3)h on the ran-
domized decision tree complexity. As far as we know, the
quantum query complexity of recursive majority of three
has not yet been investigated. We show a lower bound of 2h

on the quantum query complexity.

Lemma 35 sumPI(R−MAJh
3 ) = maxPI(R−MAJh

3 ) = 2h

Proof: To see that maxPI(R−MAJh
3 ) ≤ 2h, observe that

C0(R−MAJh
3 ) = C1(R−MAJh

3 ) = 2h. The result then
follows from Lemma 33.

We now turn to the lower bound. We will first show
a lower bound for R−MAJ1

3, the majority of three func-
tion, and then apply Lemma 16. Consider the following
table, where the rows are indexed by negative instances x,
the columns by positive instances y, and 1’s indicate when
dH(x, y) = 1.

110 101 011
001 0 1 1
010 1 0 1
100 1 1 0

Interpreting this table as the adjacency matrix of a graph, it
is clear that every vertex has degree 2. Thus Khrapchenko’s
method gives a bound of 4 for the base function. By The-
orem 27 we have sumPI(R−MAJ1

3) ≥ 2. Now applying
Lemma 16 gives the lemma. 2

From Lemma 35 we immediately obtain quantum query
complexity and formula size lower bounds:

Theorem 36 Let R−MAJh
3 be the recursive majority of

three function of height h. Then Qε(R−MAJh
3 ) ≥ (1 −

2
√

ε(1− ε))2h and Lε(R−MAJh
3 ) ≥ (1− 2ε)4h.

The best upper bound on the formula size of R−MAJh
3

is 5h. For this bound, we will use the following simple
proposition about the formula size of iterated functions.

Proposition 37 Let S ⊆ {0, 1}n and f : S → {0, 1}. If
L(f) ≤ s then L(fd) ≤ sd, where fd is the dth iteration of
f .

Proposition 38 L(R−MAJh
3 ) ≤ 5h.

Proof: The formula (x1 ∧ x2) ∨ ((x1 ∨ x2) ∧ x3) com-
putes R−MAJ1

3 and has 5 leaves. Using Proposition 37
gives L(R−MAJh

3 ) ≤ 5h. 2

7.2 Ambainis’ function

We define a function fA : {0, 1}4 → {0, 1} after Am-
bainis [Amb03]. This function evaluates to 1 on the fol-
lowing values: 0000, 0001, 0011, 0111, 1111, 1110, 1100,
1000. That is, f(x) = 1 when x1 ≤ x2 ≤ x3 ≤ x4 or
x1 ≥ x2 ≥ x3 ≥ x4. To obtain this formulation from Am-
bainis’ original definition, exchange x1 and x3, and take the
negation of the resulting function. There are a few things
to notice about this function. The sensitivity of fA is 2 on
every input. Also on an input x = x1x2x3x4 the value
of fA(x) changes if both bits sensitive to x are flipped si-
multaneously, and if both bits insensitive for x are flipped
simultaneously.

We will be looking at iterations of the base function fA
as in Definition 15. Notice that the sensitivity of fAd is 2d

on every input x ∈ {0, 1}4d

.

Lemma 39 sumPI(fAd) = 2.5d.

Proof: Ambainis has already shown that sumPI(fAd) ≥
2.5d [Amb03].

We now show the upper bound. We will show an upper
bound for the base function fA and then use the composition
Lemma 14. Every input x1x2x3x4 has two sensitive vari-
ables and two insensitive variables. For any x ∈ {0, 1}4 we
set px(i) = 2/5 if i is sensitive for x and px(i) = 1/10 if
i is insensitive for x. The claim follows from the following
observation: for any x, y ∈ {0, 1}4 such that f(x) 6= f(y)
at least one of the following holds

• x and y differ on a position i which is sensitive for both
x and y. Thus

∑
i

√
px(i)py(i) ≥ 2/5

• x and y differ on at least 2 positions, each of these
positions being sensitive for at least one of x, y. Thus∑

i

√
px(i)py(i) ≥ 2

√
1/25 = 2/5



2

This lemma gives us a bound of 6.25d ≈ N1.32 on the
formula size of fAd. Since the sensitivity of fAd is 2d,
by Lemma 32, the best bound provable by Khrapchenko’s
method, Koutsoupias’ method, and Håstad’s lemma is 4d =
N .

It is natural to ask how tight this formula size bound is.
The best upper bound we can show on the formula size of
fAd is 10d.

Proposition 40 L(fAd) ≤ 10d

Proof: It can be easily verified that the following formula
of size 10 computes the base function fA:

(¬x1 ∨ x3 ∨ ¬x4)∧
((¬x1 ∧ x3 ∧ x4) ∨ ((x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3))) .

This formula was found by computer search. The claim now
follows from Proposition 37. 2

7.3 Collision problem

In this section we look at the collision problem. This is
a promise problem, where for an alphabet Σ the inputs x =
x1x2 . . . xn ∈ Σn satisfy one of the following conditions:

• All xi are different
• For each i there exists exactly one j 6= i such that

xi = xj .

Those inputs satisfying the first condition are positive inputs
and those satisfying the second condition are negative. An
optimal lower bound for the quantum query complexity of
Ω(n1/3) has been given by Aaronson and Shi [AS04]. We
now show that the quantum adversary method cannot give
better than a constant bound for this problem.

Lemma 41 sumPI(fC) ≤ 2

Proof: We demonstrate a set of probability distributions px

such that for any positive instance x and negative instance
y we have ∑

i
xi 6=yi

√
px(i)

√
py(i) ≥ 1/2.

The upper bound then follows.
Our probability distribution is very simple: for every x,

let px(i) be the uniform distribution over [n]. Any positive
and negative instance must disagree in at least n/2 posi-
tions, thus∑

i
xi 6=yi

√
px(i)

√
py(i) ≥ n

2

√
1
n

1
n

=
1
2
.

2

On the other hand, maxPI(fC) ≥
√

n/2. As there is an
upper bound for the collision problem of O(n1/3) by Bras-
sard, Høyer, Tapp [BHT97], this also shows that in general
maxPI(f) is not a lower bound on the quantum query com-
plexity of f .

Lemma 42 maxPI(fC) = Θ(
√

n)

Proof: For the upper bound: On every positive instance
x, where all xi are different, we put the uniform distribu-
tion over i ∈ [n]; for a negative instance y we put proba-
bility 1/2 on the first position, and probability 1/2 on the
position j such that y1 = yj . As y1 = yj , any posi-
tive instance x must differ from y on position 1 or posi-
tion j (or both). Thus maxi,xi 6=yi px(i)py(i) ≥ 1/2n and
maxPI(fC) ≤

√
2n.

Now for the lower bound. Fix a set of probability distri-
butions px. Let x be any positive instance. There must be
at least n/2 positions i satisfying px(i) ≤ 2/n. Call this
set of positions I . Now consider a negative instance y of
where yj = xj for all j 6∈ I , and y is assigned values in I
in an arbitrary way so as to make it a negative instance. For
this pair x, y we have maxi

√
px(i)

√
py(i) ≤

√
2/n, thus

maxPI(fC) ≥
√

n/2. 2

The following table summarizes the bounds from this
section.

Function Input sum Qε max L s0s1

size PI PI

R−MAJh
3 N 2h ≈ Ω(N0.63) N0.63 Ω(N1.26), N1.26

= 3h N0.63
O(N1.46)

fAh N 2.5h≈ Ω(N0.66) ≤3h≈ Ω(N1.32), N
= 4h

N0.66 [Amb03] N0.79 O(N1.79)

fC N 2 Θ(N1/3) Θ(
√

N) N ⊥

8 Conclusions and open problems

Our new formula size lower bound techniques subsume
many previous techniques, and for some functions they are
provably better. A significant part of our intuition comes
from quantum query complexity and Kolmogorov complex-
ity. Measures sumPI and maxPI have many interesting
properties and they connect different complexities such as
quantum query complexity, classical formula size, classical
probabilistic formula size and circuit depth.

An outstanding open problem is whether the square of
the quantum query complexity lower bounds the formula
size. Another is that we do not know a nice dual expression
for maxPI, and it does not seem to be a natural property
in the sense of Razborov and Rudich. Thus the study of



maxPI may lead us to a better understanding of complexity
measures that themselves are hard to compute. We could
reprove a key lemma of Håstad that leads to the best current
formula size lower bound and we are hopeful that our tech-
niques eventually will lead to improvements of the bounds
in [Hås98].
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[LV97] M. Li and P. Vitányi. An introduction to Kol-
mogorov complexity and its applications. In
Graduate Texts in Computer Science. Springer,
1997. Second edition.

[MO03] E. Mossell and R. O’Donnell. On the noise sen-
sitivity of monotone functions. Random Struc-
tures and Algorithms, 23(3):333–350, 2003.

[NC00] M. Nielsen and I. Chuang. Quantum Compu-
tation and Quantum Information. Cambridge
University Press, 2000.

[Nis91] N. Nisan. CREW PRAMs and decision trees.
SIAM Journal on Computing, 20(6):999–1007,
1991.

[NS94] N. Nisan and M. Szegedy. On the degree of
boolean functions as real polynomials. Compu-
tational Complexity, 4:301–313, 1994.

[O’D02] R. O’Donnell. Hardness amplification within
NP. In Proceedings of the 34th ACM Sympo-
sium on the Theory of Computing, pages 751–
760. ACM, 2002.

[Raz90] A. Razborov. Applications of matrix meth-
ods to the theory of lower bounds in compu-
tational complexity. Combinatorica, 10(1):81–
93, 1990.

[Raz92] A. Razborov. On submodular complexity mea-
sures. In Boolean Function Complexity. Lon-
don Math. Soc. Lecture Notes Series, 169,
pages 76–83, 1992.

[Sch83] U. Schürfeld. New lower bounds on the formula
size of Boolean functions. Acta Informatica,
19(2):183–194, 1983.

[Sha49] C.E. Shannon. The synthesis of two-terminal
switching circuits. Bell System Technical Jour-
nal, 28(1):59–98, 1949.

[Spi71] P. Spira. On time-hardware complexity trade-
offs for Boolean functions. In Proceedings of
the 4th Hawaii Symposium on System Sciences,
pages 525–527. Western Periodicals Company,
North Hollywood, 1971.
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