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Abstract. In this paper, we survey a few recent applications of Kol-
mogorov complexity to lower bounds in several models of computation.
We consider KI complexity of Boolean functions, which gives the com-
plexity of finding a bit where inputs differ, for pairs of inputs that map to
different function values. This measure and variants thereof were shown
to imply lower bounds for quantum and randomized decision tree com-
plexity (or query complexity) [LM04]. We give a similar result for de-
terministic decision trees as well. It was later shown in [LLS05] that KI
complexity gives lower bounds for circuit depth. We review those results
here, emphasizing simple proofs using Kolmogorov complexity, instead
of strongest possible lower bounds.

We also present a Kolmogorov complexity alternative to Yao’s min-max
principle [LL04]. As an example, this is applied to randomized one-way
communication complexity.

Keywords: Lower bounds, Kolmogorov complexity, circuit complexity,
query complexity, communication complexity.

1 Introduction

Kolmogorov complexity has been used in a variety of settings to prove lower
bounds and other complexity results. However, until recently, the methods have
been ad hoc, tailored to a particular problem and a particular computational
model. In the past few years, techniques have been developed that apply to
any Boolean function, and to a wide variety of computational models, so that a
single analysis yields lower bounds in multiple models. In this paper, we review
these results and present them in a unified setting, called KI complexity. We also
present a Kolmogorov-based alternative to Yao’s min-max principle, and apply
it to one-way randomized communication complexity.

2 Preliminaries

Kolmogorov complexity is the main tool that is used to prove lower bounds in
this paper, and we recall the main notions here. We also present the models of
computation used in the paper.
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2.1 Kolmogorov complexity

Kolmogorov complexity captures well the information theoretic component of
many lower bound arguments. We review a few of its main properties in this
section.

Definition 1. Let M be a Turing machine. Let x and y be finite strings.

1. The Kolmogorov complexity of x given y with respect to M is denoted
CM (x|y), and defined as follows:

CM (x|y) = min(|P | such that M(P, y) = x).

2. A set of strings is prefix-free if no string is a prefix of another in the set.
3. A Turing machine M ′ is prefix-free if the set of programs is prefix-free, that

is, the set {P : ∃xM ′(P, x) 6= ε}, where ε is the empty string, is prefix-free.
4. The prefix-free Kolmogorov complexity of x given y with respect to a prefix-

free Turing Machine M ′ is denoted KM ′(x|y), and defined as follows:

KM ′(x|y) = min(|P | such that M ′(P, y) = x),

In the rest of the paper M is a fixed prefix-free universal Turing machine, and we
will write K instead of KM ′ . When y is the empty string, we write K(x) instead
of K(x|y). To simplify notation we omit additive terms in the upper bounds.

Incompressibility Perhaps the most important property of Kolmogorov com-
plexity that we use for lower bounds is the existence of incompressible strings,
that is, strings whose shortest description is maximal.

Proposition 1. [Incompressibility] For any finite set A ⊆ {0, 1}∗, and any
string σ, there exists x ∈ A such that K(x|σ) ≥ log(#A).

The proposition is proved by comparing the number of succinct programs
(2l−1 have length strictly less than l), with the number of strings (#A) that these
programs are purported to describe, and conclude by applying the pigeonhole
principle.

This should be compared with the corresponding upper bound.

Proposition 2. For any finite set A ⊆ {0, 1}∗, ∃σ, ∀x ∈ A, K(x|σ) ≤ log(#A).

To describe x, it suffices to give an index into some pre-determined enumer-
ation of the set A, which can be encoded in σ.

We will also need Kraft’s inequality.

Proposition 3 (Kraft’s inequality). Let S be any prefix-free set of finite
strings. Then

∑
x∈S 2−|x| ≤ 1.

We shall also use the following bound on conditional Kolmogorov complexity.

Proposition 4. There is a constant c ≥ 0 such that for any three strings x, y, z,

K(z|x) ≥ K(x, y)− K(x)− K(y|z, x) + K(z|x, y, K(x, y))− c.

The proof uses symmetry of information in an essential way.



3

2.2 Decision trees and query complexity

A decision tree is a rooted binary tree, where each internal node is labeled with an
integer i referencing an input variable, one of the outgoing edges of an internal
node is labeled 0 and the other is labeled 1, and each leaf is labeled with an
output value. The tree is evaluated on an input x = x1 · · ·xn, starting at the
root, by evaluating xi if the node is labeled i and following the corresponding
edge, and so on, until a leaf is reached, and outputing the value at the leaf. A
decision tree T computes f if the output on x equals f(x), for all x. The decision
tree complexity of f , written DT(f), is the depth of the shallowest decision tree
that computes f .

We also consider quantum and randomized analogues of decision trees. In
these models, the complexity measure is the number of queries to the input, but
unlike the classical case, queries can be made in superposition, in the quantum
case, or according to some distribution, in the randomized case. Access to the
input is achieved by way of a query operator Ox, which behaves like a classical
query on classical states, but in the quantum case, it is defined as a unitary
matrix Ox that satisfies Ox|i, z, w〉 = |i, z ⊕ xi, w〉, for every i, z, w, where i
represents a query, z is a register to hold the answer to the query, and w is the
remainder of the workspace of the algorithm. Randomized queries can be defined
similarly, except the matrix is stochastic. The query complexity of an algorithm
is the number of calls to Ox. Details of the model can be found for example
in [LM04], but they are not necessary for this paper.

We say that the algorithm A ε-computes a function f : {0, 1}n → {0, 1}, if the
observation of the last bits of the work register equals f(x) with probability at
least 1−ε, for every x ∈ S. Then QQC(f) (resp., RQC(f)) is the minimum query
complexity of quantum (resp., randomized) query algorithms that ε0-compute f ,
where ε0 is a fixed positive constant no greater than 1

3 .

2.3 Communication complexity

Communication complexity is a model of computation widely used to prove lower
bounds in various models of computation. Here we will appeal to this model
for lower bounds for circuit depth. We also consider one-way communication
complexity in Section 4.

Let X, Y, Z be finite sets, and R ⊆ X×Y×Z. In the communication game for
R, Alice is given some x ∈ X, Bob is given some y ∈ Y and their goal is to find
some z ∈ Z such that (x, y, z) ∈ R, if such a z exists. A communication protocol
determines what message each player sends in each round, and by convention,
Bob produces an output at the end of the protocol. The cost of a protocol is
the total number of bits exchanged in the worst case, and the communication
complexity of R, written D(R), is the minumum cost of a protocol computing R.

There are many variants of communication complexity, and we will also con-
sider one-way communication complexity of boolean functions. In a one-way
communication protocol, two players, A and B wish to compute the value of a
two-argument function f : X × Y → Z. Player A receives an input x ∈ X, and
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sends a message m to Player B. Player B receives an input y ∈ Y , as well as A’s
message m and should output the value of the function f(x, y). The protocol is
successful if B’s output equals f(x, y), for all x, y.

In the randomized model, a protocol is δ-correct if for all inputs x, y, the
error probability on x, y is at most δ. The probability is taken over the random
choices made by the players. Rδ(R) is the minumum cost of a protocol computing
R in this way.

In the distributional model, we consider deterministic protocols, together
with a distribution of the inputs µ, and an error threshold δ. A distributional
protocol is δ-correct if the probability taken over µ that the output differs from
the function is at most δ. The distributional communication complexity for µ,
Dδ,µ(f), is the maximum number of bits exchanged for the best δ-correct protocol
for f when the input is chosen according to µ. The distributional complexity
Dδ(f) of f is the maximum, over all probability distributions µ on the inputs,
of Dδ,µ(f).

2.4 Circuits and formulae

A Boolean formula over the standard basis {∨,∧,¬} is a binary tree where each
internal node is labeled with ∨ or ∧, and each leaf is labeled with a literal, that
is, a Boolean variable or its negation. The size of a formula is its number of
leaves.

Definition 2. Let f : {0, 1}n → {0, 1} be a Boolean function. The formula size
of f , denoted L(f), is the size of the smallest formula which computes f . The
formula depth of f , denoted d(f) is the minimum depth of a formula comput-
ing f .

It is clear that L(f) ≤ 2d(f). Spira has also shown that d(f) ≤ O(log L(f)) [Spi71].
Karchmer and Wigderson [KW88] give an elegant characterization of formula

size and depth in terms of communication complexity.

Definition 3. For any Boolean function f , the relation Rf = {(x, y, i) : f(x) =
0, f(y) = 1, xi 6= yi}.

Theorem 1 (Karchmer-Wigderson). For any Boolean function f , d(f) =
D(Rf ).

3 KI complexity, its variants, and applications

In order to prove a lower bound for a Boolean function f , consider two inputs
that are mapped by f to different values. Then these two inputs must differ in
some position and if the computation is correct, it must implicitly or explicitly
have found one of these positions where the inputs differ. This is the principle
which we will show how to exploit in this section, to obtain lower bounds in
various models of computation.
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3.1 Decision trees and KI complexity

Proposition 5. Let f be a Boolean function, x, y be inputs such that f(x) 6=
f(y). Then DT(f) ≥ minα∈{0,1}∗ max x,y

f(x)6=f(y)
mini:xi 6=yi

{max{2K(i|x,α), 2K(i|y,α)}}

Proof. Let T be a decision tree for f . If f(x) 6= f(y), then the computation
paths on x and y must diverge at some level of the decision tree. Let i be the
variable queried at this level. Since the computation paths diverge at this point,
xi 6= yi. So K(i|x, T ) ≤ log(depth(T )) since it suffices to give an index into the
depth of the tree, and similarly, K(i|y, T ) ≤ log(depth(T )). Therefore, ∃α =
T,∀x, y : f(x) 6= f(y),∃i,DT(f) ≥ max{2K(i|x,T ), 2K(i|y,T )}, which concludes the
proof. ut

Similar results hold for various models of computation, but with somewhat
different combinations of the terms K(i|x) and K(i|y), for f(x) 6= f(y) and
xi 6= yi. We introduce a general definition that captures the known lower bounds
in a common framework.

Definition 4. Let f : {0, 1}n → {0, 1}. Let Λ : R∗ → R (Λ takes an arbitrary
number of real inputs, such as max or Σ, which we will take over all terms
parameterized by i where xi 6= yi) and ? : R× R → R (where we sometimes use
infix notation, e.g. A ? B). Define

KIΛ,?(f) = min
α∈{0,1}∗

max
x,y

f(x)6=f(y)

1
Λi:xi 6=yi

2−K(i|x,α)?2−K(i|y,α) .

Reformulating Proposition 5 in terms of KI, we have

Proposition 6. DT(f) ≥ KImax,min(f).

3.2 Randomized and quantum query complexity lower bounds

Proposition 6 can be extended to randomized and quantum query complexity.
The intuition is the same, but one has to analyze the the contribution of making
a “useful” query much more carefully, since in these models, a query can be
made with some probability or some amplitude.

Theorem 2. [LM04] Let f : {0, 1}n → {0, 1}.

1. QQC(f) ≥ Ω(KIΣ,geom(f)) where Σ denotes sum over i such that xi 6= yi

and geom is the geometric average: geom(A,B) =
√

A ·B.
2. RQC(f) ≥ Ω(KIΣ,min(f)).

The theorem is proved by analyzing the overall contribution of each query
towards disinguishing pairs of inputs with different values. Roughly speaking,
the sum appears as a result of considering progress over all input pairs x, y such
that f(x) 6= f(y). The ? operation is not so easily explained but the difference
can be attributed to the fact that in the quantum case we operate under the `2
norm whereas in the randomized case, the `1 norm is used.
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It turns out that this lower bound on query complexity implies all so-called
adversary techniques for proving lower bounds in quantum query complexity,
including the quantum and randomized weighted methods [Amb03,Aar04] and
the spectral method [BSS03].

To give an idea of why this is the case we give an proof of Ambainis’ un-
weighted adversary method, which is given in terms of the combinatorial struc-
ture of the graph that represents pairs (edges) x, y such that f(x) 6= f(y). This
graph is thought of as containing the pairs of instances that are hard to distin-
guish. Furthermore, the pairs x, y that differ on some index i are those that a
query to i can be helpful to distinguish x from y. Comparing the graph R with
the subgraph Ri where the ith query is useful allows us to establish lower bounds
on the number of queries required to distinguish all the pairs in R.

Theorem 3. [Amb02,Aar04,LM04] Let R ⊆ X × Y , be a relation on pairs of
instances, where X = f−1(0) and Y = f−1(1), and let Ri be the restriction of
R to pairs x, y for which xi 6= yi. Viewing the relation R as a bipartite graph,
then if

– m is a lower bound on the degree of all x ∈ X,
– m′ is a lower bound on the degree of all y ∈ Y ,
– for any fixed i, 1 ≤ i ≤ n, the degree of any x ∈ X in Ri is at most l,
– for any fixed i, 1 ≤ i ≤ n, the degree of any y ∈ Y in Ri is at most l′,

then QQC(f) = Ω

(√
mm′

ll′

)
and RQC(f) = Ω

(
max{m

l , m′

l′ }
)

.

Proof. We make the following observations.

1. |R| ≥ max{m|X|,m′|Y |}, so ∃x, y K(x, y) ≥ max (log(m|X|), log(m′|Y |)) .
2. ∀x ∈ X, K(x) ≤ log(|X|) and K(y) ≤ log(|Y |), for all y ∈ Y .
3. ∀x, y, i with (x, y) ∈ Ri,K(y|i, x) ≤ log(l) and similarly, K(x|i, y) ≤ log(l′).

For any i with xi 6= yi, by Proposition 4,

K(i|x) ≥ K(x, y)− K(x)− K(y|i, x) + K(i|x, y,K(x, y))
≥ log(m|X|)− log(|X|)− log(l) + K(i|x, y, K(x, y))
= log(m

l ) + K(i|x, y,K(x, y))

The same proof works to show that K(i|y) ≥ log(m′

l′ )+K(i|x, y, K(x, y)). We can
conclude by Theorem 2 and Kraft’s inequality. ut

3.3 Circuit depth and formula size

Another model where KI can be used to obtain lower bounds is boolean formulas.
We give a simple proof that KI gives a lower bound on circuit depth.

Theorem 4. For any Boolean function f , d(f) ≥ KImax,·(f).
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Proof. Let P be a protocol for Rf . Fix x, y with different values under f , and
let TA be a transcript of the messages sent from A to B, on input x, y. Similarly,
let TB be a transcript of the messages sent from B to A. Let i be the output
of the protocol, therefore xi 6= yi. To print i given x, simulate P using x and
TB . To print i given y, simulate P using y and TA. This shows that ∀x, y :
f(x) 6= f(y),∃i : xi 6= yi,K(i|x, α) + K(i|y, α) ≤ |TA| + |TB | ≤ D(Rf ), where
α is a description of A’s and B’s algorithms. The theorem then follows from
Theorem 1. ut

3.4 A few examples

We give a few elementary examples to demonstrate how the technique can be
applied to specific functions. To apply the adversary method, we have to give a
relation R of hard instances; however, when applying KI, it suffices to exhibit a
single hard pair of inputs.
Example 1: OR The OR function is 0 on the all-0 input and 1 everywhere else.
Consider inputs x, y of length n, where x is the all-0 string, and y is 0 everywhere
except in bit i, where i is chosen so that K(i) ≥ log(n). (More exactly, for any
α we choose i such that K(i|α) ≥ log(n).) Such an i exists by incompressibility
(Proposition 1). Therefore, by Theorems 2 and 4, and Proposition 6,

1. DT(OR) ≥ Ω(n),
2. RQC(OR) ≥ Ω(n),
3. QQC(OR) ≥ Ω(

√
n),

4. d(OR) ≥ Ω(log n).

Example 2: PARITY The parity function is defined as ⊕(x) = Σixi (mod 2).
Consider inputs x, y chosen as follows. Take x, i so that K(x, i) ≥ n+log(n), and
let y = xi (x with the ith bit flipped). It is easy to show that K(i|x) ≥ log(n)
and K(i|y) ≥ log(n).

1. DT(⊕) ≥ Ω(n),
2. RQC(⊕) ≥ Ω(n),
3. QQC(⊕) ≥ Ω(n),
4. d(⊕) ≥ Ω(log n).

Several examples relating to graph properties are also given in [LM04].

4 Kolmogorov alternative to the min-max principle

Usually, lower bounds for randomized complexity are proven by first applying
Yao’s min-max principle, and proving a lower bounds in the distributional model
where the algorithms are deterministic and the inputs are chosen at random
according to some distribution. We propose an alternative to (or perhaps only
a reformlation of) Yao’s min-max principle, which makes use of Kolmogorov
complexity. (To be precise, we only give an analogue of the “easy direction”
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that is generally used for lower bounds.) We illustrate how it can be applied, by
proving a very general statement about one-way communication complexity. In
this case, the proof is somewhat simpler than the previous proof of Bar-Yossef,
Jayram, Kumar and Sivakumar [BYJKS02] that used information theory.

4.1 Yao in the style of Kolmogorov

Yao’s min-max principle consists in replacing randomness in the algorithm, with
randomness in the inputs. Our approach is to replace randomness in the algo-
rithm by a Kolmogorov random string, resulting in a deterministic algorithm.
It remains to see that the errors made on this random string are not too many.
This is what is proven in the following lemma. The lemma is stated for private
coin communication complexity but a similar statement can be made for other
models of computation.

We assume, without loss of generality, that the players use a random string
rA, rB taken uniformly at random from finite sets RA, RB , and that this is the
same distribution regardless of the players’ inputs x, y.

Lemma 1. Let f : X × Y → Z. Fix any δ-correct randomized communication
complexity protocol P for f , and consider any subset of inputs S ⊆ X × Y . Fix
(r∗A, r∗B) ∈ RA × RB such that C(rA∗, r∗B |P, S) ≥ log(|RA|) + log(|RB |). Then
when the protocol is run using r∗A, r∗B as random choices, the output is incorrect
on at most 2δ|S| inputs in |S|.

Proof. For any rA, rB , let S̃ represent the inputs on which the outcome of the
protocol is incorrect, that is, S̃rA,rB

= {x̃, ỹ ∈ S : P (x̃, ỹ, rA, rB) 6= f(x̃, ỹ)}.
Also define the set of “much-worse-than-average” random choices for inputs in
S to be R̃ = {rA, rB : |S̃rA,rB

| > 2δ|S|}.
Because at most half the inputs can have more than double the average

number of errors, |R̃| ≤ |RA||RB |
2 , therefore by incompressibility, r∗A, r∗B 6∈ R̃.

(Otherwise, describe r∗A, r∗B by giving an index into the set R̃. using log(|R|) <
log(|RA|) + log(|RB |) bits, a contradiction.) Therefore |S̃r∗A,r∗B

| ≤ 2δ|S|.
ut

4.2 Shatter coefficients lower bound

To give an example of how this method is applied, we give a proof of a general
theorem on one-way communication complexity.

First we define V C dimension and its generalization, shatter coefficients. Let
F be a set of strings of length n, and I be a set of indices, I ⊆ [n], I = i1, · · · , i|I|.
For any string x = x0, · · ·xn−1 of length n, x|I denotes the string xi1 · · ·xi|I| .
Likewise, F |I = {x|I : x ∈ F} A set of strings F is shattered by a set of indices
I if F |I is the set of all possible strings of length |I|. The VC dimension of F ,
denoted V C(F ), is the size of the largest I that shatters F .

The lth shatter coefficient of F (for any l > V C(F )), denoted SC(F, l) is the
maximum, over all I of size l, of |F |I |. Let F ′ ⊆ F be a subset of F for which
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F ′|I takes on this maximal number of distinct values. We say that F ′ × I is a
witness for SC(F, l) .

We give a new proof of a well-known result about one-way communication
complexity. Recall that in this model, Alice sends one message to Bob and Bob
produces the output. We use the superscript A→B to specify this model.

Theorem 5 ([KNR99,BYJKS02]). For every function f : X × Y → {0, 1},
every l ≥ V C(f), and every δ > 0, RA→B

δ (f) ≥ log(SC(f |X , l))− lH2(2δ), where
H2(p) = −p log(p)− (1− p) log(1− p).

Proof. Let rowf (x, Y ′) = f(x, y1) · · · f(x, y|Y ′|) be the string of consecutive val-
ues of f when x is fixed, where Y ′ = {y1, . . . y|Y ′|}. We denote by f |X,Y the set
of strings {rowf (x, Y ) : x ∈ X}. Let S′ = X ′ × Y ′ be a witness for SC(F, l)
where F = f |X,Y . Fix x∗ ∈ X ′, r∗A ∈ RA, r∗B ∈ RB with C(x∗, r∗A, r∗B |P, S′) ≥
log(|X ′|) + log(|RA|) + log(|RB |) and let S = {x∗}× Y ′. Notice that |S| = l. By
Lemma 1, when the protocol is run using r∗A, r∗B as random choices, the output
is incorrect on at most 2δ|S| inputs in |S|. To correct these errors we can just
describe their location. This requires log(

(
l

2δl

)
) ≈ l ·H2(2δ) additional bits.

All {rowf (x, Y ′) : x ∈ X ′} are unique, so x∗ is uniquely determined within
X ′ by rowf (x, Y ′). This allows us to conclude that

log(SC(f |X , l)) ≤ C(x∗|P, r∗A, r∗B)
≤ C(rowf (x∗, Y ′)|P, r∗A, r∗B)
≤ RA→B

δ (f) + lH2(2δ).

ut

5 Concluding remarks

We have presented two different frameworks based on Kolmogorov complexity
in which many lower bound techniques can be expressed. One might naturally
ask what other models of computation these techniques can be applied to. One
consequence of studying the KI lower bounds is that it brings to light the shared
limitations of these techniques (see for example [LLS05]. Hopefully, understand-
ing these limitations better will be a first step towards breaking the current lower
bound barriers.

In the case of the min-max proofs using Kolmogorov complexity, it turns out
in many cases that after rewriting the proofs in terms of Kolmogorov complex-
ity, one can the remove Kolmogorov complexity entirely. An important role of
Kolmogorov complexity is that the intuition it provides to help highlight the
essential parts of the argument.
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