Applications of Kolmogorov complexity to classical and quantum computational complexity

Habilitation à diriger des recherches
Sophie Laplante
LRI, Université Paris-Sud XI
December 9, 2005

Summary

- Context and overview of contributions
- Partl Foundations
- Time bounded Kolmogorov complexity
- Quantum Kolmogorov complexity
- Part Il Applications
- Quantum query complexity lower bounds
- Formula size lower bounds
- Research projects

Computational complexity

Computational complexity

- Shannon (1949)
- defines circuits as a model of computation
- proposes circuit size as a measure of complexity
- poses the problem of finding an explicit function for which exponential size circuits are required.

Computational complexity

- Shannon (1949)
- defines circuits as a model of computation
- proposes circuit size as a measure of complexity
- poses the problem of finding an explicit function for which exponential size circuits are required.
! Current best lower bounds are 5 n [LROI, IM02] (circuits) and n^{3} [Hås98] (formulae)

Computational complexity

- Shannon (1949)
- defines circuits as a model of computation
- proposes circuit size as a measure of complexity
- poses the problem of finding an explicit function for which exponential size circuits are required.
! Current best lower bounds are 5n [LROI, IM02] (circuits) and n^{3} [Hås98] (formulae)
- Asymptotic time complexity [HS65], P vs NP question [Edm65].

Computational complexity

- Shannon (1949)
- defines circuits as a model of computation
- proposes circuit size as a measure of complexity
- poses the problem of finding an explicit function for which exponential size circuits are required.
! Current best lower bounds are 5n [LROI, IM02] (circuits) and n^{3} [Hås98] (formulae)
- Asymptotic time complexity [HS65], P vs NP question [Edm65].
! Despite much effort, still no separation in sight

Lower bound techniques

- Significant separations have been achieved by diagonalization

$$
\begin{aligned}
& \text { "So many problems, } \\
& \text { so few machines...!" }
\end{aligned}
$$

- Many known techniques seem to be fundamentally information theoretic

```
"So much information,
    solittle time...!"
```


Kolmogorov complexity

Introduced by Solomonoff, Kolmogorov, and Chaitin (algorithmic information), in the 60s
$K(x)$ is the length of the shortest program that prints x.

- $K(" 0101010101010101$........") $\approx \log (n)$
- K ("
$K(x \mid y)$ is the length of the shortest program that prints x when given string y as auxiliary input.

Incompressibility

Fundamental tool for proving lower bounds:

- For any finite set $A, \exists x \in A, K(x) \geq \log (\# A)$
(there are not enough short programs to describe all x in A)

Corresponding upper bound:

- For any finite set $A, \forall x \in A, K(x) \leq \log (\# A)$ (suffices to give an index into the set A)

Classical decision tree model

To compute a boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$,

Model : decision tree
Cost: Number of queries to input

Query complexity of f :
$\mathrm{DT}(f)$ is depth of shallowest decision tree for f

Simple decision tree lower bound

Proposition $[L]$ If $f(x) \neq f(y)$,
then there exists $i, x_{i} \neq y_{i}$:

Simple decision tree lower bound

Proposition [L] If $f(x) \neq f(y)$, then there exists $i, x_{i} \neq y_{i}$:

Simple decision tree lower bound

Proposition [L] If $f(x) \neq f(y)$, then there exists $i, x_{i} \neq y_{i}$:

$$
\begin{aligned}
& K(i \operatorname{lx}) \leq \log (\operatorname{depth}(T)) \\
& K(i \operatorname{ly}) \leq \log (\operatorname{depth}(T))
\end{aligned}
$$

$D T(f) \geq \min _{i}\left\{\max \left\{2^{K(l i x)}, 2^{K(l y)}\right\}\right\}$

Addaptiyegness and

Quantum Kolmogorov complexity [Berthiaum (e, van

Part I

Foundations

Time bounded Kolmogorov complexity

Quantum Kolmogorov complexity

Foundations: Time bounded complexity

Time-bounded Kolmogorov complexity

$C^{p}(x)$ is the length of the shortest program that prints x in time $p(|x|)$.
$C D^{p}(x)$ is the length of the shortest program that runs in time $p(|z|)$ and accepts z if and only if $z=x$.

Time-bounded Kolmogorov complexity

$C^{p}(x)$ is the length of the shortest program that prints x in time $p(|x|)$.
$C D^{p}(x)$ is the length of the shortest program that runs in time $p(|z|)$ and accepts z if and only if $z=x$.

- In unbounded time, $C D^{\infty}=C^{\infty}$.
- For any finite set A, and $x \in A C D^{\infty}(x) \leq \log (\# A)$
- The language compression problem [S83]:

For any $A, x \in A C D^{p}(x) \leq$?? for polynomial p ?

Language compression problem

- For most $r, C D^{p}(x \mid r) \leq \log (\# A)$ [S83]
- $C D^{p}(x) \leq 2 \log (\# A)[B F L 02]$
- For all but ϵ fraction of $x \in A$,

$$
C D^{p}(x \mid r) \leq \log (\# A)+p o l y \log (|x| / \epsilon)[\text { BFLO2] Extractors }
$$

- Exists $\boldsymbol{A}, x \in A, C D^{p}(x) \geq 2 \log (\# A)$ [BLM00]

Cover-free families of sets

- Definition F is k-cover free if for any $F_{0}, . . . F_{k}$ in $F, F_{0} \nsubseteq \cup_{i} F_{i}$
- Theorem [DR82] Let F be a family of N sets over a universe of M elements. If F is k-cover free and $N>k^{j}$, then

$$
M \geq \frac{N^{2} \log (N)}{2 \log (k)+O(1)}
$$

Lower bound on language compression

Theorem [BLM00] $\exists A, x \in A, C D^{p, A}(x) \geq 2 \log (\# A)$

Lower bound on language compression

Theorem [BLM00] $\exists A, x \in A, C D^{p, A}(x) \geq 2 \log (\# A)$
Programs
$F_{x}=\{p: p$ accepts $x\}$

Lower bound on language compression

Theorem [BLM00] $\exists A, x \in A, C D^{p, A}(x) \geq 2 \log (\# A)$
Programs

$$
F_{x}=\{p: p \text { accepts } x\}
$$

$F=\left\{F_{x} \mid x \in A\right\}$ is k-cover free

Lower bound on language compression

Theorem [BLM00] $\exists A, x \in A, C D^{p, A}(x) \geq 2 \log (\# A)$

$F=\left\{F_{x} \mid x \in A\right\}$ is k-cover free
N inputs $\left(\# F=r^{1 / 3}\right)$
M programs
$k \sim N^{1 / 3} \sim r^{1 / 9}$

$$
M \geq \frac{N^{2} \log (N)}{2 \log (k)+O(1)}
$$

Foundations: Quantum Kolmogorov complexity

Quantum computation

- Computation acts on qubits
- n-bit strings are vectors forming an orthonormal basis of 2^{n}-dimensional Hilbert space, $\left\{|i\rangle=e_{i}\right\}_{1 \leq i \leq 2^{n}}$
- Qubits are unit, complex combinations of basis states
- Quantum gates are unitary operations
- $U^{\dagger} U=I$
- Linear, invertible, norm-preserving

Quantum computation

- Computation acts on qubits
- n-bit strings are vectors forming an orthonormal basis of 2^{n}-dimensional Hilbert space, $\left\{|i\rangle=e_{i}\right\}_{1 \leq i \leq 2^{n}}$
- Qubits are unit, complex combinations of basis states
- Quantum gates are unitary operations
- $U^{\dagger} U=I$
- Linear, invertible, norm-preserving

Quantum computation

- Computation acts on qubits
- n-bit strings are vectors forming an orthonormal basis of 2^{n}-dimensional Hilbert space, $\left\{|i\rangle=e_{i}\right\}_{1 \leq i \leq 2^{n}}$
- Qubits are unit, complex combinations of basis states
- Quantum gates are unitary operations
- $U^{\dagger} U=I$
- Linear, invertible, norm-preserving

$$
\downarrow \alpha|0\rangle+\beta|1\rangle-\begin{gathered}
\begin{array}{c}
\text { Unitary } \\
\text { Gate }
\end{array} \\
\hline
\end{gathered} \alpha|f(0)\rangle+\beta|f(1)\rangle
$$

Quantum Kolmogorov complexity

- Three definitions have been proposed
- Classical description [V00]
- Quantum description [BDL00]
- Semi-density matrices [GOI]
- We give a quantum description by means of universal quantum Turing machine U [BV97]
- $Q C(|\phi\rangle)=\min \{\operatorname{dim}(|\psi\rangle): U|\psi\rangle \approx|\phi\rangle\}$
number of qubits

Properties of quantum Kolmogorov complexity

- Properties of [BDL00] definition
- Existence of incompressible quantum states
- Strong connection to quantum information theory (von Neumann entropy)
- Quantification of no-cloning of quantum states:

$$
\left.Q C\left(|\phi\rangle^{\otimes k}| | \phi\right\rangle\right)
$$

Part II

Applications

Quantum query complexity lower bounds
Formula size lower bounds

Applications: Quantum lower bounds

Adversary method

Adversary method

Quantum adversary lower bounds

Theorem [LM04]

$$
Q_{\varepsilon}(f) \geq \frac{c_{\epsilon}}{2} \frac{1}{\Sigma_{i: x_{i} \neq y_{i}} \sqrt{2^{-K(i \mid x)-K(i \mid y)}}}
$$

Implies all previously known quantum adversary lower bounds

- Unweighted adversary [A02]
- Weighted adversary [A03]
- Spectral method [BSS03]

All these methods are equivalent [ŠSO5]

Applications: Formula size lower bounds

Boolean circuit and formula size

Boolean circuit
Boolean formula

Best lower bound: 5n
[Lachish Raz 01,
Iwama Morizumi 02]

Best lower bound: n^{3}
[Håstad 98]

Communication complexity

- $D(f)=$ amount of communication in the worst case, for the best protocol for f
- $\mathrm{d}(f)=D\left(R_{f}\right)[K W 88]$

Circuit
depth
Given x, y for which $f(x) \neq f$
(y), find i s.t. $x_{i} \neq y_{i}$

Circuit depth lower bound

Proposition [LLS05]

$$
K(i \mid x)+K(i \mid y) \leq D\left(R_{f}\right)=\mathrm{d}(f)
$$

Proof

$$
\begin{aligned}
K(i \mid x) & \leq\left|m_{2}\right|+\left|m_{A}\right|+\ldots \\
K(i \mid y) & \leq\left|m_{l}\right|+\left|m_{3}\right|+\ldots
\end{aligned}
$$

Background on communication complexity

- $D^{\text {Rect }}(f)=$ smallest number of disjoint monochromatic rectangles needed to cover M_{f}
- $L(f) \geq D^{\text {Rect }}\left(R_{f}\right)[K W 88]$

$$
\begin{gathered}
\text { Given } x, y \text { for which } f(x) \neq f(y), \\
\text { find } i \text { s.t. } x_{i} \neq y_{i}
\end{gathered}
$$

Formula size lower bound, spectral formulation

Theorem [LLS05] Formula size lower bound

$$
L(f) \geq \max _{A} \frac{\|A\|^{2}}{\max _{i}\left\|A_{i}\right\|^{2}}
$$

$$
\|A\|=\max _{u, v} \frac{u^{*} A v}{|u||v|}
$$

Formula size lower bound, spectral formulation

Theorem [LLS05] Formula size lower bound

$$
L(f) \geq \max _{A} \frac{\|A\|^{2}}{\max _{i}\left\|A_{i}\right\|^{2}}
$$

$$
\|A\|=\max _{u, v} \frac{u^{*} A v}{|u||v|}
$$

Formula size lower bound, spectral formulation

Theorem [LLS05] Formula size lower bound

$$
L(f) \geq \max _{A} \frac{\|A\|^{2}}{\max _{i}\left\|A_{i}\right\|^{2}}
$$

Formula size lower bound

Theorem [LLS05]

$$
L(f) \geq \max _{A} \frac{\|A\|^{2}}{\max _{i}\left\|A_{i}\right\|^{2}}
$$

Formula size lower bound

Theorem [LLS05]

$$
L(f) \geq \max _{A} \frac{\|A\|^{2}}{\max _{i}\left\|A_{i}\right\|^{2}}
$$

- If R is an optimal partition $R_{l, \ldots,}, R_{N}$, then if μ is subadditive

$$
L(f) \geq D^{\text {Rect }}\left(R_{f}\right)=\# \mathcal{R} \geq \frac{\mu(X \times Y)}{\max _{i} \mu\left(R_{i}\right)}
$$

- If S is a covering with $R<S$ (refinement) then if μ is monotone,

$$
L(f) \geq \frac{\mu(X \times Y)}{\max _{S \in \mathcal{S}} \mu(S)}
$$

- Key lemma [LLS05] \|M $\|^{2}$ is subadditive and monotone

Formula size lower bound

Theorem [LLS05]

$$
L(f) \geq \max _{A} \frac{\|A\|^{2}}{\max _{i}\left\|A_{i}\right\|^{2}}
$$

- If \mathcal{R} is an optimal partition $R_{l, \ldots,}, R_{N}$, then if μ is subadditive

$$
L(f) \geq D^{\text {Rect }}\left(R_{f}\right)=\# \mathcal{R} \geq \frac{\mu(X \times Y)}{\max _{i} \mu\left(R_{i}\right)}
$$

- If S is a covering with $R<S$ (refinement) then if μ is monotone,

$$
L(f) \geq \frac{\mu(X \times Y)}{\max _{S \in \mathcal{S}} \mu(S)}
$$

- Key lemma [LLS05] \|M $\|^{2}$ is subadditive and monotone

Relation to other methods

- Closely related to the quantum spectral method

$$
\begin{aligned}
& L(f) \geq \max _{A} \frac{\|A\|^{2}}{\max _{i}\left\|A_{i}\right\|^{2}} \\
& Q_{\varepsilon}(f) \geq \max _{A} \frac{\|A\|}{\max _{i}\left\|A_{i}\right\|}
\end{aligned}
$$

- Generalizes many previous methods
- Khrapchenko's combinatorial method [K7I]
- Koutsoupias' spectral method [K93]
- A key lemma of Håstad used to prove the current best formula size lower bound (random restrictions) [H98]

Research project

Current projects

- Continue to unify and extend classical and quantum lower bound techniques
- Combinatorial models
- Communication complexity, circuits, formula size, decision trees
- Techniques
- Fourier analysis
- Information theory methods

Further projects

- Medium-term
- Apply quantum Kolmogorov complexity to quantum lower bounds, e.g. quantum information theoretic methods
- Long-term
- Use Kolmogorov complexity to study derandomization

Thank you

