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Computational complexity

® Shannon (1949)
® defines circuits as a model of computation
® proposes circuit size as a measure of complexity

® poses the problem of finding an explicit function for
which exponential size circuits are required.

! Current best lower bounds are 5n [LROI, IM02] (circuits)
and n3 [Has98] (formulae)

® Asymptotic time complexity [HS65], P vs NP question
[Edm65].

! Despite much effort, still no separation in sight



Lower bound techniques

® Significant separations have been achieved by
diagonalization

“So- mawny proble/m/y
so-few machines...

® Many known techniques seem to be
fundamentally information theoretic

“So- much information
so-little time...!”



Kolmogorov complexity

Introduced by Solomonoff, Kolmogorov, and Chaitin
(algorithmic information), in the 60s

K(x) is the length of the shortest program that prints «.

K(xly) is the length of the shortest program that prints
x when given string y as auxiliary input.




Incompressibility

Fundamental tool for proving lower bounds:

® For any finite set A, dx € A, K(x) = log(#A)

(there are not enough short programs to
describe all xx in A)

Corresponding upper bound:

® For any finite set A, Ve € A, K(x) < log(#A)

(suffices to give an index into the set A)



Classical decision tree model

To compute a boolean function

Fi{0,1v = 0,1}, n=0 -1
Model : decision tree
Cost : Number of queries to =0 »=1 =0 =]
input

X3 = 0 X3 = 1
Query complexity of f: (35 =7) (xs=")
DT(f) is depth of shallowest VAL A
decision tree for f ‘



Simple decision tree lower bound

Proposition [L] If f(x) =#f(y)
then there exists

K(ilx) < log(depth(T))
K(ily) < log(depth(T))

DT () = min; {max {2502 2Ky ) ]
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Simple decision tree lower bound

Proposition [L] If f(x) =#f(y)
then there exists

K(ilx) < log(depth(T))
K(ily) < log(depth(T))

DT () = min; {max {2502 2Ky ) ]

J(x)=0 f(y) =1
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Foundations: Time bounded complexity
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Time-bounded Kolmogorov complexity

(7 (x) is the length of the shortest program that prints x
in time p(lxl).

CDr (x) is the length of the shortest program that runs
in time p(1z) and accepts = if and only if = = «.




Time-bounded Kolmogorov complexity

(7 (x) is the length of the shortest program that prints x
in time p(lxl).

CDr (x) is the length of the shortest program that runs
in time p(1z) and accepts = if and only if = = «.

® In unbounded time, CD*~=C®*.
® For any finite set A,and x€A4 CD* (x) < log (#A)
® The language compression problem [S83]:

For any A, x€A CDr (x) < ?? for polynomial p ?



Language compression problem

® For mostr, CDr(xlr) < log(#A4) [S83]

) Chinese remainder
o CI¥(x)<2log(#A) [BFLO2] [ theorer ]

® For all but € fraction of x€A4,

CDv (xIr) < log (#A) + polylog (IxI/€) [BFLO2] ( Extractors )

® Exists A, €A, CDV (x) = 2 log (#A) [BLMOO]



Cover-free families of sets

® Definition F is £-cover free if

for any Fy...Fr in F, FpdU, F;

® Theorem [DR82] Let F be a

family of V sets over a

universe of // elements. If F

is £-cover free and V> £°,
then

N?log(N)
M2 2log(k) + O(1)

Iyis covered by
the other sets

F is 5-cover free




Lower bound on language compression

Theorem [BLMO0] A, x€A, CDPA(x) = 2 log (#A)

Programs
4 N
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Lower bound on language compression

Theorem [BLMO0] A, x€A, CDPA(x) = 2 log (#A)

Programs
4 N
I ={p: p accepts x/

- J

F={F.|xe A} is k-cover free




Lower bound on language compression

Theorem [BLMO0] A, x€A, CDPA(x) = 2 log (#A)

Programs
(- )
I ={p: p accepts x/

- J

F=(F.|xe A} is k-cover free

Ninputs (#F = r'”) N?log(N)

M >
Z{ %gg’f:;; = 2log(k) + O(1)
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Quantum computation

e Computation acts on qubits

® ;-bit strings are vectors forming an orthonormal
basis of 22-dimensional Hilbert space, {|i) = e;}1<i<an

® Qubits are unit, complex combinations of basis states
e Quantum gates are unitary operations
* U'U=1I

® Linear invertible, norm-preserving
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Quantum computation

e Computation acts on qubits

® ;-bit strings are vectors forming an orthonormal
basis of 22-dimensional Hilbert space, {|i) = e;}1<i<an

® Qubits are unit, complex combinations of basis states

e Quantum gates are unitary operations

e U'U =1

® Linear invertible, norm-preserving

/o0y + 51 —

Unitary
Gate

— alf(0)) +81f(1)) T~~~




Quantum Kolmogorov complexity

® Three definitions have been proposed
® Classical description [V0O]
® Quantum description [BDLOO]
® Semi-density matrices [GOI]

® We give a quantum description by means of
universal quantum Turing machine U/ [BV97]

® QC(l¢)) = miﬂ{di}n(M) Uly) = |9);

( number of qubits )




Properties of quantum Kolmogorov complexity

® Properties of [BDLOO]| definition
® Existence of incompressible quantum states

® Strong connection to quantum information
theory (von Neumann entropy)

® Quantification of no-cloning of quantum
states:

QC(|9)%" | |¢))
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Applications: Quantum lower bounds

Formula size
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Adversary method

R
{x:f(x)=1}  {y:f(y)=0}

SEge

(C

=

\/

A

v

Ri={(xy) ER.'xl'qey,j}



Adversary method

R
fx:f(x)=1) {v:f(y)=0) Proposition [L| For any relation &,
m ’ Vi DT(f) = degni.(R)/(deg(R.))
S
._>\<>‘ Recall that
o ) V(DT () = 2K
Za ® K(x,y) 2 log (# (1) degnin(R))
o—— ‘C

® K(xy)< K(x) + K(ilx) + K(ylx,0)

(]
\j ® 41 (1) deguin(R) <H#(1)- 250 deg(R;)
={(%y) ERx=y} @K > deg,..(R)/(deg(R;))

22



Quantum adversary lower bounds

Theorem [ MO4]

Ce 1
5 > =

Implies all previously known quantum adversary
lower bounds

® Unweighted adversary [A02]
® Weighted adversary [A03]
® Spectral method [BSS03]

All these methods are equivalent [SS05]

23



Applications: Formula size lower bounds
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Boolean circuit and formula size

Boolean circuit Boolean formula

Best lower bound: 5n Best lower bound: n3
[Lachish Raz Ol, [Hastad 98]
Iwama Morizumi 02]
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Communication complexity

® J(f) = amount of communication in the worst
case, for the best protocol for f

e d(f) = D(Ry) [KW88]

Circuit Given x, v for which f(x) # f
depth (v), find [ s.t.x; # yi

26



Circuit depth lower bound

i

Ay
ST MY o mj ns
= /

f»

Proposition [L[SO5]

K(lx)+K(dly) < D(Ry)=d(f)

Proof

K(lx) < lmol + lm4 + ...
K(ly) < lmyl + lmsl + ...

27



Background on communication complexity
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Background on communication complexity

B’s input y
1

\

A’s input x

S P
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Background on communication complexity

A’s input x

B’s input y
B sends | Bsends 0 !

\

/

A sends 0

A sends |

® DRect(f) = smallest number of disjoint
monochromatic rectangles needed to cover M¢

o L(f) = DRe(R) [KW88]
Given x, y for which f(x) if(y)j

find ( s.t.x; # y,

28



Formula size lower bound, spectral formulation

Theorem [ SO5] Formula size lower bound

L(f) > max 4]
~ A max; ||4;|]?

*
A
||| = max ——
wo |ul|v

5
|

29
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Formula size lower bound, spectral formulation

Theorem [L[SO5] Formula size lower bound

L(f) > max ||A||2
— A max; ||4;]?

=2

*k
A
|4 = max ——
wo [ul[v]




Formula size lower bound

Theorem [[[SO5]

30



Formula size lower bound

Theorem [[[SO5] (

\ /

e |[f Ris an optimal partition R;,...,Rx,then if ;. is subadditive

Rect — 'LL(X a Y)
L{f) 2 DTRy) = #R 2 L R

e If Sisa covering with R<S (refinement) then if  is monotone,
p(X xY)

maxges (4(5)
e Key lemma [[SO5]||M||?is subadditive and monotone

L(f) >
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L(f) > max 4]
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Relation to other methods

® Closely related to the quantum spectral method

| A2
>
L) 2 mjx max; || A;||?
O.(f) > max | Al

A max; || A;|

® Generalizes many previous methods
® Khrapchenko’s combinatorial method [K71]
e Koutsoupias’ spectral method [K93]

® A key lemma of Hastad used to prove the current best
formula size lower bound (random restrictions) [H98]
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Research project



Current projects

e Continue to unify and extend classical and quantum lower
bound techniques

® Combinatorial models

e Communication complexity, circuits, formula size,
decision trees

® Techniques
® Fourier analysis

® Information theory methods
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Further projects

® Medium-term

e Apply quantum Kolmogorov complexity to quantum
lower bounds, e.g. quantum information theoretic

methods

® long-term

® Use Kolmogorov complexity to study derandomization

34
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