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Abstract

We prove a very general lower bound technique for
quantum and randomized query complexity, that is easy
to prove as well as to apply. To achieve this, we intro-
duce the use of Kolmogorov complexity to query complex-
ity. Our technique generalizes the weighted, unweighted
methods of Ambainis, and the spectral method of Barnum,
Saks and Szegedy. As an immediate consequence of our
main theorem, it can be shown that adversary methods
can only prove lower bounds for boolean functionsf in
O(min(

√
nC0(f),

√
nC1(f))), whereC0, C1 is the certifi-

cate complexity, andn is the size of the input. We also de-
rive a general form of the ad hoc weighted method used by
Høyer, Neerbek and Shi to give a quantum lower bound on
ordered search and sorting.

1. Introduction

1.1. Overview

In this paper, we study lower bounds for randomized and
quantum query complexity. In the query model, the input is
accessed using oracle queries, and the query complexity of
an algorithm is the number of calls to the oracle. Since it is
difficult to obtain lower bounds on time directly, the query
model is often used to prove concrete lower bounds, in clas-
sical as well as quantum computation.

The two main tools for proving lower bounds of random-
ized query complexity, the polynomial method [7] and the
adversary method [2], were successfully extended to quan-
tum computation. In the randomized setting, the adversary
method is most often applied using Yao’s minimax princi-
ple [18]. Using a different approach, which introduces the
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notion of quantum adversaries, Ambainis developed a gen-
eral scheme in which it suffices to analyze the combinato-
rial properties of the function in order to obtain a quantum
lower bound. Recently, Aaronson [1] brought these combi-
natorial properties back to randomized computation, using
Yao’s minimax principle.

The most general method for proving lower bounds in
quantum query complexity is the semidefinite programming
method of Barnum, Saks and Szegedy [6]. This method
is in fact an exact characterization of the query complex-
ity. However, the method is so general as to be very dif-
ficult to apply to obtain concrete lower bounds. Barnum,
Saks and Szegedy gave a weaker method derived from the
semidefinite programming approach, using weight matri-
ces and their largest eigenvalue. This spectral method can
be thought of as a generalization of Ambainis’ unweighted
method. Other generalizations of Ambainis’ unweighted
method have been previously introduced [5, 3]. All of them
use a weight function on the instances. The difficulty in ap-
plying these methods is finding a good weight function on
the instances. Høyer, Neerbek and Shi [14] were the first
to use such weight assignments to prove lower bounds for
searching in ordered lists and sorting. Theirad hocmethod,
though similar in many respects, does not fall into setting of
the weighted method of Ambainis [3].

This paper presents a new, very general adversary tech-
nique (Theorem 1) to prove lower bounds in quantum and
randomized query complexity. We believed that this tech-
nique is simpler to prove and to apply. It is based on the
framework of Kolmogorov complexity. This framework has
proven to be very useful for proving negative results in other
models of computation, for example for number of rounds
and length of advice in random-self-reductions in [12, 4].
The techniques we use here are an adaptation of those tech-
niques to the framework of query complexity. We expect
that this framework will not only prove to be useful for neg-
ative results in other quantum models of computation, for
instance, communication complexity, but also for finer anal-
ysis of query complexity in terms of the number of rounds
of queries.



The proof of Theorem 1 is in two parts. The first part
(Divergence Lemma) shows how fast the computations can
diverge when they start on different inputs. This part de-
pends on the model of computation (randomized or quan-
tum). The quantum case of this lemma was first proven
by Ambainis [2]. The second part (Query Information
Lemma) does not depend on the model of computation. It
establishes the relationship between the Kolmogorov com-
plexity of individual positions of the input, and the prob-
ability that a given algorithm makes a query to this posi-
tion. Whereas Aaronson [1] used a different approach to
prove a version of Ambainis’ method for randomized algo-
rithms, here we use the same framework to establish lower
bounds for both quantum and randomized query complexi-
ties (QQC andRQC).

We show that our method encompasses all previous
adversary methods, including the quantum and random-
ized weighted methods [3, 1] (Theorem 2) and the spec-
tral method [6] (Theorem 3). As an immediate conse-
quence of our main theorem (observed by Troy Lee), our
method can only prove lower bounds for boolean func-
tions inO(min(

√
nC0(f),

√
nC1(f))), whereC0 andC1

is the certificate complexity of negative and positive in-
stances, respectively, off , andn is the size of the input
(Theorem 4). Prior to our work, it was known [3] that the
unweighted Ambainis method [2, Theorem 5.1] could not
prove bounds better thanΩ(

√
C0(f)C1(f)); Szegedy [17]

also proved independently that the semidefinite program-
ming method could not prove lower bounds better than
O(min(

√
nC0(f),

√
nC1(f))), and Zhang [19] proved the

same thing for Ambainis’ weighted method.
We also give a generalization (Theorem 5) of thead hoc

proofs of Høyer, Neerbek and Shi [14] as a corollary of
our method. For this we introduce a new distance scheme.
This new scheme separates the quantum part from the com-
binatorial part of thesead hocproofs. Using it, we prove
the lower bound of [14] using only combinatorial argu-
ments. We end the paper by giving some applications of our
method to prove lower bounds for some graph properties:
bipartiteness (Theorem 7) and connectivity (Theorem 6).
The lower bound on connectivity was proven in [11], and
the one on bipartiteness by Dürr (personal communication)
and independently in [19]. We reprove it here to illustrate
the simplicity of our method.

1.2. Main result

The conditional Kolmogorov complexityK(a|b) (de-
fined formally in Section 2.1) is the length of the shortest
program which printsa givenb as input. Our main result is
stated in terms ofK(i|x,A) andK(i|y,A), wherex, y are
inputs for whichf(x) 6= f(y), i is an index into the in-
puts wherexi 6= yi, andA is an algorithm forf .

Theorem 1. There exists a constantC > 0 such that the
following holds. LetΣ be a finite set, letn ≥ 1 be an in-
teger, and letS ⊆ Σn and S′ be sets. Letf : S → S′.
LetA be an algorithm that for allx ∈ S computesf , with
bounded errorε and at mostT queries to the input. Then
for everyx, y ∈ S with f(x) 6= f(y):

1. IfA is a quantum algorithm then

T ≥ C × 1−2
√

ε(1−ε)P
i:xi 6=yi

√
2−K(i|x,A)−K(i|y,A)

;

2. IfA is a randomized algorithm then

T ≥ C × 1−2εP
i:xi 6=yi

min(2−K(i|x,A),2−K(i|y,A)) .

We briefly describe the intuition behind the proof of The-
orem 1. Consider an algorithm that purports to computef ,
presented with two inputsx, y that lead to different outputs.
The algorithm must query those positions wherex andy
differ with average probability of the order of1T , or it will
not successfully compute the function. On the other hand,
the queries that are made with high average probability can
be described succinctly given the input and the algorithm,
using the Shannon-Fano code. If we exhibit a pair of strings
x, y for which there is no succinct description of any of the
positions wherex andy differ, then the number of queries
must be large.

The same reasoning can be applied to classical and to
quantum computing; the only difference is how fast two dif-
ferent input states cause the outputs to diverge to different
outcomes.

To conclude the introduction we give a very simple ap-
plication, for Grover search.

Example 1. Fix n and a quantum algorithmA for Grover
search for instances of lengthn. Let z be a binary string of
lengthlog n, with K(z|A) ≥ log n. Let j be the integer be-
tween0 andn−1 whose binary expansion isz. Considerx,
the all0’s string, and lety be everywhere0 except at posi-
tion i = j+1, where it is1. ThenK(i|x,A) ≥ log n−O(1)
andK(i|y,A) ≥ 0, therefore,QQC(SEARCH) = Ω(

√
n).

2. Preliminaries

2.1. Kolmogorov complexity

We use a few standard results in Kolmogorov complex-
ity and information theory in this paper. We briefly review
these here. The reader is invited to consult standard text-
books such as [15] for more background on Kolmogorov
complexity, and [8] for more on information theory. We de-
note the length of a finite stringx by |x|. We assume that
the Turing machine’s alphabet is the same finite alphabet as
the alphabet used to encode instances of the function under
consideration. Lettersx, y typically represent instances;i is



an index into the representation of the instance; andp, q are
probability distributions. Programs are denotedP , and the
output of a Turing machineM on inputx is writtenM(x).
When there are multiple inputs, we assume that a standard
encoding of tuples is used.

Definition 1. LetM be a Turing machine. Letx andy be
finite strings.

1. TheKolmogorov complexity ofx giveny with respect
toM is denotedCM (x|y), and defined as follows:

CM (x|y) = min(|P | such thatM(P, y) = x).

2. A set of strings isprefix-freeif no string is a prefix of
another in the set.

3. Theprefix-free Kolmogorov complexity ofx given y
with respect toM is denotedKM (x|y), and defined as
follows:

KM (x|y) = min(|P | such thatM(P, y) = x),

whereP is taken in some fixed prefix-free set.

In the rest of the paperM is some fixed universal Tur-
ing machine, and we will writeC andK instead ofCM and
KM . Wheny is the empty string, we writeK(x) instead of
K(x|y).

Proposition 1. There exists a constantc ≥ 0 such that for
every finite stringσ,

K(x|σ) ≤ K(x) + c, and

K(x) ≤ K(σ) +K(x|σ) + c.

Proposition 2 (Kraft’s inequality). Let S be any prefix-
free set of finite strings. Then

∑
x∈S 2−|x| ≤ 1.

Proposition 3 (Shannon’s coding theorem).Consider a
sourceS of finite strings wherex occurs with probability
p(x). Then for any code forS, the average code length is
bounded below by the entropy of the source, that is, ifx is
encoded by the code wordc(x) of length|c(x)|, H(S) =∑

x:p(x) 6=0 p(x) log( 1
p(x) ) ≤

∑
x:p(x) 6=0 p(x)|c(x)|.

Lemma 1. LetS be a source as above. Then for any fixed
finite stringσ, there exists a stringx such thatp(x) 6= 0 and
K(x|σ) ≥ log( 1

p(x) ).

Proof. By Shannon’s coding theorem,

H(S) =
∑

x:p(x) 6=0

p(x) log( 1
p(x) ) ≤

∑
x:p(x) 6=0

p(x)K(x|σ),

becauseK(x|σ) is the length of an encoding ofx. Therefore
there existsx such thatp(x) 6= 0 andK(x) ≥ log( 1

p(x) ).

The Shannon-Fano code is a prefix-free code that en-
codes each wordx with p(x) 6= 0, usingdlog( 1

p(x) )e bits.

We will write log( 1
p(x) ) to simplify notation. The code can

easily be computed given a description of the probability
distribution. This allows us to write the following proposi-
tion, whereK(x|S) means the prefix-free Kolmogorov com-
plexity of x given a finite description ofS.

Proposition 4 (Shannon-Fano code).There exists a con-
stantc ≥ 0, such that for every sourceS as above, for allx
such thatp(x) 6= 0, K(x|S) ≤ log( 1

p(x) ) + c.

We shall also use the following bound on conditional
Kolmogorov complexity.

Proposition 5. There is a constantc ≥ 0 such that for any
three stringsx, y, z,

K(z|x) ≥ K(x, y)− K(x)− K(y|z, x) +
K(z|x, y,K(x, y))− c.

Proof. Using [15, Theorem 3.9.1, page 232], there is a con-
stantc1 ≥ 0 such that

|K(a, b)− K(a)− K(b|a,K(a))| ≤ c1.

Substitutingx, y for a andz for b:

K(x, y) + K(z|x, y,K(x, y))− c1 ≤ K(x, y, z)
≤ K(x) + K(z|x) + K(y|z, x) + c2,

which gives the result.

2.2. Query models

The quantum query model was implicitly introduced by
Deutsch, Jozsa, Simon and Grover [9, 10, 16, 13], and ex-
plicitly by Beals, Buhrman, Cleve, Mosca and de Wolf [7].
In this model, as in its classical counterpart, we pay for ac-
cessing the oracle, but unlike the classical case, the machine
can use the power of quantum parallelism to make queries
in superposition. Access to the inputx ∈ Σn, whereΣ is a
finite set, is achieved by way of a query operatorOx. The
query complexityof an algorithm is the number of calls to
Ox.

The state of a computation is represented by a reg-
ister R composed of three subregisters: thequery regis-
ter i ∈ {0, . . . , n}, the answer registerz ∈ Σ and the
work registerw. We denote a register using the ket no-
tation |R〉 = |i〉|z〉|w〉, or simply |i, z, w〉. In the quan-
tum (resp., randomized) setting, the state of the compu-
tation is a complex (resp., non-negative real) combination
of all possible values of the registers. LetH denote the
corresponding finite-dimensional vector space. We denote
the state of the computation by a vector|ψ〉 ∈ H over
the basis(|i, z, w〉)i,z,w. Furthermore, the state vectors are



unit length for thè 2 norm in the quantum setting, and for
the`1 norm in the randomized setting.

A T -query algorithmA is specified by a(T+1)-uple
(U0, U1, . . . , UT ) of matrices. WhenA is quantum (resp.,
randomized), the matricesUi are unitary (resp., stochastic).
The computation takes place as follows. Thequery oper-
ator is the unitary (resp., stochastic) matrixOx that satis-
fiesOx|i, z, w〉 = |i, z ⊕ xi, w〉, for every i, z, w, where
by conventionx0 = 0. Initially the state is set to some
fixed value|0, 0, 0〉. Then the sequence of transformations
U0, Ox, U1, Ox, . . . , UT−1, Ox, UT is applied.

We say that the algorithmA ε-computesa functionf :
S → S′, for some setsS ⊆ Σn andS′, if the observa-
tion of the last bits of the work register equalsf(x) with
probability at least1 − ε, for everyx ∈ S. ThenQQC(f)
(resp.,RQC(f)) is the minimum query complexity of quan-
tum (resp., randomized) query algorithms thatε0-compute
f , whereε0 is a fixed positive constant no greater than1

3 .

3. Proof of the main theorem

This section is devoted to the proof of the main theo-
rem. We prove Theorem 1 in two main steps. Lemma 2
shows how fast the computations diverge when they start
on different individual inputs, in terms of the query prob-
abilities. This lemma depends on the model of computa-
tion. Lemma 3 establishes the relationship between the Kol-
mogorov complexity of individual positions of the input,
and the probability that a given algorithm makes a query to
this position. This lemma is independent of the model of
computation. Theorem 1 follows immediately by combin-
ing these two lemmas.

In the following two lemmas, letA be anε-bounded er-
ror algorithm forf that makes at mostT queries to the in-
put. Letpx

t (i) be the probability thatA queriesxi at query
t on inputx, and letpx(i) = 1

T

∑T
t=1 p

x
t (i) be the average

query probability over all the time steps up to timeT . We as-
sume henceforth without loss of generality thatpx(i) > 0.
(For example, we start by uniformly querying all positions
and reverse the process.)

Lemma 2 (Divergence Lemma). For every inputx, y ∈
S such thatf(x) 6= f(y) the following holds.

1. For quantum algorithms:

2T
∑

i:xi 6=yi

√
px(i)py(i) ≥ 1− 2

√
ε(1− ε).

2. For randomized algorithms:

2T
∑

i:xi 6=yi

min (px(i), py(i)) ≥ 1− 2ε.

We defer the proof of Lemma 2 to the end of this section.

The next lemma relates the query probabilities to the
Kolmogorov complexity of the strings. In this lemma and
the results that follow, we assume that a finite description of
the algorithm is given. Using the knowledge ofA, we may
assume without loss of generality that the functionf that it
computes is also given, as is the lengthn of the inputs. With
additional care, the additive constants in all of the proofs
can be made very small by adding to the auxiliary infor-
mation made available to the description algorithms, those
constant-size programs that are described within the proofs.

Lemma 3 (Query Information Lemma). There exists an
absolute constantc ≥ 0 such that for every inputx ∈ S and
positioni ∈ {1, . . . n},

K(i|x,A) ≤ log( 1
px(i) ) + c.

Proof. We describe the program that printsi given x and
A. Givenx, useA andx to compute the probabilitiespx(i).
This can be done in a finite number of steps because the
number of queries is bounded byT . The program includes
a hard coded copy of the encoding ofi under the Shannon-
Fano code for this probability distribution. Decode this and
print i.

From these two lemmas we derive the main theorem.

Proof of Theorem 1.By Lemma 3, there is a constant
c ≥ 0 such that for any algorithm that makes at mostT
queries, and anyx, y, i,

px(i) ≤ 2−K(i|x,A)+c and py(i) ≤ 2−K(i|y,A)+c.

This is true in particular for all thosei wherexi 6= yi. Com-
bining this with Lemma 2 concludes the proof of the main
theorem withC = 2−c−1.

We now give the proof of Lemma 2. The proof of the
quantum case is very similar to the proofs found in many
papers which give quantum lower bounds on query com-
plexity. To our knowledge, the randomized case is new de-
spite the simplicity of its proof. Whereas Aaronson [1] used
a different approach to prove a version of Ambainis’ method
for randomized algorithms, our lemma allows us to use the
same framework to establish lower bounds for both quan-
tum and randomized query complexities.

Proof of Lemma 2.Let |ψx
t 〉 be the state of theε-bounded

error algorithmA just before thetth oracle query, on in-
putx. By convention,|ψx

T+1〉 is the final state. WhenA is a
quantum algorithm|ψx

t 〉 is a unit vector for thè 2 norm;
otherwise it is a probabilistic distribution, that is, a non-
negative and unit vector for thè1 norm. Observe that
the`1 distance is the total variation distance.

First we prove the quantum case. Initially, the starting
state ofA does not depend on the input, thus before the first
question we have|ψx

1 〉 = |ψy
1 〉, so〈ψx

1 |ψ
y
1 〉 = 1. At the end



of the computation, if the algorithm is correct with proba-
bility ε, then|〈ψx

T+1|ψ
y
T+1〉| ≤ 2

√
ε(1− ε). At each time

step, we consider how much the two states can diverge.

Claim 1.

|〈ψx
t |ψ

y
t 〉 − 〈ψx

t+1|ψ
y
t+1〉| ≤ 2

∑
i:xi 6=yi

√
px

t (i)py
t (i).

The proof of Claim 1 can be found in Appendix A.
OverT time steps, the two states diverge as follows. The

proof uses only Claim 1 and the Cauchy-Schwartz inequal-
ity.

1− 2
√
ε(1− ε) ≤ |〈ψx

1 |ψ
y
1 〉 − 〈ψx

T+1|ψ
y
T+1〉|

≤
T∑

t=1

|〈ψx
t |ψ

y
t 〉 − 〈ψx

t+1|ψ
y
t+1〉|

≤
T∑

t=1

2
∑

i:xi 6=yi

√
px

t (i)py
t (i)

≤ 2
∑

i:xi 6=yi

√√√√T−1∑
t=0

px
t (i)

T−1∑
t=0

py
t (i)

= 2T
∑

i:xi 6=yi

√
px(i)py(i).

Now we prove the randomized case. We use theketno-
tation for real-valued normalized vectors, for consistency in
notation. Again, initially|ψx

1 〉 = |ψy
1 〉. At the end of the

computation, if the algorithm is correct with probabilityε,
then‖ |ψx

T+1〉 − |ψy
T+1〉 ‖1≥ 1 − 2ε. At each time step,

the distribution states now diverge according the following
claim.

Claim 2.

‖ |ψx
t+1〉 − |ψy

t+1〉 ‖1

≤ ‖ |ψx
t 〉 − |ψy

t 〉 ‖1 +2
∑

i:xi 6=yi

min (px
t (i), py

t (i)) .

The proof of Claim 2 can be found in Appendix A. We
now conclude the proof.

1− 2ε ≤
T∑

t=1

‖ |ψx
t+1〉 − |ψy

t+1〉 ‖1 − ‖ |ψx
t 〉 − |ψy

t 〉 ‖1

≤
T∑

t=1

2
∑

i:xi 6=yi

min (px
t (i), py

t (i))

≤ 2T
∑

i:xi 6=yi

min (px(i), py(i)) .

4. Comparison with previous adversary
methods

In this section, we reprove, as a corollary of Theorem 1,
the previously known adversary lower bounds. Our frame-
work also allows us to obtain somewhat stronger statements
for free.

To obtain the previously known adversary methods as
a corollary of Theorem 1, we must give a lower bound
on termsK(i|x,A) and K(i|y,A). To this end, we apply
Proposition 5, and give a lower bound onK(x, y), and up-
per bounds onK(x|i, y) andK(y|i, x). The lower bound on
K(x, y) is obtained by applying Lemma 1, a consequence
of Shannon’s coding theorem, for an appropriate distribu-
tion. The upper bounds onK(x|i, y) andK(y|i, x) are ob-
tained using the Shannon-Fano code, for appropriate distri-
butions.

The following lemma is the general formulation of the
sketch above.

Lemma 4. There exists a constantC > 0 such that the
following holds. LetΣ be a finite set, letn ≥ 1 be an
integer, and letS ⊆ Σn. Let q be a probability distribu-
tion onS2, let p be a probability distribution onS and let
{p′x,i : x ∈ S, 1 ≤ i ≤ n} be a family of probability distri-
butions onS. Assume that wheneverq(x, y) 6= 0 thenp(x),
p(y), p′y,i(x) andp′x,i(y) are non-zero, for everyi such that
xi 6= yi. Then for every finite stringσ, there existx, y ∈ S
with q(x, y) 6= 0, such that

1∑
i:xi 6=yi

√
2−K(i|x,σ)−K(i|y,σ)

≥ C × min
i:xi 6=yi

(√
p(x)p′x,i(y) p(y)p′y,i(x)

q(x,y)

)
,

and

1∑
i:xi 6=yi

min
(
2−K(i|x,σ), 2−K(i|y,σ)

)
≥ C × min

i:xi 6=yi

(
max

(
p(x)p′x,i(y)

q(x,y) ,
p(y)p′y,i(x)

q(x,y)

))
.

Proof. In this proof,c1, . . . , c5 are some appropriate non-
negative constants. By Lemma 1, there exists a pair(x, y)
such thatq(x, y) 6= 0 and

K(x, y|σ, p, p′) ≥ log( 1
q(x,y) ),

wherep′ stands for a complete description of all thep′x,i.
Fix x andy so that this holds. By using the Shannon-

Fano code (Proposition 3),

K(x|p) ≤ log( 1
p(x) ) + c1

and
K(y|x, i, p′x,i) ≤ log( 1

p′i,x(y) ) + c1,



for anyi such thatxi 6= yi. By Proposition 5,

K(i|x, σ)
≥ K(i|x, σ, p, p′)− c3
≥ K(x, y|σ, p, p′)− K(x|p)− K(y|i, x, p′x,i) +

K(i|x, y,K(x, y), σ, p, p′)− c4
≥ log( 1

q(x,y) )− log( 1
p(x) )− log( 1

p′x,i(y) ) +

K(i|x, y,K(x, y), σ, p, p′)− c5

= log(p(x)p′x,i(y)

q(x,y) ) + K(i|x, y,K(x, y), σ, p, p′)− c5.

Similarly,

K(i|y, σ) ≥ log(p(y)p′y,i(x)

q(x,y) ) +
K(i|x, y,K(x, y), σ, p, p′)− c5

This concludes the proof of the lemma using Kraft’s in-
equality (Proposition 2) and lettingC = 2−c5 .

4.1. Ambainis’ weighted scheme

Theorem 2 (Ambainis’ weighted method). Let Σ be a fi-
nite set, letn ≥ 1 be an integer, and letS ⊆ Σn andS′

be sets. Letf : S → S′. Consider a weight scheme as fol-
lows:

• Every pair (x, y) ∈ S2 is assigned a non-negative
weight w(x, y) such thatw(x, y) = 0 whenever
f(x) = f(y).

• Every triple(x, y, i) is assigned a non-negative weight
w′(x, y, i) such thatw′(x, y, i) = 0 wheneverxi = yi

or f(x) = f(y).

For all x, i, let

wt(x) =
∑

y

w(x, y)and

v(x, i) =
∑

y

w(x, y, i).

If w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i such that
xi 6= yi, then

QQC(f) = Ω

 min
x,y,i

w(x,y) 6=0,xi 6=yi

(√
wt(x)wt(y)
v(x,i)v(y,i)

) .

Furthermore, ifw′(x, y, i), w′(y, x, i) ≥ w(x, y) for all
x, y, i such thatxi 6= yi, then

RQC(f) = Ω

 min
x,y,i

w(x,y) 6=0,xi 6=yi

(
max

(
wt(x)
v(x,i) ,

wt(y)
v(y,i)

)) .

The relation in Ambainis’ original statement is implicit
in this formulation, since it corresponds to the non-zero-
weight pairs. A weaker version of the randomized case was
proven independently by Aaronson [1] using a completely
different approach. We show that Theorem 2 follows from
Theorem 1.

Proof. We derive probability distributionsq, p, p′ from the
weight schemes as follows. LetW =

∑
x,y w(x, y). Define

q(x, y) = w(x,y)
W ,

p(x) = wt(x)
W ,

p′x,i(y) = w′(y,x,i)
v(x,i) , for anyx, y, i.

It is easy to check that by construction and hypothesis, these
distributions satisfy the conditions of Lemma 4. Rearrang-
ing and simplifying the terms allows us to conclude.

We conclude this section by sketching the proof of the
unweighted version of Ambainis’ adversary method, as it
affords a simpler combinatorial proof, that does not require
Lemma 4. To simplify notation we omit additive constants
and the usual auxiliary strings includingA.

LetR ⊆ S×S, be a relation on pairs of instances, where
(x, y) ∈ R =⇒ f(x)6=f(y), and letRi be the restriction of
R to pairsx, y for whichxi 6= yi. Viewing the relationR as
a bipartite graph, letl, l′,m,m′ be as follows.

• m is a lower bound on the degree of allx ∈ X,
• m′ is a lower bound on the degree of ally ∈ Y ,
• for any fixedx andi, 1 ≤ i ≤ n, the number ofy ad-

jacent tox for whichxi 6= yi is at mostl,
• for any fixedy andi, 1 ≤ j ≤ n, the number ofx ad-

jacent toy for whichxi 6= yi is at mostl′.

We make the following observations.

1. |R| ≥ max{m|X|,m′|Y |}, so ∃x, y K(x, y) ≥
max (log(m|X|), log(m′|Y |)) .

2. ∀x ∈ X,K(x) ≤ log(|X|) andK(y) ≤ log(|Y |), for
all y ∈ Y .

3. ∀x, y, i with (x, y) ∈ Ri,K(y|i, x) ≤ log(l) and simi-
larly, K(x|i, y) ≤ log(l′).

For anyi with xi 6= yi, by Proposition 5,

K(i|x) ≥ K(x, y)− K(x)− K(y|i, x) +
K(i|x, y,K(x, y))

≥ log(m|X|)− log(|X|)− log(l) +
K(i|x, y,K(x, y))

= log(m
l ) + K(i|x, y,K(x, y))

The same proof works to show thatK(i|y) ≥ log(m′

l′ ) +
K(i|x, y,K(x, y)). By Theorem 1 and Kraft’s inequality,

QQC(f) = Ω
(√

mm′

ll′

)
.



4.2. Spectral lower bound

We now show how to prove the spectral lower bound of
Barnum, Saks ans Szegedy [6] as a corollary of Theorem 1.
Recall that for any matrixΓ, λ(Γ) is the largest eigenvalue
of Γ.

Theorem 3 (Barnum-Saks-Szegedy spectral method).
Let Σ be a finite set, letn ≥ 1 be an integer, and let
S ⊆ Σn andS′ be sets. Letf : S → S′. Let Γ be an ar-
bitrary S × S nonnegative real symmetric matrix that sat-
isfiesΓ(x, y) = 0 wheneverf(x) = f(y). For i = 1, . . . , n
let Γi be the matrix:

Γi(x, y) =

{
0, if xi = yi;

Γ(x, y), otherwise.

Then
QQC(f) = Ω

(
λ(Γ)

maxi λ(Γi)

)
.

Proof. Let |α〉 (resp., |αi〉) be the unit eigenvector ofΓ
(resp.,Γi) with nonnegative entries and whose eigenvalue
is λ(Γ) (resp.,λ(Γi)). We define the probability distribu-
tions q, p, p′ as follows. LetW =

∑
x,y w(x, y), and de-

fine

q(x, y) = Γ(x,y)〈x|α〉〈y|α〉
〈α|Γ|α〉 ,

p(x) = 〈x|α〉2,
p′i,x(y) = Γi(x,y)〈y|αi〉

〈x|Γi|αi〉 , for anyx, y, i.

By construction these distributions satisfy the conditions
of Lemma 4, which suffices to conclude.

5. Certificate complexity and adversary tech-
niques

Let f be a boolean function. For any positive instance
x ∈ Σn of f (f(x)=1), apositive certificatefor f(x) is the
smallest subset of indicesI ⊆ [n] of x, such that for anyy
with xi = yi for all i ∈ I, f(y)=1.

The1-certificate complexityof f , denotedC1(f), is the
size of the largest positive certificate forf(x), over all posi-
tive instancesx. The0-certificate complexityis defined sim-
ilarly for negative instancesx of f (f(x) = 0).

Prior to our work, it was known that the best possi-
ble bound that could be proven using the unweighted ad-
versary technique [2, Theorem 5.1] isO(

√
C0(f)C1(f)).

Independently, Szegedy [17] showed that the best
possible lower bound using the spectral method is
O(min(

√
nC0(f),

√
nC1(f))), and Zhang [19] proved the

same for Ambainis’ weighted method.
The following lemma, due to Troy Lee, results in a very

simple proof of the fact that our method, and hence, all the
known variants of the adversary method, cannot prove lower
bounds larger thanmin(

√
nC0(f),

√
nC1(f)).

Lemma 5. There exists a constantc ≥ 0 such that the fol-
lowing holds. LetΣ be a finite set, letn ≥ 1 be an inte-
ger, and letS ⊆ Σn be a set. Letf : S → {0, 1}. For ev-
ery x, y ∈ S with f(x) = 0 and f(y) = 1, there is ani
with xi 6= yi for which K(i|x, f) ≤ log(C0(f)) + c, and
similarly, there is aj with xj 6= yj such thatK(j|y, f) ≤
log(C1(f)) + c.

Proof. Let I be the lexicographically smallest certificate for
f(x). Sincef(x) 6= f(y), x and y must differ on some
i ∈ I. To describei givenx, it suffices to give an index into
I, which requireslog(C0(f))+c bits. The same can also be
done withx andy reversed.

Theorem 4. Let Σ be a finite set, letn ≥ 1 be an integer,
and letS ⊆ Σn be a set. Letf : S → {0, 1}. Then any
quantum query lower bound forf given by Theorem 1 is in
O(min(

√
nC0(f),

√
nC1(f))).

Proof. Let A be a quantum algorithm that computesf
with bounded error by making at mostT queries to
the input. Since a description off can be obtained
from a description ofA, K(i|x,A) ≤ K(i|x, f) +
O(1). Therefore, the lower bound given by Theorem 1 is

O

(
1P

i:xi 6=yi

√
2−K(i|x,f)−K(i|y,f)

)
, wheref(x) 6= f(y). This

isO(min(
√
nC0(f),

√
nC1(f))) by Lemma 5.

6. Applications

6.1. A general method for distance schemes

We generalize the technique of Høyer, Neerbek and
Shi [14], which they used to prove lower bounds on or-
dered search and sorting. Though their technique is simi-
lar, it does not appear to be a special case of the weighted
adversary method.

Here, we restrict ourselves to those weight functions that
take values of the form1d , for integer valuesd. Therefore, in-
stead of a weight function, we consider an integer function
D, which may be thought of as a distance function on pairs
of instances (even though it is not strictly speaking a dis-
tance measure in general). We will define theload of an in-
stancex, to be the maximum number of instancesy at any
given distanced from x. This will allow us to bound the
complexity of printingy, givenx andd. (In the case of or-
dered search, the load will be1 for all instances.)

More formally, for any non-negative integer functionD
on pairs(x, y), we define theright load lR(x, i) to be the
maximum over all valuesd, of the number ofy such that
D(x, y) = d andxi 6= yi. The left load lL(y, i) is defined
similarly, invertingx andy.



Theorem 5. Let Σ be a finite set, letn ≥ 1 be an integer,
and letS ⊆ Σn andS′ be sets. Letf : S → S′. LetD be
a non-negative integer function onS2 such thatD(x, y) =
0 wheneverf(x) = f(y). LetW =

∑
x,y:D(x,y) 6=0

1
D(x,y) .

Then

QQC(f) = Ω

W
|S| min

x,y

D(x,y)6=0,
xi=yi

(
1√

lR(x,i)lL(y,i)

) ,

RQC(f) = Ω

W
|S| min

x,y

D(x,y)6=0,
xi=yi

(
max

(
1

lR(x,i) ,
1

lL(y,i)

)) .

Proof. We use a variation on Lemma 4. We define probabil-
ity distributionsq(x, y) = 1

D(x,y)×W wheneverD(x, y) 6=
0 and q(x, y) = 0 otherwise;p(x) = 1

|S| . Fix σ to be
the string containing a description ofA and D, where
D is a complete description of the distance function, and
where we assume thatA includes a description off , hence
lR(x, i), lL(y, i) and are also given.

We give an upper bound on the termsK(y|x, i) and
K(x|y, i) directly, using left and right loads. Givenx, i and
some integerd > 0, there are at mostlR(x, i) instancesy
such thatD(x, y) = d andxi 6= yi. Therefore

K(y|x, i, σ) ≤ log(D(x, y)) + log(lR(x, i)) + c,

where c ≥ 0 is some constant, The same is true for
K(x|y, i):

K(y|x, i, σ) ≤ log(D(x, y)) + log(lL(y, i)) + c.

Now, we conclude following the same sketch as the proof
of Lemma 4.

We reprove some of the lower bounds of Høyer, Neer-
bek and Shi. The distance schemes we use are exactly the
ones of [14]. Whereas they did not separate the quantum
part from the combinatorial part in their proofs, here we
only need to evaluate the combinatorial objectslR andlL to
get the results.

Corollary 1. QQC(ORDERED SEARCH) = Ω(log n) and
RQC(ORDERED SEARCH) = Ω(log n).

Proof. Fix Σ = {0, 1}. We only consider the set of in-
stancesS of length n of the form 0a−11n−a. Note that
|S| = n. Define distance for pairs(x, y) ∈ S2 asD(x, y) =
b− a, andD(x, y) = 0 for all other instances, where
x = 0a−11n−a andy = 0b−11n−b with 1 ≤ a < b ≤ n.
The inverse distance has total weightW = Θ(n log n).
Furthermore, for everyx, y, i such thatD(x, y) 6= 0 and
xi 6= yi, lR(x, i) = lL(y, i) = 1. The result follows by
Theorem 5.

A lower bound for sorting [14] in the comparison model
can also be obtained by applying Theorem 5.

Corollary 2. QQC(SORTING) = Ω(n log n) and
RQC(SORTING) = Ω(n log n).

Proof. Fix Σ = {0, 1}. An input is ann × n comparison
matrix Mσ defined by(Mσ)i,j = 1 if σ(i) < σ(j), and
(Mσ)i,j = 0 otherwise, whereσ is some permutation of
{1, . . . , n}. (In the usual array representation, the element
of rankr in the array would be stored at positionσ−1(r).)
The setS of inputs is{Mσ : σ ∈ Sn}.

We consider pairs of instancesMσ,Mσ(k,d) , where
σ(k,d) is obtained fromσ by changing the value of the ele-
ment of rankk+ d to a value that immediately precedes the
element of rankk in σ. This changes the rank of thed ele-
ments of intermediate rank, incrementing their rank by one.

More formally, defineσ(k,d) = (k, k+1, . . . , k+d)◦σ,
for d 6= 0. For every pair of permutationsσ, τ we let
D(Mσ,Mτ ) = d if there existsk, d such thatτ = σ(k,d),
andD(Mσ,Mτ ) = 0 otherwise. Observe that whenever
τ = σ(k,d), the comparison matricesMσ andMτ differ only
in entries(σ−1(k + d), σ−1(i)) = (τ−1(k), τ−1(i + 1))
and (σ−1(i), σ−1(k + d)) = (τ−1(i + 1), τ−1(k)), for
k ≤ i ≤ k + d− 1.

Then for everyσ, τ, (i, j) such thatD(Mσ,Mτ ) 6= 0
and(Mσ)i,j 6= (Mτ )i,j , lR(σ, (i, j)) = lL(σ, (i, j)) = 2.
This is because givenσ, i, j, d, eitheri = σ−1(k + d) or
j = σ−1(k+ d), so there are two possible values for(k, d).
Similarly, lR(τ, (i, j)) = lL(τ, (i, j)) = 2. The inverse dis-
tance has total weightW = Θ((n!)n log n) and the size
of S is |S| = (n!). Applying Theorem 5, we conclude the
proof.

6.2. Graph properties

Theorem 1 provides a simple and intuitive method to
prove lower bounds for specific problems. We illustrate this
by giving lower bounds for two graph properties: connectiv-
ity, and bipartiteness. These are direct applications of The-
orem 1 in that we analyze directly the complexityK(i|x,A)
without defining relations or weights or distributions: we
only need to consider a “typical” hard pair of instances.
In this section, we omit additive and multiplicative con-
stants that result from using small, constant-size programs,
as well as the constant length auxiliary stringA to simplify
the proofs.

6.2.1. Graph connectivity

Theorem 6 ([11]). In the adjacency matrix model,

QQC(GRAPHCONNECTIVITY) = Ω(n3/2),

wheren is the number of vertices in the graph.



Proof. We construct one negative and one positive instance
of graph connectivity, using the incompressibility method,
using the ideas of [11]. LetS be an incompressible string
of length log(n − 1)! + log

(
n
2

)
, chopped into two pieces

S1 andS2 of length log(n − 1)! and log
(
n
2

)
, respectively.

We think of S1 as representing a hamilton cycleC =
(0, π(0) · · ·π(n − 1), 0) through then vertices, andS2 as
representing a pair of distinct verticess, t. LetG contain the
cycleC and letH be obtained fromG by breaking the cy-
cle into two cycles ats andt, that is,H = G\{(π(s), π(s+
1)), (π(t), π(t+1))}∪{(π(s), π(t+1)), (π(s+1), π(t))}.

1

π(1)
π(2) π(3)

π(s)

π(t)

π(s+1)

π(t+1)

1

π(1)
π(2) π(3)

π(s)

π(t)

π(s+1)

π(t+1)

Figure 1. Graphs G, H for the graph lower
bounds.

We show that for the four edgese whereG andH dif-
fer,K(e|G)+K(e|H) ≥ 3 log n−4. Let e−, e′− be the edges
removed fromG, ande+, e′+ be the edges added toG. Ob-
serve that up to an additive constant,K(e+|G) = K(e′+|G)
andK(e−|H) = K(e′−|H). Let e− be one of the edges re-
moved fromG, w.l.o.g.,e− = (π(s), π(s+ 1)).

log(n− 1)! + log
(
n

2

)
≤ K(S)

≤ K(G) + K(s|G) + K(t|G)
≤ K(G) + K(e−|G) + log n

K(e−|G) ≥ log
(
n

2

)
− log n = log n−1

2

Assume w.l.o.g. that the smallest cycle ofH contains

π(s), and letl be its length.

log(n− 1)! + log
(
n

2

)
≤ K(S)
≤ K(H) + K(e−|H) + K(π(t), π(t+ 1)|H)
≤ log (n−1)!

(n−l+1)! + log(n−l−1)! + K(e−|H) +
log l + log(n−l)

K(e−|H) ≥ 2 log n+ log(n−l)− log(l) ≥ 2 log n.

For the added edges,e+, e′+, consider w.l.o.g.e+ =
(π(s), π(t + 1)). SinceS is incompressible,K(e+|G) ≥
K(s, t|G) ≥ log

(
n
2

)
. Furthermore,K(S) ≤ K(H) +

K(e+|H) + K(e′+|H), and K(e′+|H) ≤ log n, so
K(e+|H) ≥ log

(
n
2

)
− log n = log n−1

2 . The same proof
shows thatK(e′+|H) ≥ log n−1

2 .

6.2.2. BipartitenessThe following lower bound was
proven by D̈urr (personal communication) and indepen-
dently in [19].

Theorem 7. In the adjacency matrix model,

QQC(BIPARTITENESS) = Ω(n3/2),

wheren is the number of vertices in the graph.

Proof. The proof is similar to the one of Theorem 6 except
that we constructG to be an even cycle onn = 2m vertices,
andH will be composed of two odd cycles on the same ver-
tex set (see Figure 1).

LetS be an incompressible string of lengthlog(n−1)!+
log(

(
n
2

)
− 1), chopped into two piecesS1 andS2 of length

log(n−1)! andlog(
(
n
2

)
−1), respectively. We think ofS1 as

representing a hamilton cycleC = (0, π(0) · · ·π(n− 1), 0)
through then vertices, andS2 as representing a pair of dis-
tinct verticess, t, with s 6≡ t (mod 2). LetG contain the
cycleC and letH be obtained fromG by breaking the cycle
into two odd cycles ats andt, that is,H = G\{(π(s), π(s+
1)), (π(t), π(t+1))}∪{(π(s), π(t+1)), (π(s+1), π(t))}.

The same analysis as Thaorem 6 yields the lower bound
QQC(BIPARTITENESS) = Ω(n3/2), as claimed.
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A. Proofs of claims

Proof of Claim 1.Let

|ψx
t 〉 =

∑
i,z,w

αi,z,w|i, z, w〉,and

|ψy
t 〉 =

∑
i,z,w

βi,z,w|i, z, w〉.

After thetth query is made, the states|ψ′xt 〉 = Ox|ψx
t 〉 and

|ψ′yt 〉 = Oy|ψy
t 〉 are

|ψ′xt 〉 =
∑
i,z,w

αi,z,w|i, z ⊕ xi, w〉,and

|ψ′yt 〉 =
∑
i,z,w

βi,z,w|i, z ⊕ yi, w〉.

Now, since the inner product is invariant under unitary
transformations, we get

〈ψx
t+1|ψ

y
t+1〉 = 〈ψ′xt |ψ

′y
t 〉,

and therefore,

|〈ψx
t |ψ

y
t 〉 − 〈ψx

t+1|ψ
y
t+1〉|

= |
∑
i,z,w

αi,z,wβi,z,w −
∑
i,z,w

αi,z⊕xi,wβi,z⊕yi,w|

= |
∑
i,z,w

xi 6=yi

αi,z,wβi,z,w − αi,z⊕xi,wβi,z⊕yi,w|

≤
∑

i:xi 6=yi

(
|
∑
z,w

αi,z,wβi,z,w|+|
∑
z,w

αi,z⊕xi,wβi,z⊕yi,w|

)

≤ 2
∑

i:xi 6=yi

√√√√(∑
z,w

|αi,z,w|2
)(∑

z,w

|βi,z,w|2
)

≤ 2
∑

i:xi 6=yi

√
px

t (i)py
t (i)

Proof of Claim 2.Let us write the distributions using the
same formalism as above, that is,

|ψx
t 〉 =

∑
i,z,w

αi,z,w|i, z, w〉,and

|ψy
t 〉 =

∑
i,z,w

βi,z,w|i, z, w〉.

Note that now, the vectors are unit for the`1 norm. After the
tth query is made, the states|ψ′xt 〉 = Ox|ψx

t 〉 and|ψ′yt 〉 =
Oy|ψy

t 〉 are

|ψ′xt 〉 =
∑
i,z,w

αi,z,w|i, z ⊕ xi, w〉,and

|ψ′yt 〉 =
∑
i,z,w

βi,z,w|i, z ⊕ yi, w〉.

Now, since the`1 distance does not increase under
stochastic matrices, we get

‖ |ψx
t+1〉 − |ψy

t+1〉 ‖1≤‖ |ψ′xt 〉 − |ψ′yt 〉 ‖1,

and therefore,

‖ |ψx
t+1〉 − |ψy

t+1〉 ‖1

= ‖
∑
i,z,w

(αi,z,w|i, z ⊕ xi, w〉 − βi,z,w|i, z ⊕ yi, w〉) ‖1

=
∑

i

‖
∑
z,w

(αi,z,w|i, z ⊕ xi, w〉−βi,z,w|i, z ⊕ yi, w〉) ‖1 .

We now bound each term of the last sum separately. Fix
anyi. If xi = yi then

‖
∑
z,w

(αi,z,w|i, z ⊕ xi, w〉 − βi,z,w|i, z ⊕ yi, w〉) ‖1

= ‖
∑
z,w

(αi,z,w|i, z, w〉 − βi,z,w|i, z, w〉) ‖1 .

If xi 6= yi then,

‖
∑
z,w

(αi,z,w|i, z ⊕ xi, w〉 − βi,z,w|i, z ⊕ yi, w〉) ‖1

≤ ‖
∑
z,w

(αi,z,w|i, z ⊕ yi, w〉−βi,z,w|i, z ⊕ yi, w〉) ‖1 +

‖
∑
z,w

(αi,z,w|i, z ⊕ xi, w〉−αi,z,w|i, z ⊕ yi, w〉) ‖1

≤ ‖
∑
z,w

(αi,z,w|i, z, w〉 − βi,z,w|i, z, w〉) ‖1 +

2 ‖
∑
z,w

αi,z,w|i, z, w〉 ‖1

= ‖
∑
z,w

(αi,z,w|i, z, w〉 − βi,z,w|i, z, w〉) ‖1 +2px
t (i).

In the same way we can prove that

‖
∑
z,w

(αi,z,w|i, z ⊕ xi, w〉 − βi,z,w|i, z ⊕ yi, w〉) ‖1

≤ ‖
∑
z,w

(αi,z,w|i, z, w〉 − βi,z,w|i, z, w〉) ‖1 +2py
t (i).

We group together these upper bounds and conclude

‖ |ψx
t+1〉 − |ψy

t+1〉 ‖1

≤
∑

i

‖
∑
z,w

(αi,z,w|i, z, w〉 − βi,z,w|i, z, w〉) ‖1 +

2
∑

i:xi 6=yi

min (px
t (i), py

t (i))

= ‖ |ψx
t 〉 − |ψy

t 〉 ‖1 +2
∑

i:xi 6=yi

min (px
t (i), py

t (i)) .


