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Abstract notion of quantum adversaries, Ambainis developed a gen-

eral scheme in which it suffices to analyze the combinato-
We prove a very general lower bound technique for rial properties of the function in order to obtain a quantum
quantum and randomized query complexity, that is easylower bound. Recently, Aaronson [1] brought these combi-
to prove as well as to apply. To achieve this, we intro- natorial properties back to randomized computation, using
duce the use of Kolmogorov complexity to query complex-Yao’s minimax principle.
ity. Our techniqug generalizes the weighted, unweighted  The most general method for proving lower bounds in
methods of Ambainis, and the spectral method of Barnum, g, antum query complexity is the semidefinite programming
Saks and Szegedy. As an immediate consequence of Oyhaihog of Barnum, Saks and Szegedy [6]. This method
main theorem, it can be shown that adversary methodsig i fact an exact characterization of the query complex-
can only prove lower bounds for boolean functiofisn ity. However, the method is so general as to be very dif-
O(min(+/nCo(f), vnC1(f))), whereCy, Cy isthe certifi- o1t to apply to obtain concrete lower bounds. Barnum,
cate complexity, and is the size of the input. We also de- gy and Szegedy gave a weaker method derived from the
rive a general form of th_e ad _hoc weighted method used bygemidefinite programming approach, using weight matri-
Hayer, Neerbek and Shi to give a quantum lower bound 0Nceg ang their largest eigenvalue. This spectral method can
ordered search and sorting. be thought of as a generalization of Ambainis’ unweighted
method. Other generalizations of Ambainis’ unweighted
method have been previously introduced [5, 3]. All of them

1. Introduction use a weight function on the instances. The difficulty in ap-
plying these methods is finding a good weight function on
1.1. Overview the instances. Hagyer, Neerbek and Shi [14] were the first

to use such weight assignments to prove lower bounds for
In this paper, we study lower bounds for randomized and searching in ordered lists and sorting. Therhocmethod,
guantum guery complexity. In the query model, the input is though similar in many respects, does not fall into setting of
accessed using oracle queries, and the query complexity ofhe weighted method of Ambainis [3].

an algorithm is the number of calls to the oracle. Since it is This paper presents a new, very genera| adversary tech-
difficult to obtain lower bounds on time directly, the query nique (Theorem 1) to prove lower bounds in quantum and
model is often used to prove concrete lower bounds, in clas-randomized query complexity. We believed that this tech-
sical as well as quantum computation. nique is simpler to prove and to apply. It is based on the
The two main tools for proving lower bounds of random- framework of Kolmogorov complexity. This framework has
ized query complexity, the polynomial method [7] and the proven to be very useful for proving negative results in other
adversary method [2], were successfully extended to quan-mgdels of computation, for example for number of rounds
tum computation. In the randomized setting, the adversaryand length of advice in random-self-reductions in [12, 4].
method is most often applied using Yao’s minimax princi- The techniques we use here are an adaptation of those tech-
ple [18]. Using a different approach, which introduces the npjques to the framework of query complexity. We expect
that this framework will not only prove to be useful for neg-
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The proof of Theorem 1 is in two parts. The first part Theorem 1. There exists a constadt > 0 such that the
(Divergence Lemma shows how fast the computations can following holds. Let: be a finite set, lek > 1 be an in-
diverge when they start on different inputs. This part de- teger, and letS C ™ and S’ be sets. Leff : S — 5.
pends on the model of computation (randomized or quan-Let A be an algorithm that for alk € S computesf, with
tum). The quantum case of this lemma was first proven bounded errorz and at mostl’ queries to the input. Then
by Ambainis [2]. The second parQUery Information for everyz,y € S with f(z) # f(y):

Lemma) does not depend on the model of computation. It

. : : 1. If Ais a quantum algorithm then
establishes the relationship between the Kolmogorov com- g g

plexity of individual positions of the input, and the prob- T>Cx 1-24/e(1—¢) )
ability that a given algorithm makes a query to this posi- - iyt V2RO D —KGTY, A

tion. Whereas Aaronson [1] used a different approach to
prove a version of Ambainis’ method for randomized algo-
rithms, here we use the same framework to establish lower T>(C % 1—2¢ _ )
bounds for both quantum and randomized query complexi- - Py g, min(27KGEA) 2-KGly,A4))

ties QQC andRQQC). We briefly describe the intuition behind the proof of The-
We show that our method encompasses all previousgrem 1. Consider an algorithm that purports to comgfte
adversary methods, including the quantum and random-presented with two inputs, y that lead to different outputs.
ized weighted methods [3, 1Theorem 2 and the spec-  The algorithm must query those positions wherand y
tral method [6] Theorem 3. As an immediate conse- giffer with average probability of the order gf, or it will
quence of our main theorem (observed by Troy Lee), our not successfully compute the function. On the other hand,
method can only prove lower bounds for boolean func- the queries that are made with high average probability can
tions in O(min(y/nCo(f), /nC1(f))), whereCy andC; be described succinctly given the input and the algorithm,
is the certificate complexity of negative and positive in- ysing the Shannon-Fano code. If we exhibit a pair of strings
stances, respectively, of, andn is the size of the input ;. o for which there is no succinct description of any of the
(Theorem 4). Prior to our work, it was known [3] that the  positions wherer andy differ, then the number of queries
unweighted Ambainis method [2, Theorem 5.1] could not must be large.
prove bounds better than(,/Co(f)C1(f)); Szegedy [17] The same reasoning can be applied to classical and to
also proved independently that the semidefinite program-quantum computing; the only difference is how fast two dif-
ming method could not prove lower bounds better than ferent input states cause the outputs to diverge to different
O(min(y/nCo(f), /nC1(f))), and Zhang [19] proved the  gutcomes.

same thing for Ambainis’ weighted method. To conclude the introduction we give a very simple ap-
We also give a generalizatiofiljeorem 5 of thead hoc plication, for Grover search.

proofs of Hgyer, Neerbek and Shi [14] as a corollary of _ _
our method. For this we introduce a new distance scheme EX@mple 1. Fix n and a quantum algorithm for Grover

This new scheme separates the quantum part from the com§earCh for inst.ances of length Let 2 b? a bi”afy string of
binatorial part of thesad hocproofs. Using it, we prove lengthlog n, with K(2|A4) > logn. Let j be the integer be-

the lower bound of [14] using only combinatorial argu- tweeno ,and@—lwhose binary expanS|onzsConS|derq:,.
ments. We end the paper by giving some applications of ourt_he 6“” 05, string, and_ I?@ be everyyvher@ except at posi-
method to prove lower bounds for some graph properties: 0N = j+1, where itisl. ThenK(ilz, A) > logn—O(1)
bipartitenessTheorem 7) and connectivity Theorem 6). andK(ily, 4) = 0, thereforeQQC(SEARCH) = Q(v/n).
The lower bound on connectivity was proven in [11], and L )

the one on bipartiteness byilr (personal communication) 2. Preliminaries

and independently in [19]. We reprove it here to illustrate )
the simplicity of our method. 2.1. Kolmogorov complexity

2. If Ais arandomized algorithm then

We use a few standard results in Kolmogorov complex-
ity and information theory in this paper. We briefly review
these here. The reader is invited to consult standard text-
books such as [15] for more background on Kolmogorov
complexity, and [8] for more on information theory. We de-
note the length of a finite string by |z|. We assume that
the Turing machine’s alphabet is the same finite alphabet as
the alphabet used to encode instances of the function under
consideration. Letters, y typically represent instancesis

1.2. Main result

The conditional Kolmogorov complexit(a|b) (de-
fined formally in Section 2.1) is the length of the shortest
program which prints givenb as input. Our main result is
stated in terms oK (i|z, A) andK(i|y, A), wherez, y are
inputs for whichf(z) # f(y), ¢ is an index into the in-
puts wherex; # y;, andA is an algorithm forf.



an index into the representation of the instance;amdare
probability distributions. Programs are denoteédand the
output of a Turing machin@/ on inputx is written M ().

The Shannon-Fano code is a prefix-free code that en-
codes each word with p(z) # 0, using [log(;5)] bits.

We will write 1og(T1I)) to simplify notation. The code can

When there are multiple inputs, we assume that a standar%asily be computed given a description of the probability

encoding of tuples is used.

Definition 1. Let M be a Turing machine. Let andy be
finite strings.

1. TheKolmogorov complexity ofc giveny with respect
to M is denotedCy,(x|y), and defined as follows:

Car(z]y) = min(| P| such thatM (P, y) = ).

2. A set of strings iprefix-freeif no string is a prefix of
another in the set.

3. Theprefix-free Kolmogorov complexity of: giveny
with respect taV/ is denotedK ; (x]y), and defined as
follows:

Kas (z|y) = min(|P| such thatM (P, y) = z),

whereP is taken in some fixed prefix-free set.

In the rest of the papel/ is some fixed universal Tur-
ing machine, and we will writ€ andK instead ofC,, and
Kas. Wheny is the empty string, we writ&(z) instead of
K(zly).

Proposition 1. There exists a constant> 0 such that for
every finite string,

K(z]o) < K(z) + ¢, and

K(z) < K(o) + K(z|o) + ¢

Proposition 2 (Kraft's inequality). Let S be any prefix-
free set of finite strings. Théw, .o 271°1 < 1.

Proposition 3 (Shannon’s coding theorem).Consider a
sourceS of finite strings where: occurs with probability
p(z). Then for any code fo§, the average code length is
bounded below by the entropy of the source, that is,if
encoded by the code wordz) of length|c(x)|, H(S) =

Lemma 1. Let S be a source as above. Then for any fixed

finite stringo, there exists a string such thap(z) # 0 and
K(z[o) > log(5L5).

p(z)
Proof. By Shannon’s coding theorem,

Y p@)loglh) < Y p@)K(zlo),

x:p()7#0 x:p(z)7#0

H(S)

becaus&(x|o) is the length of an encoding af Therefore

there existse such thatp(z) # 0 andK(z) > log(ﬁ)
O

distribution. This allows us to write the following proposi-
tion, whereK(z|S) means the prefix-free Kolmogorov com-
plexity of z given a finite description af.

Proposition 4 (Shannon-Fano code)There exists a con-
stantc > 0, such that for every sourc® as above, for all:

such thatp(z) # 0, K(z|S) < 10g(p(17)) +c.

We shall also use the following bound on conditional
Kolmogorov complexity.

Proposition 5. There is a constant > 0 such that for any
three stringse, v, z,
Kizlz) = K(z,y) = K(z) —K(ylz,z) +
K(zlz,y, K(z,y)) — c.

Proof. Using [15, Theorem 3.9.1, page 232], there is a con-
stantc; > 0 such that

|K(a,b) — K(a) — K(bla, K(a))] < c;.
Substitutingz, y for a andz for b:

K(Z, y) + K(Z|‘Lvya K(xa y)) —C S K(SC, y,Z)
< K(z) + K(z|z) + K(y|z, z) + ¢2,

which gives the result.

2.2. Query models

The quantum query model was implicitly introduced by
Deutsch, Jozsa, Simon and Grover [9, 10, 16, 13], and ex-
plicitly by Beals, Buhrman, Cleve, Mosca and de Wolf [7].
In this model, as in its classical counterpart, we pay for ac-
cessing the oracle, but unlike the classical case, the machine
can use the power of quantum parallelism to make queries
in superposition. Access to the inpute X", whereX is a
finite set, is achieved by way of a query operatyr. The
query complexityf an algorithm is the number of calls to
O,.

The state of a computation is represented by a reg-
ister R composed of three subregisters: tipeery regis-
teri € {0,...,n}, the answer register- € ¥ and the
work registerw. We denote a register using the ket no-
tation |R) |i)|z)|w), or simply |7, z,w). In the quan-
tum (resp., randomized) setting, the state of the compu-
tation is a complex (resp., hon-negative real) combination
of all possible values of the registers. L&t denote the
corresponding finite-dimensional vector space. We denote
the state of the computation by a vectgry € H over
the basig(|i, z,w)); . . Furthermore, the state vectors are



unit length for the/; norm in the quantum setting, and for The next lemma relates the query probabilities to the

the/; norm in the randomized setting. Kolmogorov complexity of the strings. In this lemma and
A T-query algorithmA is specified by a7+1)-uple the results that follow, we assume that a finite description of
(Up, Uy, ...,Ur) of matrices. Whemd is quantum (resp., the algorithm is given. Using the knowledge 4f we may

randomized), the matricég; are unitary (resp., stochastic). assume without loss of generality that the functjotinat it
The computation takes place as follows. Tdueery oper- computes is also given, as is the lengtbf the inputs. With
ator is the unitary (resp., stochastic) matix, that satis- additional care, the additive constants in all of the proofs
fies Oyli, z,w) = i,z & z;, w), for everyi, z, w, where can be made very small by adding to the auxiliary infor-
by conventionzy = 0. Initially the state is set to some mation made available to the description algorithms, those
fixed valuel|0, 0,0). Then the sequence of transformations constant-size programs that are described within the proofs.
Uo,O4,U1,Oy, ..., Upr_1,0,,Ur is applied.

We say that the algorithml e-computesa function f :
S — &', for some setss C X" and.S’, if the observa-
tion of the last bits of the work register equalsx) with
probability at leastl — ¢, for everyz € S. ThenQQC(f) K(i|z, A) < log(,ml(i)) +ec.
(resp.,RQC(f)) is the minimum query complexity of quan- ?
tum (resp., randomized) query algorithms thgicompute Proof. We describe the program that printgiven « and
f, wheres, is a fixed positive constant no greater than A. Givenz, useA andz to compute the probabilitigs’ (7).
This can be done in a finite number of steps because the
number of queries is bounded By The program includes
a hard coded copy of the encodingiainder the Shannon-
This section is devoted to the proof of the main theo- Fano code for this probability distribution. Decode this and

rem. We prove Theorem 1 in two main steps. Lemma 2 prints. -
shows how fast the computations diverge when they start  From these two lemmas we derive the main theorem.
on different individual inputs, in terms of the query prob- _
abilities. This lemma depends on the model of computa- Proof of Theorem 1By Lemma 3, there is a constant
tion. Lemma 3 establishes the relationship between the Kol-¢ = 0 such that for any algorithm that makes at m@st
mogorov complexity of individual positions of the input, dueries, and any, y,1,
and the probability that a given algorithm makes a queryto  _, . —K(ila,A)+ - _K(i

\d the probabil ve *(i) < 2 KlileA)+e v(i) < 2 KGlvAre,
this position. This lemma is independent of the model of pr(i) =2 and p¥(i) < 2
computation. Theorem 1 follows immediately by combin- Thjs is true in particular for all thosewherez; # y;. Com-

Lemma 3 (Query Information Lemma). There exists an
absolute constant > 0 such that for every input € S and
positioni € {1,...n},

3. Proof of the main theorem

ing these two lemmas. bining this with Lemma 2 concludes the proof of the main
In the following two lemmas, lefl be ans-bounded er-  theorem withC' = 2—<-1. ]

ror algorithm for f that makes at mos&t' queries to the in- )

put. Letp? (i) be the probability that! queriese; at query We now give the proof of Lemma 2. The proof of the

guantum case is very similar to the proofs found in many
papers which give quantum lower bounds on query com-
plexity. To our knowledge, the randomized case is new de-
spite the simplicity of its proof. Whereas Aaronson [1] used
a different approach to prove a version of Ambainis’ method
for randomized algorithms, our lemma allows us to use the

¢ on inputz, and letp® (i) = + Zthlpf(i) be the average

query probability over all the time steps up to tiffieWe as-
sume henceforth without loss of generality tp&fi) > 0.
(For example, we start by uniformly querying all positions
and reverse the process.)

Lemma 2 (Divergence Lemma). For every inputr,y € same framework to establish lower bounds for both quan-
S such thatf(z) # f(y) the following holds. tum and randomized query complexities.
1. For quantum algorithms: Proof of Lemma 2Let |¢/¥) be the state of the-bounded
—— error algorithmA just before thelth oracle query, on in-
2T Z VPR (i)pY(i) 21 -2yl — ). putz. By convention]«7. ) is the final state. Whed is a
GTiFEYs quantum algorithm«)¥) is a unit vector for thes norm;

otherwise it is a probabilistic distribution, that is, a non-
negative and unit vector for thé, norm. Observe that
oT Z min (5% (i), p(i)) > 1 — 2e. theé_l distance is the total variation distar_u_:e. _
First we prove the quantum case. Initially, the starting
state ofA does not depend on the input, thus before the first
We defer the proof of Lemma 2 to the end of this section. question we have){) = |¢7), so(¢§[}) = 1. At the end

2. For randomized algorithms:

1 AY;



of the computation, if the algorithm is correct with proba-

bility €, then|(yF.,, [¥5, 1) < 24/€(1 —€). At each time
step, we consider how much the two states can diverge.

Claim 1.

(WFI0Y) — (Whaletad <2 Y \/pE@)p! ().

X AY;

The proof of Claim 1 can be found in Appendix A.

4. Comparison with previous adversary
methods

In this section, we reprove, as a corollary of Theorem 1,
the previously known adversary lower bounds. Our frame-
work also allows us to obtain somewhat stronger statements
for free.

To obtain the previously known adversary methods as
a corollary of Theorem 1, we must give a lower bound
on termsK(i|z, A) and K(i|y, A). To this end, we apply

OverT time steps, the two states diverge as follows. The Proposition 5, and give a lower bound 8z, y), and up-

proof uses only Claim 1 and the Cauchy-Schwartz inequal-

ity.
1-2ye(l—¢) < |<¢f|¢i]> (D105 1)]
< D WF1Y) — (W lora)|
< S0 % oo
= 'Lx?éyz
T—1 T-1
< 23 Do e Y pi()
VT FY; t=0 t=0
= 2T Y /p*(i)pY(i).
LT £Yi

Now we prove the randomized case. We usekiiao-
tation for real-valued normalized vectors, for consistency in
notation. Again, initially|)7) = |¢7). At the end of the
computation, if the algorithm is correct with probability
then|| [7. 1) — [¥}.,) 1> 1 — 2. At each time step,
the distribution states now diverge according the following
claim.

Claim 2.
I [98) = [97) [
< ) = 1ed) I +2 Y min (07 (i), Y (i)

X A Y

The proof of Claim 2 can be found in Appendix A. We
now conclude the proof.

T
Z [Ny,

1-2 < = [ I = I 1E) = 19¢)
< 22 S min (67 (1), 2Y(0)
t=1 i Ay;
< 2T Z min (p”(¢),pY (%)) .
1T £Y;
O

per bounds oK (z|i, y) andK(y|i, ). The lower bound on
K(z,y) is obtained by applying Lemma 1, a consequence
of Shannon’s coding theorem, for an appropriate distribu-
tion. The upper bounds o(x|é,y) andK(yli,x) are ob-
tained using the Shannon-Fano code, for appropriate distri-
butions.

The following lemma is the general formulation of the
sketch above.

Lemma 4. There exists a constardt > 0 such that the
following holds. LetX be a finite set, le > 1 be an
integer, and letS C X". Let ¢ be a probability distribu-
tion on S2, let p be a probability distribution ors and let
{pl; 7 € 8,1 <i<n} be afamily of probability distri-
butions onS. Assume that whenevefz, y) # 0 thenp(z),

p(y), py,;(z) andp;, ;(y) are non-zero, for everysuch that
x; # y;. Then for every finite string, there existr,y € S

with g(x,y) # 0, such that

1
S sy, V2 KCI) K ({lw)
<\/p<z>p;,i<y> p(y)P], (@)
1

a(z,y)
> iy, Min (27K l20) 2=KGly,0))

p(@)ph (v) p(y)p, ()
(max( q(zy) ° alzy)

> (C x min
X AY;

).

and

> (C x min
0 A Y

)

Proof. In this proof,cy, ..., c; are some appropriate non-
negative constants. By Lemma 1, there exists a (aiy)
such thay(z,y) # 0 and

K@, ylo,p,p") = log(;577):

wherep’ stands for a complete description of all ;.
Fix = andy so that this holds. By using the Shannon-

Fano code (Proposition 3),
K(zlp) < log(5(5) +

and

K(y|x,i7p;}i) < IOg(p;;(y)) + ¢,



for any: such thate; # y;. By Proposition 5,

K(ilz, o)

~

Vv v

(
> log(myy) —log(si) — log(m) +
K(Z|1’, Y, K(“La y), vaap/) —C5
= lo (%lj)(y))+K(7|Jf,y,K(l‘,y),0’,p,p/) — Cs.
Similarly,

This concludes the proof of the lemma using Kraft's in-

K(i|]},0’,p,p/) —C3
K(z,ylo, p,p") — K(z|p) — K(yli, z, p, ;) +
K(i|z,y,K(z,y),0,p,p") — ca

, ()P} (@)
(ily,0) > log(Z5as5—) +

K(Z|x7y7 K(I‘, Z/)7Uap7p/) —Cs5

equality (Proposition 2) and letting = 2.

4.1. Ambainis’ weighted scheme

Theorem 2 (Ambainis’ weighted method). Let X be a fi-
nite set, leth > 1 be an integer, and lef € X" and S’
be sets. Lef : S — S’. Consider a weight scheme as fol-

lows:

e Every pair (z,y) € S? is assigned a non-negative
weight w(z,y) such thatw(z,y) = 0 whenever

f(@) = f(y).

e Every triple(z, y, 1) is assigned a non-negative weight
w'(z,y,4) such thatw’(z,y,7) = 0 whenever:; = y;

or f(z) = f(y)-

For all z, 1, let

If w'(x,y,i)w (y,x,4) > w?(x,y) for all z,y,i such that

wt(x) = Z w(z,y)and

Y

v(z,i) = Zw(m,y,i).

Y

r; # yi, then

QQC(f) =2 |  min ( i”&”iii”é%)

Furthermore, ifw'(z,y,i), w'(y,z,i) > w(z,y) for all

w(z,y)#0,2:#Y;

x,y,1 such thate; # y;, then

RQC(f) = min (max (“’t(”?) wt(y)))

w(x,y)#0,2:7#Y;

The relation in Ambainis’ original statement is implicit
in this formulation, since it corresponds to the non-zero-
weight pairs. A weaker version of the randomized case was
proven independently by Aaronson [1] using a completely
different approach. We show that Theorem 2 follows from
Theorem 1.

Proof. We derive probability distributions, p, p’ from the
weight schemes as follows. LBt = > w(z,y). Define

awy) = =,
pl@) = ",
Poily) = s foranya,y,i.

Itis easy to check that by construction and hypothesis, these
distributions satisfy the conditions of Lemma 4. Rearrang-
ing and simplifying the terms allows us to conclude. [J

We conclude this section by sketching the proof of the
unweighted version of Ambainis’ adversary method, as it
affords a simpler combinatorial proof, that does not require
Lemma 4. To simplify notation we omit additive constants
and the usual auxiliary strings including

Let R C S x .S, be arelation on pairs of instances, where
(x,y) € R= f(z)#f(y), and letR; be the restriction of
R to pairsz, y for which x; # y;. Viewing the relationR as
a bipartite graph, let I’, m, m’ be as follows.

e m is alower bound on the degree of ale X,

e m’is a lower bound on the degree of ale Y,

e for any fixedx andi, 1 < i < n, the number of; ad-

jacent tozx for whichx; # y; is at most,

e for any fixedy andi, 1 < j < n, the number of: ad-

jacent toy for which z; # y; is at most’.

We make the following observations.

1. |R| > max{m|X|,m/|Y|}, so Jx,y K(z,y) >
max (log(m|X|), log(m/[Y])) .

2. Vz € X,K(z) < log(|X]) andK(y) < log(|Y]), for
ally €Y.

3. Va,y, i with (z,y) € R;, K(yl|i, z) < log(l) and simi-
larly, K(z|i,y) < log(l’).

For anyi with x; # y;, by Proposition 5,

K(ilz) > K(z,y) - K(z) = K(yli,z) +
K(ilz,y, K(z,y))
> log(m|X]) — log(|X|) — log(l) +
K(ilz, y, K(z,y))
= IOg(%) =+ K(i|fE,y, K(x,y))

The same proof works to show thi{i|y) > log(T—/') +
K(i|z,y, K(z,y)). By Theorem 1 and Kraft's inequality,

QQC(f) = Q( Wf’) :



4.2. Spectral lower bound

Lemma 5. There exists a constant> 0 such that the fol-
lowing holds. Let: be a finite set, lek. > 1 be an inte-

We now show how to prove the spectral lower bound of ger, and letS C ¥" be a set. Leff : S — {0,1}. For ev-
Barnum, Saks ans Szegedy [6] as a corollary of Theorem Lery -,y € S with f(z) = 0 and f(y) = 1, there is ani

Recall that for any matriX’, A(T") is the largest eigenvalue
of I.

Theorem 3 (Barnum-Saks-Szegedy spectral method).
Let ¥ be a finite set, len > 1 be an integer, and let
S C Y™ and S’ be sets. Lef : S — S’. LetI be an ar-
bitrary .S x S nonnegative real symmetric matrix that sat-
isfiesI'(x, y) = 0 wheneverf(z) = f(y). Fori=1,...,n
letT'; be the matrix:

otherwise.

Then (D)
QQC(f) = (m) '

Proof. Let |«) (resp.,|a;)) be the unit eigenvector df

with z; # y; for whichK(i|z, f) < log(Co(f)) + ¢, and
similarly, there is aj with z; # y; such thatK(jly, f) <
log(C1(f)) +e.

Proof. Let I be the lexicographically smallest certificate for
f(z). Since f(z) # f(y), x andy must differ on some

1 € I. To describe givenz, it suffices to give an index into
I, which requiresog(Cy( f)) +c bits. The same can also be
done withz andy reversed. O

Theorem 4. Let ¥ be a finite set, leb > 1 be an integer,
and letS C X" be a set. Letf : S — {0,1}. Then any
guantum query lower bound fgrgiven by Theorem 1 is in

O(min(\/nC’o(f), \/ncl(f))).

Proof. Let A be a quantum algorithm that computgs
with bounded error by making at mo&t queries to

(resp.,T';) with nonnegative entries and whose eigenvalue the input. Since a description of can be obtained

is A(T") (resp.,A(T';)). We define the probability distribu-
tions ¢, p,p’ as follows. LetiW = Zm w(z,y), and de-
fine ‘

I'(z,y) (x| «
dey) = DGl
pla) = (z|a)?,

Ii(x, Qg .
Pi.(y) = % for anyz, y, i.

By construction these distributions satisfy the conditions

of Lemma 4, which suffices to conclude. O

5. Certificate complexity and adversary tech-
niques

from a description of A, K(i|z,A) < K(i|z, f) +
O(1). Therefore, the lower bound given by Theorem 1 is

o (Zm,,#y,; \/2i(mf)K(iyyf)>,wheref(a:) # f(y). This
is O(min(y/nCo(f), v/nC1(f))) by Lemma 5. O

6. Applications
6.1. A general method for distance schemes

We generalize the technique of Hgyer, Neerbek and
Shi [14], which they used to prove lower bounds on or-
dered search and sorting. Though their technique is simi-
lar, it does not appear to be a special case of the weighted

Let f be a boolean function. For any positive instance adversary method.

x € X" of f (f(x)=1), apositive certificatdor f(x) is the
smallest subset of indicdsC [n] of «, such that for any
with z; =y, foralli € I, f(y)=1.

The 1-certificate complexitpf f, denoted’, (f), is the
size of the largest positive certificate ffz), over all posi-
tive instances:.. The0-certificate complexitis defined sim-
ilarly for negative instances of f (f(z) = 0).

Here, we restrict ourselves to those weight functions that
take values of the fornﬁ, forinteger values. Therefore, in-
stead of a weight function, we consider an integer function
D, which may be thought of as a distance function on pairs
of instances (even though it is not strictly speaking a dis-
tance measure in general). We will define kbad of an in-
stancer, to be the maximum number of instanaggat any

Prior to our work, it was known that the best possi- given distancel from z. This will allow us to bound the

ble bound that could be proven using the unweighted ad-

versary technique [2, Theorem 5.1]G5/Co(f)C1(f)).
Independently, Szegedy [17]

showed that the best

complexity of printingy, givenz andd. (In the case of or-
dered search, the load will Qefor all instances.)
More formally, for any non-negative integer functi@n

possible lower bound using the spectral method is 4, pairs(z, y), we define theight load Ig (z, ) to be the

O(min(y/nCo(f), /nC1(f))), and Zhang [19] proved the
same for Ambainis’ weighted method.

maximum over all valued, of the number ofy such that
D(z,y) = dandz; # y;. Theleft loadlL(y, ) is defined

The following lemma, due to Troy Lee, results in a very similarly, invertingz andy.

simple proof of the fact that our method, and hence, all the
known variants of the adversary method, cannot prove lower
bounds larger thamin(/nCo(f), \/nC1(f)).




Theorem 5. Let Y be a finite set, leb > 1 be an integer, A lower bound for sorting [14] in the comparison model
and letS C X" and S’ be sets. Lef : S — S’. LetD be can also be obtained by applying Theorem 5.
a non-negative integer function &t such thatD(z,y) =

- - 1 Corollary 2. QQC(SorTING) = Q(nlogn) and
0 wheneverf(z) = f(y). LeUW =30 y.p(w.)#0 Bl RQC(SORTING) = Q(nlogn).
Then
Proof. Fix ¥ = {0,1}. An input is ann x n comparison
B w ) " matrix M, defined by(M,);; = 1if o(i) < o(j), and
QQC(f) = [Eiy ( lR(m,i)lL(y,i)> (My);,; = 0 otherwise, wherer is some permutation of
PEL” {1,...,n}. (In the usual array representation, the element
of rankr in the array would be stored at positiorT! (r).)
The setS of inputs is{M, : o € S,,}.
RQC(f) =Q %\ min (max (m, m» . We consider pairs of instances/,, M .4, where
D) #0. o* is obtained fromr by changing the value of the ele-

ment of rankk + d to a value that immediately precedes the
Proof. We use a variation on Lemma 4. We define probabil- element of rank in o. This changes the rank of thkele-
ity distributionsg(x,y) = 55w WheneverD(z,y) # ments of intermediate rank, incrementing their rank by one.
0 and ¢(z,y) = 0 otherwise;p(z) = ﬁ Fix o to be More formally, definer 9 = (k,k+1,...,k+d)oo,
the string containing a description of and D, where ~ for d # 0. For every pair of permutations, 7 we let
D is a complete description of the distance function, and D(Mo, M) = d if there existsk, d such thatr = o(*9),
where we assume that includes a description of, hence ~ and D(M,, M;) = 0 otherwise. Observe that whenever
Ir(z,4), I (y, i) and are also given. 7 = ¢®4) the comparison matricéd, and)M. differ only

We give an upper bound on the terriy|az,i) and  in entries(o=!(k + d),0= (7)) = (77! (k),77'(i + 1))
K(z|y, 1) directly, using left and right loads. Giveni and ~ and (o= '(i),0 ' (k + d)) = (r~'(i + 1),7~'(k)), for

some integerl > 0, there are at mosi («, ) instanceg, k<i<k+d-1
such thatD(z, y) = d andz; # ;. Therefore Then for everyo, 7, (i,7) such thatD(M,, M;) # 0
and(My);; # (M-)i;, Ir(o, (i,7)) = lL(o, (i,5)) = 2.
K(ylz,i,0) <log(D(x,y)) + log(lr(z,1)) + ¢, This is because given, i, j,d, eitheri = o~ (k + d) or

_ ) j = o~ (k+d), so there are two possible values fér d).
wherec > 0 is some constant, The same is true for Similarly, ix (r, (7, /) = Iu(7, (i, 7)) = 2. The inverse dis-

K(zly, 1): tance has total weighty = O((n!)nlogn) and the size
) ) of S'is |S| = (n!). Applying Theorem 5, we conclude the
K(ylz.i.0) < log(D(x.y)) +log(lL(s.9) + . ot () Aeling :

Now, we conclude following the same sketch as the proof
of Lemma 4. O 6.2. Graph properties

We reprove some of the lower bounds of Hayer, Neer-  Theorem 1 provides a simple and intuitive method to
bek and Shi. The distance schemes we use are exactly thgrove lower bounds for specific problems. We illustrate this
ones of [14]. Whereas they did not separate the quantumpy giving lower bounds for two graph properties: connectiv-
part from the combinatorial part in their proofs, here we jty and bipartiteness. These are direct applications of The-
only need to evaluate the combinatorial objégi®ndly, to orem 1 in that we analyze directly the complestyi|z, A)

get the results. without defining relations or weights or distributions: we
Corollary 1. QQC(ORDERED SEARCH = Q(logn) and only need to consider a “typical” hard pair of instances.
RQC(ORDERED SEARCH = Q(logn). In this section, we omit additive and multiplicative con-

stants that result from using small, constant-size programs,
Proof. Fix ¥ = {0,1}. We only consider the set of in- as well as the constant length auxiliary stridgo simplify
stancesS of lengthn of the form 0~*1"~“, Note that  the proofs.
|S| = n. Define distance for paifs, y) € S? asD(z,y) =

b—a, and D(z,y) = 0 for all other instances, where 6-2.1. Graph connectivity

x=0"""1"""andy = 0""1""with1 < a <b<n  Theorem 6 ([11]). In the adjacency matrix model,
The inverse distance has total weidlit = O(nlogn).

Furthermore, for every,y, i such thatD(z,y) # 0 and QQC(GRAPHCONNECTIVITY) = Q(n*/?),

x; # i, lm(x,i) = ln(y,i) = 1. The result follows by
Theorem 5. O wheren is the number of vertices in the graph.



Proof. We construct one negative and one positive instancer(s), and letl be its length.

of graph connectivity, using the incompressibility method,

using the ideas of [11]. Le$ be an incompressible string
of lengthlog(n — 1)! + log (}), chopped into two pieces
Sy and S, of lengthlog(n — 1)! andlog (3), respectively.
We think of S; as representing a hamilton cyclé =
(0,7(0)---w(n — 1),0) through then vertices, andS; as
representing a pair of distinct verticeg. Let G contain the
cycleC and letH be obtained fronG by breaking the cy-
cle into two cycles at andt, thatis,H = G\ {(7(s), 7(s+

D), (w(@), (¢t +1)) UL (7 (s), m(t+1)), (x(s +1),7(¢)) }.

w(t+1)
(1)

Figure 1. Graphs G, H for the graph lower
bounds.

We show that for the four edgeswhereG and H dif-
fer,K(e|G)+K(e|H) > 3logn—4. Lete_, e’ bethe edges
removed fromG, ande , ¢/, be the edges added €& Ob-
serve that up to an additive constalife. |G) = K(e/,|G)
andK(e_|H) = K(¢_|H). Lete_ be one of the edges re-
moved fromG, w.l.o.g.,e_ = (7(s), (s + 1)).

log(n — 1)! + log (Z) < K(S)
< K(G) + K(s|G) + K(t|G)
< K(G)+K(e_|G) +logn
Kle-|G) > log Z) — logn = log "7*1

Assume w.l.0.g. that the smallest cycle Bf contains

K(S)

K(H) + K(e—|H) + K(n(t),n(t + 1)|H)
log % +log(n—I-1)! + K(e_|H) +
log! + log(n—1)

log(n — 1)! + log (Z)
<
<
<

Kle_|H) > 2logn + log(n—I1) —log(l) > 2logn.

For the added edges, ,¢/,, consider w.l.o.ge; =
(m(s),w(t + 1)). SinceS is incompressibleK(e|G) >
K(s,t|G) > log(}). Furthermore K(S) < K(H) +
Kle4|H) + K(e/{ |H), and K(e/ |H) < logn, so
K(et|H) > log () — logn = log “;1. The same proof
shows thaK (¢!, |H) > log 251.

O

6.2.2. BipartitenessThe following lower bound was
proven by Dirr (personal communication) and indepen-
dently in [19].

Theorem 7. In the adjacency matrix model,
QQC(BIPARTITENESY = Q(n?/?),

wheren is the number of vertices in the graph.

Proof. The proof is similar to the one of Theorem 6 except
that we construats to be an even cycle am = 2m vertices,
andH will be composed of two odd cycles on the same ver-
tex set (see Figure 1).

Let S be an incompressible string of lendtig(n—1)!+
log((g) — 1), chopped into two pieceS; and.S; of length
log(n—1)! andlog( (%) —1), respectively. We think of; as
representing a hamilton cyceé = (0,7 (0) - - - w(n—1),0)
through then vertices, ands; as representing a pair of dis-
tinct verticess, t, with s Z ¢ (mod 2). Let G contain the
cycleC and letH be obtained frondx by breaking the cycle
into two odd cycles at andt, thatis,H = G\{(n(s), m(s+
1)), (x(t), w(t+1)}U{(x(s), w(t+1)), (x(s+1), 7(t))}.

The same analysis as Thaorem 6 yields the lower bound
QQC(BIPARTITENESY = Q(n%/2), as claimed. O

7. Acknowledgements

We wish to thank Troy Lee, Christophiir for many
useful discussions, and Andris Ambainis for his helpful an-
swers to our questions.



References

(1]

[2] A. Ambainis.

S. Aaronson. Lower bounds for local search by quantum ar-
guments. IProceedings of 36th ACM Symposium on Theory
of Computing2004. To appear. Also in quant-ph/0307149.
Quantum lower bounds by quantum argu-
ments. Journal of Computer and System Scien@&#750—
767, 2002.

[3] A. Ambainis. Polynomial degree vs. quantum query com-

(4]

(5]

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

plexity. In Proceedings of 44th IEEE Symposium on Foun-
dations of Computer Sciengeages 230-239, 2003.

L. Babai and S. Laplante. Stronger separations for random-
self-reducibility, rounds, and advice. IREE Conference on
Computational Complexitypages 98-104, 1999.

H. Barnum and M. Saks. A lower bound on the quantum
query complexity of read-once functions. Technical Report
quant-ph/0201007, arXiv, 2002.

H. Barnum, M. Saks, and M. Szegedy. Quantum decision
trees and semidefinite programming. Rroceedings of the
18th IEEE Conference on Computational Complexigges
179-193, 2003.

R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf.
Quantum lower bounds by polynomiallaurnal of the ACM
48(4):778-797, 2001.

Thomas M. Cover and Joy A. Thomdslements of informa-
tion theory Wiley-Interscience, 1991.

D. Deutsch. Quantum theory, the Church-Turing princi-
ple and the universal quantum computer.Pimceedings of
the Royal Society of London #olume 400, pages 97-117,
1985.

D. Deutsch and R. Jozsa. Rapid solution of problems by
quantum computation. IRroceedings of the Royal Society
A, volume 439, 1992.

C. Durr, M. Heiligman, P. Hgyer, and M. Mhalla. Quantum
query complexity of some graph problemsHroceedings of
31st International Collogquium on Automata, Languages and
Programming 2004. To appear. Also in quant-ph/0401091.
J. Feigenbaum, L. Fortnow, S. Laplante, and A. V. Naik.
On coherence, random-self-reducibility, and self-correction.
Computational Complexity’(2):174-191, 1998.

L. Grover. A fast quantum mechanical algorithm for database
search. InProceedings of 28th ACM Symposium on Theory
of Computingpages 212-219, 1996.

P. Hayer, J. Neerbek, and Y. Shi. Quantum complexities of
ordered searching, sorting, and element distinctnédgo-
rithmica, 34(4):429-448, 2002.

M. Li and P. Vitanyi. An introduction to Kolmogorov com-
plexity and its applications. IGraduate Texts in Computer
ScienceSpringer, 1997. Second edition.

D. Simon. On the power of quantum computatio8IAM
Journal on Computing26(5):1474—1483, 1997.

M. Szegedy. On the quantum query complexity of detect-
ing triangles in graphs. Technical Report quant-ph/0310107,
arXiv archive, 2003.

A. Yao. Probabilistic computations: Toward a unified mea-
sure of complexity. IrProceedings of 18th IEEE Symposium
on Foundations of Computer Scienpages 222227, 1977.

[19] S. Zhang. On the power of Ambainis’s lower bounds. In

Proceedings of 31st International Colloquium on Automata,
Languages and Programmin@004. To appear. Also in
quant-ph/0311060.



A. Proofs of claims Now, since the¢; distance does not increase under
stochastic matrices, we get

I eoEa) = 1) <) = 18")

Proof of Claim 1. Let

|¢f> = Z ai,z,w|ivzaw>7and

iz and therefore,
w . )
W) = D Bisali 2w I ) = 1)
- = | (Qizwlis 2 ® Tiyw) = Bizwli, 2 © yi,w)) [
After thetth query is made, the statgs”) = O,|¢7) and l;U 7
A Yy . .
[y’) = Oylf) are Z(ai’z’whﬂ D i, WY =B 2wty 2 D yi, w)) |1 -
W) = > izwli,z ® 2i,w),and '
i,2,w We now bound each term of the last sum separately. Fix
W) = D Biswli 2 ®yiw). anyi. If z; = y; then
1,2,W

|| Z aizwli Z@IL‘“’LU> 7ﬂi,z,w|iaz®yiaw>) Hl

Now, since the inner product is invariant under unitary

ransformations, we get S sl 2 ) — sl 20)) [
Wi lvl) = W 1Y), s
and therefore, If @; # y; then,
(W [0Y) — (W )] 1D (i zwlis 2 & i w) = Biewli 2 © g, w)) |1
= | Qi z, ﬁﬁ w T O 2Bz, ﬂl, Sy, J| . .
Z;U R Z v < Y (@lis 2 @ i w) =Bz wli 2 i w)) 1 +
= | Qi z, ﬁ} w — Qi zda;, ﬂl, Qyi, 7| ’ . .
ZU pREThEE s e aT R | Z(ai,z,w|l7z@xi7w>_ai,z,w|2azEByiaw>) 1
i FYi )
. . < le% i, z,w) — 1,2, W +
< Z (lzai&,Wﬁi,Z;wl—’—lZai,ZGBwi,wﬁi,zEByi,wl) = H Z 1zw| ﬂz z,w| >) ”1
iy \ 2w zw
2| Zauwu z,w) |
cay zai,z,m) (zm,z,ww) | y
i@ Ay <z,w Z,w = | Z o7 zw|l z,w) ﬁi,z,w|zvz7w>) lh +2p; (7).
. i zZ,w
< 2 ) \/pr)p (i)
S In the same way we can prove that
O ” Z(ai,z,w‘iv z &® xi7w> - B’L,z,wﬁy z® yuw» ||1
Proof of Claim 2. Let us write the distributions using the = ‘ . .
same formalism as above, that is, < D (izwli 2 w) = Bizwli, z,w)) |11 +2p7 (0).
Ty = «; i, z,w),and
W) l;ﬂ bl ) We group together these upper bounds and conclude
wo L
W) = D Biswlizw), | 16500} = 620
1,2,W .
< Z H Z O‘zzw|z Z, w 6i,z,w|lasz>) ||1 +
Note that now, the vectors are unit for thenorm. After the
. 7
tth qtiery is made, the stateg,”) = O, [¢7) and|y,”) = 2 Z min (p? (i), pY (7))
Ou|wt> are LT FY;
_ T\ __ Yy : T Y5
W) = Y anmeliss @ o), and = ) = )l +2 3 min (57 (), pHG)).
= 1 FY;
W) = Y Bizwliz @y, w). O

1,2,W



