
Wait-free Solvability of Equality Negation Tasks
Éric Goubault
École Polytechnique, Palaiseau, France
eric.goubault@lix.polytechnique.fr

Marijana Lazić
TU München, Munich, Germany
lazic@in.tum.de

Jérémy Ledent
École Polytechnique, Palaiseau, France
jeremy.ledent@lix.polytechnique.fr

Sergio Rajsbaum
Instituto de Matemáticas, UNAM, Mexico City, Mexico
sergio.rajsbaum@gmail.com

Abstract
We introduce a family of tasks for n processes, as a generalization of the two process equality negation
task of Lo and Hadzilacos (SICOMP 2000). Each process starts the computation with a private input
value taken from a finite set of possible inputs. After communicating with the other processes using
immediate snapshots, the process must decide on a binary output value, 0 or 1. The specification of
the task is the following: in an execution, if the set of input values is large enough, the processes
should agree on the same output; if the set of inputs is small enough, the processes should disagree;
and in-between these two cases, any output is allowed. Formally, this specification depends on
two threshold parameters k and `, with k < `, indicating when the cardinality of the set of inputs
becomes “small” or “large”, respectively. We study the solvability of this task depending on those
two parameters. First, we show that the task is solvable whenever k + 2 ≤ `. For the remaining
cases (` = k + 1), we use various combinatorial topology techniques to obtain two impossibility
results: the task is unsolvable if either k ≤ n/2 or n− k is odd. The remaining cases are still open.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Equality negation, distributed computability, combinatorial topology

Acknowledgements The authors were supported by DGA project “Validation of Autonomous
Drones and Swarms of Drones” and the academic chair “Complex Systems Engineering” of Ecole
Polytechnique-ENSTA-Télécom-Thalès-Dassault-Naval Group-DGA-FX-FDO-Fondation ParisTech,
by the UNAM-PAPIIT project IN109917, by the France-Mexico Binational SEP-CONACYT-
ANUIES-ECOS grant M12M01, by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 787367 (PaVeS),
as well as by the Austrian Science Fund (FWF) through Doctoral College LogiCS (W1255-N23).

1 Introduction

The equality negation task is a variant of consensus that was defined by Lo and Hadzilacos [14],
as the central idea to prove that the consensus hierarchy [10, 13] is not robust. Consider
two processes P0 and P1, each of which has a private initial value, drawn from the set of
possible input values I = {0, 1, 2}. Each process must irrevocably decide an output value
either 0 or 1 so that the decisions of the processes are the same if and only if the initial
values of the processes are different. It is well known that there is no wait-free consensus
algorithm for two processes that uses only registers [6, 15]. The same is true for equality
negation, because, as explained in [14], it is possible to solve consensus for two processes
using an equality negation algorithm.

mailto:eric.goubault@lix.polytechnique.fr
mailto:lazic@in.tum.de
mailto:jeremy.ledent@lix.polytechnique.fr
mailto:sergio.rajsbaum@gmail.com

2 Wait-free Solvability of Equality Negation Tasks

This result is intriguing for the following reason. It is well known that consensus is
intimately related to connectedness. Namely, the reason why consensus is not wait-free
solvable with registers is because its input complex is connected, while its specification requires
deciding unto disconnected components of the output complex. The equality negation task
is unsolvable for a different reason, since its output complex is connected. In our recent
project [8], we have studied the unsolvability of this task, in the case of two processes, using
methods from the field of episemic logic. The goal of this paper is to understand this task
from a topological perspective. To do so, we extend it to the setting of more than two
processes, and thus introduce a class of tasks which seem to be of a nature not previously
studied.

3

Distributed Computing through
Combinatorial Topology

0 1

10

0 1

10

¢: I ! 2O

I O

1

Distributed Computing through Combinatorial Topology

0 1

10

0 0

11

¢: I ! 2O

I O

2

2

2

Consensus Equality Negation

Consider the following family of tasks, as a generalization of the equality negation problem,
for n processes. These tasks are parametrized by two integers k, `, with 1 ≤ k < ` ≤ n. In
a given initial global state g of the system, each process has a private input value, and let
InputSet(g) ⊆ I be the set of these inputs, where I is the set of all possible input values. Thus,
in one extreme, all processes may start with the same input value, and |InputSet(g)| = 1,
and in the other they all start with different input values, and |InputSet(g)| = n. Similarly,
let OutputSet(g′) ⊆ {0, 1} be the set of decided values in some final global state g′ of the
computation. For every k, ` ∈ N such that 1 ≤ k < ` ≤ n we define an equality negation task
as follows, where g is any initial state, and g′ is a final state of any execution starting with g:

If k < |InputSet(g)| < `, the processes can decide any value in {0, 1}.
If |InputSet(g)| ≥ `, then |OutputSet(g′)| = 1
If |InputSet(g)| ≤ k, then |OutputSet(g′)| > 1

In this paper, we study the wait-free solvability of these tasks using read/write registers,
depending on the two parameters k and `. First, we show that if ` − k ≥ 2, the task is
solvable. The remaining cases are the ones where ` = k+ 1 and 1 ≤ k ≤ n− 1. In those cases,
it is not possible anymore to have k < |InputSet(g)| < `: this means that there is no “gap”
where the processes are free to decide any output without restriction. In order to prove that
these remaining cases are unsolvable, we use various combinatorial topology techniques [11].
In particular, we show two impossibility results: the task is unsolvable if k ≤ n/2 or if n− k
is odd. This leaves a few cases which are still open, namely, when k > n/2 and n− k is even.
We conjecture that they should also be unsolvable, but the right topological argument to
prove it remains to be found.

Notice that the case of n = 2 processes is special, because the only option is that k = 1
and ` = 2, in which case we obtain the equality negation task of Lo and Hadzilacos. Here the
task is (trivially) solvable for I = {0, 1}, but becomes unsolvable if we add one more input
value I = {0, 1, 2}. We discuss at the end of the paper why this case behaves differently.

Related work. The class of tasks that can be defined only in terms of sets of input
values and corresponding sets of output values (without specifying which process gets which
input nor which process should produce which output) are called colorless tasks. Since
their introduction in [2], they have been thoroughly investigated; an overview and detailed

É. Goubault and M. Lazić and J. Ledent and S. Rajsbaum 3

citations can be found in [11]. There is a very elegant characterization of wait-free colorless
tasks solvability, in terms of the existence of a certain simplicial map between the complex
of possible input values and the complex of possible output values. The central colorless task
is set-agreement, where each of n processes starts with an input, and each must halt with
some process’ input, such that no more than n − 1 distinct inputs are chosen. The proof
that set agreement is unsolvable using registers [12] revealed the deep connection between
distributed computing and topology. Other examples of colorless tasks are consensus, loop
agreement and approximate agreement.

Some tasks of interest are not colorless, and they are often much more difficult to analyze.
For instance, the renaming task requires n processes, each starting with a unique input name,
to choose distinct output from a range of size 2n− 2. This task can be solved if and only if
n is not a prime power. The proof uses more involved algebraic topology techniques [3, 5]
than the basic impossibility proof of set agreement based on Sperner’s lemma.

More generally, colorless tasks seem to be about agreement, while others seem to be
about symmetry breaking. Many such tasks have been considered, where processes only
have their own (distinct) names as inputs. In weak symmetry breaking, the processes must
choose binary outputs so that if all n processes participate, at least one chooses 0 and one
chooses 1. In an election task, one process outputs 0 and exactly n− 1 processes output 1.
These and others are included in the generalized symmetry breaking family [4], defined by a
set of possible output values, and for each value v, a lower bound and an upper bound on
the number of processes that have to decide this value. These tasks are generally not only
more complicated to analyze, but weaker than agreement tasks [4].

Equality negation tasks look very much like colorless tasks, in the sense that they are
specified only according to the sets of input values of the processes, with no regard for which
process has which value. But in fact, equality negation tasks are not colorless according to
the definition in Section 4.1.4 of [11]. Indeed, the process names play an important role in
the algorithms that we present to solve some instances of equality negation in Section 3.

2 Preliminaries

2.1 Equality negation tasks: from 2 to n processes
Note that the equality negation task defined in [14] for two processes does not have a unique
generalization to the case with more than two processes.

In this paper we introduce a generalization that allows any number of input values,
but we keep the set of possible decision values as {0, 1}. It seems natural to define a
generalization such that: (i) all the processes decide the same output value if they all have
(pairwise) different input values, and (ii) they do not decide on the same output value if
they all initially have the same input value. Still, this definition does not cover all possible
combinations of input values of all processes, for example, if there are two processes with
the same input, and a process with a different one. Therefore, there is a lot of freedom for
defining output constraints for the remaining input cases. Our goal is to analyse all the
possible generalizations of a certain form.

We define a family of equality negation tasks, based on the cardinality of the set of input
values of all processes. Let n be the number of processes and let there exist exactly n input
values, namely I = {0, 1, 2, . . . , n− 1}. This assumption is done w.l.o.g., as we explain at the
end of the paper: all our results can be extended to |I | > n in a straightforward manner.
Every initial global state g defines the set of input values of all processes in the state g,
that we denote by InputSet(g). As this set is always a non-empty subset of the set I , its

4 Wait-free Solvability of Equality Negation Tasks

cardinality ranges from 1 to n. Note that the case when all processes have the same input
value is represented by |InputSet(g)| = 1, and the case when all processes have different
input values is the one when |InputSet(g)| = n. Different constraints on the intermediate
cases introduce a family of tasks.
For every k, ` ∈ N with 1 ≤ k < ` ≤ n we define a generalized equality negation task:

If in the initial global state g we have |InputSet(g)| ≥ `, then all processes must decide
the same value, either 0 or 1.
If initially |InputSet(g)| ≤ k, processes do not decide on the same value, i.e., there is at
least one process deciding 0, and at least one deciding 1.
If initially k < |InputSet(g)| < `, then each process can decide independently any value
from {0, 1}.

The original equality negation task for two processes of Lo and Hadzilacos [14] is recovered
as a special case, where n = 2, I = {0, 1, 2}, k = 1 and ` = 2. It was shown to be unsolvable
in the wait-free immediate shapshot model, by reduction to the consensus task. A more
thorough study of this task for two processes, using topological methods and epistemic logic
methods, can be found in [8].

2.2 Distributed computing
We consider the usual model consisting of n asynchronous processes that communicate
through read/write shared registers of unbounded size [12]. When solving a task, initially,
each process has some input value. After communicating with each other a finite number
of times, each process produces an output value. The outputs produced are related to the
inputs in the execution, as defined by the task specification.

In this paper, we do not consider crashing processes. All the n processes are present
in the beginning of an execution, and they are guaranteed to run until the end of their
program. Instead of crashes, the two ingredients that allow us to obtain impossibility results
are asynchrony and wait-freedom. Although a bit unusual, this assumption is not restrictive:
if we want to transpose our results to a model where the processes can crash, we can simply
say that our task does not impose any restrictions on the outputs whenever at least one
process has crashed.

The processes are executing in an asynchronous way, meaning that an execution consists of
an arbitrary interleaving of the write and read operations of all the processes. Moreover, the
program run by the processes is required to be wait-free: every process must be guaranteed
to terminate its program in a bounded number of steps. Intuitively, these two restrictions
mean that a process is not allowed to wait until it receives information from any of the other
processes, since it may be arbitrarily slow.

We could describe our results in the general read/write registers model, but it is easier to
do it in the immediate snapshot model. And we do so without loss of generality, because
from the task computability perspective, the two models are known to be equivalent [1]. In
the immediate snapshot model, each process has a designated memory cell where it can
atomically write its input value. After doing so, it can atomically take a snapshot of the whole
shared memory, in order to read the values that have been written by the other processes.
Moreover, we restrict to a subset of all the executions described above: the snapshot is
guaranteed to happen immediately after the write. For each pair of processes P and Q

participating in this protocol, the immediate-snapshot may result in three possible outcomes:
either P was faster than Q, in which case P did not see the value of Q, but Q saw P ;
or Q was faster than P , in which case the situation is reversed;
or they executed concurrently, in which case they both saw each-other’s input value.

É. Goubault and M. Lazić and J. Ledent and S. Rajsbaum 5

Formally, an immediate snapshot execution consists of a sequence of sets of processes, where
each set is called a concurrency class. All the processes in the same concurrency class
will execute concurrently, and see each other’s values, as well as the values of the previous
concurrency classes.

These immediate snapshot executions give rise to simplicial complexes with nicer to-
pological properties: namely, its effect on the input complex is to subdivide each simplex,
thus preserving the topology. Immediate-snapshot operations can be wait-free implemented
from read/write register operations, although at a quadratic cost in terms of the number of
operations. For a survey including such results see e.g. [16].

2.3 Combinatorial topology

For our impossibility results, we use the combinatorial topology representation and basic
results described in [11], briefly recalled here.

A pair (Pi, xi) consisting of a process Pi along with its private (input or output) value xi

is called a vertex. An input vertex v = (Pi, xi) represents the initial state of process Pi, while
an output vertex represents its decision at the end of a computation. A set σ of such vertices
of cardinal k+ 1 is called a k-simplex or just simplex, and denotes the input values or output
values of k distinct processes in an execution. It is also used to denote a global state in an
execution, in which case xi is the local state of Pi. If the xi are input values, then σ is called
an input simplex, if they are output values, it is an output simplex. A set of simplices closed
under containment is called simplicial complex.

The dimension of a simplex σ, denoted dim(σ), is |σ| − 1, and it is full if it contains n
vertices, one for each process. In a simplicial complex, a subset of a simplex, which is a
simplex as well, is called a face. A simplex is maximal if it is not a strict subset of another
simplex. A simplicial complex is pure of dimension n − 1 if all its maximal simplices are
full. The simplices of lower dimension are used in some distributed computing models to
represent executions where some processes have crashed; but in our case, we will be mostly
interested in the full simplices. The set of all possible input (resp. output) simplices forms
an input complex I (resp. output complex O).

A coloring of a complex is a mapping that assigns an element of a certain domain, usually
called a color, to each vertex of the complex. A complex and its coloring form a chromatic
complex. In distributed computing, coloring often assigns a distinct process identity to each
vertex v of a simplex. We say that a simplex is properly colored (or it has proper coloring) if
every two of its vertices are differently colored. We call a simplex monochromatic if all its
vertices are labeled with the same color.

A task T for n processes is a triple (I,O,∆) where I and O are pure chromatic (n− 1)-
dimensional complexes, such that every simplex is properly colored. The set of colors is
{0, . . . , n−1}, and the colors are called process names or ids. The map ∆ sends each simplex σ
from I to a subcomplex ∆(σ) of O. We say that ∆ is a carrier map from the input complex I
to the output complex O. Briefly, the Asynchronous Computability Theorem [12] states that
a task is wait-free solvable with registers if and only if there is a chromatic subdivision of
the input complex and a chromatic simplicial map to the output complex, respecting the
carrier map. Recall that a chromatic simplicial map sends simplices to simplices, preserving
colors (process ids). We also use the fact that it can be assumed that a protocol solving a
task using immediate snapshot operations induces an iterated chromatic subdivision of the
input complex.

6 Wait-free Solvability of Equality Negation Tasks

2.4 Index and Content of a Pseudomanifold
In this section, we introduce the main technical tool that we will use in Section 4.2.2
to prove impossibility results: the index lemma. The index lemma counts the properly
colored n-simplices inside of a (not necessarily properly) colored and coherently oriented
pseudomanifold, the content, by counting the properly colored (n − 1)-simplices on the
boundary, the index. The boundary determines the number of properly colored n-simplices
in the interior of any pseudomanifold with that boundary.

Consider a set C with n+ 1 elements. A sequence S of C is an ordered list of the elements
of C. We denote as Si the i-th element of the sequence S, where 0 ≤ i ≤ n. A transposition
of S consists of interchanging the position of two elements Si, Sj of S. If i = j then we
say that it is an identity transposition of S. A sequence S′ of C is an even transposition of
another sequence S if S′ can be obtained with an even number of non identity transpositions
over S. An odd transposition of S is defined similarly.

Let σn be a simplex with a proper coloring f with colors IDn = {0, . . . , n}. Consider a
sequence S of IDn. We say that S induces the sequence S′ of σn with respect to f , when
f(S′i) = Si, 0 ≤ i ≤ n. If there is no ambiguity, we just say that S induces S′.

Let σn = {v0, v1, . . . , vn} be a simplex. An orientation of σn is a set consisting of
a sequence of its vertices and all even transpositions of this sequence. If n > 0 then
there are exactly two possible orientations for σn: the sequence 〈v0, v1, . . . , vn〉 and all
its even permutations, and the sequence 〈v1, v0, v2, . . . , vn〉 and all its even permutations.
For example, the two possible orientations of a 2-simplex can be seen as the clockwise
and the counterclockwise directions, or the two possible orientations of a 1-simplex are
the one from one of its vertices to the other, and the opposite direction. An orientation
of σn, n > 0, induces an orientation on all of its (n− 1)-faces: if σn−1

i is the (n− 1)-face
of σn without vertex vi, then σn−1

i gets the same orientation if i is even, and otherwise it
gets the opposite orientation. If σn, for example, is oriented 〈v0, v1, . . . , vn〉 then its face
σn

1 = 〈v0, v2, v3, . . . , vn〉 gets orientation 〈v2, v0, v3, . . . , vn〉, opposite of σn
1 , as 1 is odd.

If σn has a proper coloring id with colors IDn then we denote by d = +1 the orientation
that contains the sequence induced by 〈0, 1, . . . , n〉, i.e., the sequence S of σn such that
id(Si) = i, 0 ≤ i ≤ n, and denote by d = −1 the other orientation of σn which contains the
sequence induced by 〈1, 0, . . . , n〉, the sequence S of σn such that id(S0) = 1, id(S1) = 0 and
id(Si) = i, 2 ≤ i ≤ n. For n = 0, there is only one sequence of the vertices of a simplex σ0,
and then it has just one orientation, however we can associate +1 or −1 to this orientation.
Hence, a 0-simplex also has two orientations. An orientation d of σn, n > 0, induces the
orientation (−1)id to σn−1

i , where σn−1
i is the (n− 1)-face of σn without the vertex with id i.

A pseudomanifold Kn is orientable if there is an orientation for each of its n-simplices
such that: if σ, σ′ ∈ Kn share a (n− 1)-face τ then the two orientations on τ induced by σ
and σ′ are opposite. An orientation of Kn with this property is a coherent orientation. We
say that Kn is coherently oriented if it has a coherent orientation. Let σ be an oriented
n-simplex with a proper coloring c which uses colors IDn. Consider a sequence S of IDn.
Let S′ be the sequence of the vertices σ induced by S with respect to c. We say that S
belongs to the orientation of σ with respect to c if S′ belongs to the orientation of σ. The
simplex σ is counted by orientation with respect to c in the following way: it is counted as +1
if the sequence 〈0, 1 . . . n〉 belongs to its orientation with respect to c, otherwise it is counted
as −1. In the next definition, if i ∈ IDn is a color, we write IDn

i = IDn \ {i}.
I Definition 1 (Index and Content). Consider a coherently oriented pseudomanifold Kn with
the induced orientation on its boundary bd(Kn). Let c be a coloring, not necessarily proper,
of Kn with IDn.

É. Goubault and M. Lazić and J. Ledent and S. Rajsbaum 7

1. The content of Kn, C(Kn), with respect to c is the number of the properly colored
n-simplices of Kn counted by orientation.

2. The index of Kn, Ii(Kn), with respect to c is the number of properly colored (n − 1)-
simplices of bd(Kn) with IDn

i counted by orientation.

If there is no ambiguity we simply write Cn or In
i . The next lemma is the restatement of

Corollary 2 in [7] using our notation, and [9, pp. 46-47] for a simple version of dimension 2.

I Lemma 2 (Index Lemma). Let Kn be a coherently oriented pseudomanifold colored with
IDn. Then Cn = (−1)iIn

i .

The coloring c of Kn is a simplicial map from bd(Kn) to the boundary of a properly
colored n-simplex σn with IDn. Thus, we can think of the content of Kn as the number of
times that bd(Kn) is wrapped around bd(σn), i.e., a combinatorial version of the notion of
degree in topology.

To compute the index and content of chromatic subdivisions, we can just compute it from
the original complex before subdivision happens. Indeed, we have the following Lemma:

I Lemma 3. Let σn be a properly colored n-simplex with colors IDn. Let χ(σn) be a
chromatic subdivision of σn. Then C(χ(σn)) = C(σn).

Proof. Assume w.l.o.g. that σn is counted positively. Thus, C(σn) = 1. We proceed by
induction on n. For n = 0 (σ0 is a single vertex), chromatic subdivisions do nothing so the
result trivially holds. Now assume σn is of higher dimension.

By the index lemma, Cn(χ(σn)) = (−1)n In
n (χ(σn)). Note that IDn

n = IDn−1. Let f be
the (n− 1)-face of σn with colors IDn−1. Since χ(σn) is a chromatic subdivision of σn, the
set K of properly colored (n− 1)-simplexes on the boundary of χ(σn) with colors in IDn−1

is a chromatic subdivision of f . Thus, In
n (χ(σn)) = Cn−1(K) = Cn−1(f) by induction

hypothesis, and Cn−1(f) = In
n (σn) = (−1)n Cn(σn). This concludes the proof. J

chromatic subdivision
+1

+1 −1 +1

−1 −1 +1+1

−1 −1
+1

−1
+1 +1

I Corollary 4. Chromatic subdivisions preserve the index and content.

3 Solvability analysis

If processes are not anonymous, we claim that the equality negation task, defined as above,
is solvable if it holds that `− k ≥ 2 (and 1 ≤ k < ` ≤ n).

I Theorem 5. The algorithm from Figure 2 solves the equality-negation task if `− k ≥ 2.

Before we prove Theorem 5, and in order to understand the intuition behind it, let us first
focus on its special case when n ≥ 3, k = 1 and ` = n, presented in Figure 1. In this figure,
immediateSnapshot(v) returns the global state V of the system, |V| denotes the cardinal

8 Wait-free Solvability of Equality Negation Tasks

1 Boolean v := input_value
2

3 P0: V := immediateSnapshot(v);
4 return 0;
5

6 Pi: V := immediateSnapshot(v);
7 if |V| ≥ 2 and |val(V)| ≤ 1 then
8 return 1
9 else return 0;

Figure 1 Case k = 1 and ` = n, for n ≥ 3.

1 Boolean v := input_value
2

3 P0: V := immediateSnapshot(v);
4 return 0;
5

6 Pi: V := immediateSnapshot(v);
7 if |V| ≥ n+k−`+1 and |val(V)| ≤ k then
8 return 1
9 else return 0;

Figure 2 Arbitrary k and ` with `− k ≥ 2.

of the set V and val(V) denotes the set of local values that appear in the global state V. In
this algorithm, one fixed process decides 0 independently of its input and the result of the
snapshot. All the other processes decide depending on the output of the snapshot protocol. If
a process sees at least 2 processes, and their input values are the same, the process decides 1.
Otherwise it decides 0.

I Proposition 6. The algorithm from Figure 1 solves the equality negation task if n ≥ 3,
k = 1 and ` = n.

Proof. As k = 1 and ` = n, we need to show that (i) when all processes have the same
input value, they will disagree, and (ii) when all processes have different inputs, then they
all decide the same value (in this case 0).

Case (i). The distinguished process P0 will decide 0, and thus we need to ensure that
at least one process will decide 1. Using the properties of immediate snapshot, we know
that among the processes Pi, i 6= 0, there is at least one process Pj that sees at least n− 1
processes. As k ≥ 1 and n ≥ ` ≥ k + 2, we have that n ≥ 3, and thus n− 1 ≥ 2. Hence, the
processes Pj sees n− 1 ≥ 2 processes, and they must have the same input value by the initial
assumption of the case (i). Thus, Pj decides 1, which is enough for the disagreement.

Case (ii). Next we discuss the second requirement, that is, when no two processes have
the same input value. We prove that all processes in this case agree and decide 0. Suppose
by contradiction that a process Pi decides 1. According to the algorithm, this can happen
only if i 6= 0, and if Pi has seen 2 processes with the same input value. This contradicts the
initial assumption of this case. Hence, all processes decide 0, which concludes the proof. J

Let us now return to the general case, for any n, k and ` with `−k ≥ 2 and 1 ≤ k < ` ≤ n,
given in Figure 2. Similarly as in Figure 1, we fix one process that decides 0 independently
of its input and the result of the snapshot. All the other processes decide depending on the
output of the snapshot protocol. If a process sees at least n+ k− `+ 1 processes, and among
their input values there are at most k different values, the process decides 1, and otherwise it
decides 0. Now we are ready to prove Theorem 5.

Proof of Theorem 5. We prove that the algorithm from Figure 2 indeed solves equality-
negation task analogously as in the case with k = 1 and ` = n. We need to prove that (i) if
|InputSet(g)| ≤ k for an initial state g, then at least one process decides 0 and at least one
decides 1, and (ii) if |InputSet(g)| ≥ `, then all processes decide the same value, here 0.

In the case (i) again we have process P0 that decides 0 and we need to show that there is
at least one process that decides 1. Similarly as in the special case, we know there is a process
Pj , j 6= 0 that sees at least n− 1 processes. As `− k ≥ 2, we have that n− 1 ≥ n+ k− `+ 1,

É. Goubault and M. Lazić and J. Ledent and S. Rajsbaum 9

and thus Pj has seen at least n+ k − `+ 1 processes and the set of their input values must
have cardinality at most k by the assumption of the case (i). Hence, Pj decides 1.

In the case (ii), initially there are at least ` different values. We want to prove that
no process will decide 1. By means of contradiction, suppose that a process Pi decides 1.
According to the algorithm, we have that i 6= 0 and Pi has seen at least n + k − ` + 1
processes with at most k different input values. Note that Pi did not see any process with
the remaining values, which are at least `− k, and that there must be at least one process
with each of those values. Thus, we have at least n+ k − `+ 1 processes that Pi has seen
and at least `− k processes that Pi did not see, which is in total n+ 1. As the total number
of processes is n, this is a contradiction. This concludes the proof. J

4 Unsolvable cases

In the previous section, we have proved that whenever `− k ≥ 2, the corresponding equality
negation task is solvable. The remaining cases are the ones where ` = k + 1, i.e., when there
is no “gap” where the processes are allowed to decide any output value without constraints.
We will show that most of the remaining cases are unsolvable, namely, when k ≤ n/2 or
when n− k is odd. In the rest of the paper, we drop the ` parameter, since it will always be
equal to k + 1. For these remaining cases, we provide partial results. First we give a simple
argument to show that the task is unsolvable whenever k ≤ n/2. Then, for the other values
of k, we show that the task is unsolvable if n− k is odd. The remaining cases are still open.

4.1 Impossibility proof when k is small
For simplicity, we first look at the case where k = 1; we will see later that it can be easily
generalized to any k ≤ n/2. For k = 1, the goal of the task is the following. If all the input
values are the same, then the processes should disagree (i.e., not all of them should decide
the same output). In all other cases, the processes should agree.

a a

a

X

Immediate Snapshot

a
0

a
0

a
0

a

0
a

0

a0

a0

a
0

a 0
aa

a

b 0

Let us assume for contradiction that the task is solvable in the immediate snapshot model.
We focus on what happens in one of the initial global states where all the processes have the
same input value a. Let us call X = {(P0, a), . . . , (Pn−1, a)} the corresponding simplex of the
input complex. After the processes exchange information using iterated immediate snapshot
communications, we obtain in the protocol complex a chromatic subdivision χ(X) of the
original simplex X. The situation for 3 processes and one round of immediate snapshot is

10 Wait-free Solvability of Equality Negation Tasks

depicted above. The color of a vertex represents the process name; the value written inside a
vertex is its input value; and next to it is the decision value.

In the input complex, the simplex X is surrounded by other simplices where not all inputs
are the same. Thus, after the immediate snapshot computation occurs, the boundary of the
subdivided simplex χ(X) is still surrounded by simplices with a different input value (three
of them are depicted above, with input value b). In these simplices, the task specifies that
all the processes must decide the same output. Assume w.l.o.g. that this output is 0. Since
the boundary of χ(X) is connected, we can propagate the 0’s step by step and we obtain
that every vertex on the boundary of χ(X) must decide value 0.

To reach a contradiction, we will show that, given any assignment of output values 0 or 1
to the inner vertices of χ(X), there will always be at least one simplex of χ(X) where all the
outputs are equal. This contradicts the task specification. Note that the next part of the
proof only works because χ(X) is a chromatic subdivision; the statement does not hold for
other subdivisions. If we regard the output values 0 and 1 as colors, the result that we want
to prove looks like Sperner’s lemma, where instead of counting the properly colored simplices
inside the subdivision, we want to count the monochromatic ones, with respect to output
values 0 and 1. To be able to use Sperner’s lemma in this situation, we use a recoloring trick
which was already used in [5] to obtain lower bounds on the renaming problem.

Suppose we are given an assignment of output values to the vertices of χ(X), such that
all the vertices on the boundary decide 0. For v a vertex of χ(X), we write dv ∈ {0, 1} the
decision value of v, and idv ∈ {0, . . . , n− 1} its process number. We define the recoloring
of v to be cv := (idv + dv) mod n. We have the following property:

I Lemma 7. A simplex σ of χ(X) is monochromatic w.r.t. the decision values dv if and
only if it is proper w.r.t. the recoloring cv.

Proof. Since χ(X) is a chromatic subdivision of the simplex X, every simplex σ of χ(X)
is properly colored w.r.t. the process numbers idv. Thus, if σ is monochromatic w.r.t. the
decision values dv (that is, if all its vertices have the same decision value d), it is clear
that the recoloring cv = (idv + d) mod n will still be proper. Conversely, we proceed by
contraposition: suppose that not all decision values are the same. Then, there must be two
vertices v and w of σ, such that idw = (idv + 1) mod n and dv = 1 and dw = 0. Thus
cv = cw, and the recoloring c is not proper. J

We can now easily conclude the proof. Since on the boundary of χ(X) all the vertices
have the decision value 0, the recoloring c is just the process number: cv = idv for every
boundary vertex v. Moreover, since χ(X) is just the (iterated) chromatic subdivision of a
single input simplex X, we know that the process numbers idv form a Sperner coloring on
its boundary. Thus, by Sperner’s lemma [11], there must exist a simplex σ ∈ χ(X) which is
properly colored w.r.t. the recoloring c, and by Lemma 7 this means that all the vertices of
this simplex decide the same output. Therefore, the equality negation task with parameter
k = 1 cannot be solved by iterated immediate snapshot.

The same proof can be adapted for any k ≤ n/2:

I Theorem 8. The equality negation task for n ≥ 3 processes, with parameters k ≤ n/2 and
` = k + 1 is not solvable in the immediate snapshot model.

Proof. The only difference with the case k = 1 above is that we now start with the simplex
X = {(P0, 0), . . . , (Pk−1, k − 1), (Pk, 0), . . . , (P2k−1, k − 1), . . .}, which has exactly k distinct
input values, and every input appears at least twice. Therefore, if we remove one vertex

É. Goubault and M. Lazić and J. Ledent and S. Rajsbaum 11

from X, we obtain a face of X (of cardinality n− 1) which still has k distinct inputs. Then,
this face belongs to another simplex with k + 1 input values. Thus, after subdivision, every
process on the boundary of X must decide the same output (say, 0). Now the rest of the
proof is exactly the same as in the case of k = 1: we have a simplicial complex χ(X) which is
a chromatic subdivision of X, and we know that every process on its boundary has decision
value 0. By Sperner’s lemma, there is a simplex σ ∈ χ(X) which is properly colored w.r.t.
the recoloring c, and by Lemma 7 it is monochromatic w.r.t. the decision values. Since X
has ≤ k distinct input values, this set of outputs is not allowed. J

4.2 Some impossibility results depending on the parity of n− k

We now extend the proof of Section 4.1 to show that the task is not solvable by iterated
immediate snapshot in half of the remaining cases: namely, whenever n− k is odd, the task
is unsolvable. We will rely on the same recoloring trick (and the associated Lemma 7), but
instead of Sperner’s lemma, we will use a slightly more powerful combinatorial topology tool
called the index lemma. Sperner’s lemma is equivalent to Brouwer’s fixed point theorem
which in turn, can be seen as reducing to distinguishing between the topology of a ball
of dimension n with its boundary, the (n − 1)-dimensional sphere. In more details, their
topology is essentially different since there cannot be a continuous map from the n-ball
onto (meaning, surjective) the (n − 1)-sphere. The index lemma relates to a more subtle
topological distinction, about the inexistence of continuous maps that would be winding
around holes in a non-consistent way, so is not just about the image of the map. Sperner’s
lemma can be recovered as a direct consequence of the index lemma.

4.2.1 Low-dimensional example
Before we proceed to the general construction, let us illustrate the idea of the proof using the
particular case of 3 processes and parameter k = 2. This instance of the task is the following:
if the three input values are different, then the processes should decide the same output;
otherwise, they should disagree. The input complex I contains every possible assignment of
input values {0, 1, 2} to the three processes {P,Q,R}. More formally, its maximal simplices
are of the form σijk = {(P, i), (Q, j), (R, k)}, for all i, j, k ∈ {0, 1, 2}. We can decompose this
input complex I into two parts (depicted in Figure 3 below):

0
0

0

1
1

1 1
1

1

2
2

2

2
2

0

0
0

20

0

0

1

1

1

22

2

2 2

2

Figure 3 Exploded view of the input complex for n = 3 processes. All vertices with the same
color and input value should be identified.

12 Wait-free Solvability of Equality Negation Tasks

There are 6 maximal simplices σijk such that |{i, j, k}| = 3, that is, where all three
processes have distinct values. In each of these simplices, the processes should agree on a
common output value; moreover, since this subcomplex is connected, this common output
has to be the same in all six of them.
The rest of the input complex consists of simplices σijk such that |{i, j, k}| ≤ 2. In that
part of the input, the processes should not agree. This part of the input complex is
topologically a “pearl necklace” of three spheres.

Note that the 6 simplices with three distinct inputs are actually filling the hole in the middle
of the “necklace”. Thus, I is homotopy equivalent to a wedge of 2-spheres; in the terminology
of [11], it is a pseudosphere.

We now focus on one of the three spheres depicted in Figure 3; for example, the one
where all inputs are either 0 or 1. That sphere has six edges which are labeled with two
distinct input values 0 and 1. Each of these 01-edges also belongs to one of the six simplices
with three inputs 0, 1, 2: therefore, on each of these edges, all processes have to decide the
same output value (say, w.l.o.g., that the common output value is 0). In the picture below,
the 01-edges of the sphere are depicted in red. They form a circle on the surface of the
sphere, splitting it in two half-spheres. We now look at only one of those two half-spheres,
and call it H. It consists of four simplices, and its boundary contains only 01-edges. Thus,
after the immediate snapshot computation occurs, this complex will be subdivided, and in
order to solve the task, we should satisfy the following two conditions:
(1) All the vertices on the (red) boundary must be mapped to the same output, say, 0; and
(2) In every maximal simplex, not all processes should decide the same output.
This means we should have a simplicial map from a chromatic subdivision of H to the
subcomplex T of the output complex where not all decision values are the same.

0
0

0

1
1

1

0

0

0

1

1

1

H ⊆ Input complex
0 0

0

11

1

T ⊆ Output complex

Subdivision and decision map

Since the processes on the boundary of H all decide output 0, the boundary of H has to
be mapped to the outside boundary of T . Therefore, it seems clear topologically that some
simplex inside H will necessarily be sent to the “111-hole” in the middle of T , contradicting
condition (2). Notice however that the boundary of H is winding twice around the boundary
of T . Moreover, this winding number is preserved by the chromatic subdivisions of H induced
by the immediate snapshot protocol. Sperner’s lemma, that we used in Section 4.1, only
works if the boundaries are matched exactly (i.e., if we have a Sperner coloring). That’s
why we need to use the index lemma, which is able to handle cases where one boundary is
winding several times around the other.

I Proposition 9. The equality negation task for n = 3 processes, with parameters k = 2 and
` = 3 is not solvable in the immediate snapshot model.

Proof. Assume for contradiction that the task is solvable, and let H be the subcomplex of
the input complex described above. So, there should be a chromatic subdivision χ(H) of H,

É. Goubault and M. Lazić and J. Ledent and S. Rajsbaum 13

and an assignment of decision values to its vertices, which solves the task. Remember that
all the vertices on the boundary of χ(H) must decide the same output value, for example 0.
We choose an arbitrary (coherent) orientation for the simplices of H; and we assign colors
using the same recoloring as in Section 4.1. What we want to do now is prove that the
content of χ(H) is non-zero. Using the index lemma, we can also compute its index. And by
Corollary 4, applied to the boundary of χ(H), it is equal to the index of H itself.

Then, an easy calculation shows that the index of H is either 2 or −2 depending on the
orientation that we chose. So, no matter how many rounds of immediate snapshot we do,
the index of χ(H) is either 2 or −2. By the index lemma, its content must be equal to its
index (in absolute value). Since it is non-zero, there must exist proper triangles in χ(H),
which by Lemma 7 correspond to monochromatic triangles w.r.t. the decision values. This
contradicts the solvability of the task. J

4.2.2 General case
We now work with any k and n (remember however that k < n since ` = k + 1 ≤ n), and we
try to follow the same recipe as in the previous section. So, our goal is to find a subcomplex
of the input complex, which is a pseudomanifold (in order to be able to apply the index
lemma), and whose boundary consists of simplices with exactly k distinct input values (so
that we can say that every process on the boundary has to decide the same output). A simple
way to obtain a pseudomanifold is to choose a sphere in the input complex, and restrict
ourselves to a subcomplex of this sphere. Although this idea is inspired from what we did in
the low-dimensional example, the reader should be warned that the general construction we
are about to do, when instantiated with n = 3 and k = 2, does not give the same proof as
the one of Section 4.2.1.

Consider the subcomplex S of the input complex, which contains all the vertices of the
form (Pi, ai), where ai = 0 or ai = i if 1 ≤ i ≤ k, and ai = 0 or ai = 1 for all other values
of i. The simplices of S are all combinations of such vertices, which are properly colored
w.r.t. the process names. For example, σ = {(P0, 0), (P1, 0), . . . , (Pn−1, 0)} is a simplex of S.
For ease of notation, when talking about maximal simplices, we omit the process names
and just write σ = 〈0, . . . , 0〉, where the i-th component is the value of process Pi. Another
simplex of S is 〈0, 1, 2, . . . , k, 0, . . . , 0〉.

For the case n = 3, k = 2, the sphere S = {〈a, b, c〉 | a, b ∈ {0, 1}, c ∈ {0, 2}} is represented
below (the colors black, gray, white correspond to P0, P1, P2, respectively).

0
0

0

1
1

2

S

0
0

0

1
1

2

S≤2

0
0

1
1

2

S3

= ⋃

Since every process can take exactly two different input values, independently from the
other processes, the complex S is a (n − 1)-sphere. In particular, it is a pseudomanifold.
Among the maximal simplices of S, some of them contain exactly k + 1 distinct input values,
and the others contain k values or fewer. We write Sk+1 ⊆ S for the subcomplex of S which
contains all the simplices with k + 1 input values, and S≤k = S \ Sk+1. Both Sk+1 and S≤k

14 Wait-free Solvability of Equality Negation Tasks

are pseudomanifolds, and they have the same boundary ∂Sk+1 = ∂S≤k = Sk+1 ∩ S≤k. In
every simplex of Sk+1, the processes must decide the same value (since Sk+1 is connected);
assume w.l.o.g. that they decide the output value 0.

The complex S≤k will play the role of the complex H that we had in Section 4.2.1. In the
case of n = 3, k = 2, it corresponds to the sphere S with two holes corresponding to the two
simplices with three distinct inputs. Its boundary is represented in red in the picture above.
So the situation is a bit different than what we had in Section 4.2.1: instead of one boundary
winding twice around the output, we now have two holes, each of them winding once around
the output complex. Fortunately, the index lemma can also deal with such cases, as long as
the two holes are winding in the same direction around the output (otherwise they would
cancel each other). This is taken into account when we compute the index: here, one can
check that the two holes have the same orientation, so the index will be either 2 or −2. For
general k and n, the boundary of S≤k can have many holes, each of them winding several
times around the output complex. Our goal is once again to prove that the index is non-zero.

I Theorem 10. The equality negation task for n ≥ 3 processes, with parameters k and
` = k + 1 such that n− k is odd, is not solvable in the immediate snapshot model.

Proof. After the immediate snapshot communication occurs, we obtain a chromatic sub-
division χ(S≤k). We already know that it is a pseudomanifold, and that on its boundary
every process has to decide 0. Our goal is now to use the index lemma to prove that there
exists a simplex inside χ(S≤k) which is monochromatic w.r.t. the decision values. First, we
use the recoloring of Lemma 7, so that we are now searching for a properly colored simplex
in χ(S≤k). All we need to show is that the content of χ(S≤k) is non-zero; thus, we want to
compute its index. Since the index is preserved by chromatic subdivisions (see Corollary 4),
we just need to compute the index of S≤k. Since the boundary of S≤k is the same as the
boundary of Sk+1, their index is the same (in absolute value), and since the index of Sk+1
is equal to its content, we want to compute the content of Sk+1. In Sk+1, every simplex is
properly colored (because everyone decides 0), so we just need to count the simplices of Sk+1
by orientation. If the result is non-zero, this concludes the proof.

So let us pick an arbitrary orientation, say that the simplex 〈0, . . . , 0〉 is oriented positively.
Each time we change the value of one coordinate, the orientation changes: for example, the
simplex 〈1, 0, . . . , 0〉 is oriented negatively. Let us first characterize the maximal simplices
of Sk+1: they are of the form 〈a0, a1, 2, 3, . . . , k, ak+1, . . . , an−1〉, where for each i /∈ {2, . . . , k},
ai ∈ {0, 1}, and at least one of the ai must be 0, and at least one must be 1. There are
exactly 2n−k+1 − 2 such simplices: all combinations of 0’s and 1’s are possible, except
for z = 〈0, 0, 2, 3, . . . , k, 0, . . . , 0〉 and u = 〈1, 1, 2, 3, . . . , k, 1, . . . , 1〉. To go from z to u, we
need to change n− k + 1 coordinates. Thus, since n− k + 1 is even, then z and u have the
same orientation; otherwise, they would have opposite orientations.

A simple calculation shows that summing the orientations of all the simplices of Sk+1,
plus z and u, gives 0 as a result. Indeed, if we omit the middle components “2, 3, . . . , k”,
these 2n−k+1 simplices correspond to all the binary sequences of size n− k + 1. We can, for
example, enumerate those sequences using Gray code, so that the orientations are alternating,
hence there is the same number of positively and negatively oriented simplices. Since z and u
are not in Sk+1, and they have the same orientation, then the content of Sk+1 must be either
2 or −2. In any case, it is non-zero: so the task is not solvable whenever n− k is odd. J

In particular, the case of k = n− 1 is not solvable for any n, as n− k = 1 is odd. Note
that in this proof, we do not really use the full power of the index lemma: we use it to show
that the content of S≤k is equal (in absolute value) to the content of Sk+1. This also follows

É. Goubault and M. Lazić and J. Ledent and S. Rajsbaum 15

from the simple fact that the content of a sphere is always 0, which is a direct consequence
of the index lemma; so the contents of S≤k and Sk+1 must be opposite.

5 Discussion on the number of input values

In all this paper, we have been working with a set of input values I = {0, . . . , n− 1} of size n,
for a number n ≥ 3 of processes. This might seem a bit surprising, considering that in the
original equality negation task for two processes [14], the size of the input set matters a lot.
For I = {0, 1}, the task is solvable, but for I = {0, 1, 2}, it becomes unsolvable. It is quite
informative to think about why our unsolvability proofs of Theorems 8 and 10 fail in the
case of two processes and I = {0, 1, 2}. Both of them fail for a similar reason. We identify
a subcomplex of the input complex (χ(X) in Section 4.1 and S≤k in Section 4.2.2), and
we surround its boundary by simplexes where every process must decide the same output.
However, in order to assume that every vertex on the boudary decides the same output 0, we
need to know that the part of the input complex which decides the same output is connected.
For two processes, this is not the case if I = {0, 1}, however taking I = {0, 1, 2} fixes this
issue. Both input complexes are depicted below; the subcomplex where decisions should be
the same is represented in blue.

0

0 1

1 0

0 1

1 2

2

No such problem occurs when there are more than 3 processes. Nevertheless, we can still
wonder what happens when we allow an input set I of size |I| > n. Actually, all the results
of this paper can be extended to such a setting in a straightforward way:

Theorem 5 can easily be shown to work when more than n input values are allowed:
intuitively, the algorithm relies only on the size of the sets of values that are seen by the
processes. It never looks at the actual values.
In all our unsolvability proofs (Theorems 8 and 10, and Proposition 9), we proceed by
picking a subcomplex of the input complex, and then we work in this subcomplex to find
a contradiction. If we add more input values, this just makes the input complex bigger,
but all those proofs still work as they stand.

6 Conclusion

We have defined a family of equality negation tasks and studied their solvability and
unsolvability. A few cases remain open questions; we conjecture that they should be
unsolvable. The same proof method as in Section 4.2.2 using the index lemma might work
for the remaining cases, but we would need to find another subcomplex of the input complex
on which to apply it. Unfortunately, our attempts to do so have failed.

There are a number of other variations of this task that we could have studied. For
example, instead of having binary outputs in {0, 1}, we could have a larger set of output
values. Then, we could introduce two more parameters to define what it means to “agree” or
to “disagree” in that context. That kind of parameters appear in the generalized symmetry
breaking task [4].

16 Wait-free Solvability of Equality Negation Tasks

References
1 H. Attiya and S. Rajsbaum. The combinatorial structure of wait-free solvable tasks. SIAM J.

Comput., 31(4):1286–1313, 2002. doi:10.1137/S0097539797330689.
2 E. Borowsky, E. Gafni, N. Lynch, and S. Rajsbaum. The BG distributed simulation al-

gorithm. Distrib. Comput., 14(3):127–146, October 2001. URL: http://dx.doi.org/10.1007/
PL00008933, doi:10.1007/PL00008933.

3 Armando Castañeda, Maurice Herlihy, and Sergio Rajsbaum. An equivariance theorem with
applications to renaming. Algorithmica, 70(2):171–194, Oct 2014. URL: https://doi.org/10.
1007/s00453-013-9855-3, doi:10.1007/s00453-013-9855-3.

4 Armando Castañeda, Damien Imbs, Sergio Rajsbaum, and Michel Raynal. Generalized
symmetry breaking tasks and nondeterminism in concurrent objects. SIAM J. Comput.,
45(2):379–414, 2016. doi:10.1137/130936828.

5 Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds for renam-
ing: the lower bound. Distributed Computing, 22(5):287–301, Aug 2010. doi:10.1007/
s00446-010-0108-2.

6 Benny Chor, Amos Israeli, and Ming Li. On processor coordination using asynchronous
hardware. In Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’87, pages 86–97, New York, NY, USA, 1987. ACM. URL: http://doi.
acm.org/10.1145/41840.41848, doi:10.1145/41840.41848.

7 Ky Fan. Simplicial maps from an orientable n-pseudomanifold into Sm with the oc-
tahedral triangulation. Journal of Combinatorial Theory, 2(4):588–602, 1967. URL:
http://www.sciencedirect.com/science/article/pii/S0021980067800632, doi:https://
doi.org/10.1016/S0021-9800(67)80063-2.

8 Éric Goubault, Marijana Lazić, Jérémy Ledent, and Sergio Rajsbaum. A dynamic epistemic
logic analysis of the equality negation task. Dynamic Logic: New Trends and Applications,
DaLi 2019, to appear.

9 Michael Henle. A Combinatorial Introduction to Topology. Dover, 1983. doi:10.2307/1574757.
10 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,

January 1991. URL: http://doi.acm.org/10.1145/114005.102808, doi:10.1145/114005.
102808.

11 Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2013.

12 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.
ACM, 46(6):858–923, 1999. URL: https://doi.org/10.1145/331524.331529, doi:10.1145/
331524.331529.

13 Prasad Jayanti. On the robustness of Herlihy’s hierarchy. In Proceedings of the Twelfth
Annual ACM Symposium on Principles of Distributed Computing, PODC ’93, pages 145–
157, New York, NY, USA, 1993. ACM. URL: http://doi.acm.org/10.1145/164051.164070,
doi:10.1145/164051.164070.

14 Wai-Kau Lo and Vassos Hadzilacos. All of us are smarter than any of us: Nondeterministic
wait-free hierarchies are not robust. SIAM J. Comput., 30(3):689–728, 2000. URL: https:
//doi.org/10.1137/S0097539798335766, doi:10.1137/S0097539798335766.

15 Hosame H Abu-Amara Michael C Loui. Memory requirements for agreement among unreliable
asynchronous processes. In Advances in Computing research, pages 163–183, Greenwich, CT,
1987. JAI Press.

16 Sergio Rajsbaum, Michel Raynal, and Panagiota Fatourou. An introductory tutorial to
concurrency-related distributed recursion. Bulletin of the EATCS, 111, 2013. URL: http:
//eatcs.org/beatcs/index.php/beatcs/article/view/223.

http://dx.doi.org/10.1137/S0097539797330689
http://dx.doi.org/10.1007/PL00008933
http://dx.doi.org/10.1007/PL00008933
http://dx.doi.org/10.1007/PL00008933
https://doi.org/10.1007/s00453-013-9855-3
https://doi.org/10.1007/s00453-013-9855-3
http://dx.doi.org/10.1007/s00453-013-9855-3
http://dx.doi.org/10.1137/130936828
http://dx.doi.org/10.1007/s00446-010-0108-2
http://dx.doi.org/10.1007/s00446-010-0108-2
http://doi.acm.org/10.1145/41840.41848
http://doi.acm.org/10.1145/41840.41848
http://dx.doi.org/10.1145/41840.41848
http://www.sciencedirect.com/science/article/pii/S0021980067800632
http://dx.doi.org/https://doi.org/10.1016/S0021-9800(67)80063-2
http://dx.doi.org/https://doi.org/10.1016/S0021-9800(67)80063-2
http://dx.doi.org/10.2307/1574757
http://doi.acm.org/10.1145/114005.102808
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/114005.102808
https://doi.org/10.1145/331524.331529
http://dx.doi.org/10.1145/331524.331529
http://dx.doi.org/10.1145/331524.331529
http://doi.acm.org/10.1145/164051.164070
http://dx.doi.org/10.1145/164051.164070
https://doi.org/10.1137/S0097539798335766
https://doi.org/10.1137/S0097539798335766
http://dx.doi.org/10.1137/S0097539798335766
http://eatcs.org/beatcs/index.php/beatcs/article/view/223
http://eatcs.org/beatcs/index.php/beatcs/article/view/223

	Introduction
	Preliminaries
	Equality negation tasks: from 2 to n processes
	Distributed computing
	Combinatorial topology
	Index and Content of a Pseudomanifold

	Solvability analysis
	Unsolvable cases
	Impossibility proof when k is small
	Some impossibility results depending on the parity of n-k
	Low-dimensional example
	General case

	Discussion on the number of input values
	Conclusion

